DETAILED CONTAMINATION ASSESSMENT

NEIGHBOURHOOD 1A STAGE 7 & NEIGHBOURHOOD 2 GOOGONG ROAD, GOOGONG

REPORT NO 12675/4-AB

16 MAY 2017

Job No: 12675/4 Our Ref: 12675/4-AB

16 May 2017

Googong Township Limited, as The Trustee for Googong Township Unit Trust c/- Peet Limited GPO Box 1000 CIVIC SQUARE ACT 2608

Email: Adrian.Moy@peet.com.au

Attention: Mr A Moy

Dear Sir

re: Proposed Residential/Open Space and Commercial Land Use
Neighbourhood 1A Stage 7 & Neighbourhood 2 - Googong Road, Googong
Detailed Contamination Assessment

Further to the *Contamination Assessment* Report Ref: 12675/4-AA dated 31 May 2016 prepared by Geotechnique Pty Ltd (Geotechnique) and Interim Advice No. 1 (Ref. 16157L01_Interim Advice 1, dated 11 August 2016) prepared by Site Auditor Mr R Harwood; this report presents a detailed contamination assessment at the above site for the proposed end use, understood to be combined residential (with garden/accessible soil) / open space and commercial land use.

Reference should be made to the Executive Summary of this report.

If you have any questions, please do not hesitate to contact the undersigned.

Yours faithfully
GEOTECHNIQUE PTY LTD

JOHN XU Associate BE, MEngSc, MIEAust

EXECUTIVE SUMMARY

Geotechnique Pty Ltd (Geotechnique) was commissioned by Peet Limited to conduct a detailed contamination assessment (DCA) for the land known as Neighbourhood 1A Stage 7 & Neighbourhood 2 (the site), located at Googong Road, Googong. It is understood that the site is proposed for combined residential (with garden / accessible soil) / open space and commercial land use.

The report has been prepared to supplement the findings and to address the recommendations presented in the *Contamination Assessment* Report Ref: 12675/4-AA dated 31 May 2016 prepared by Geotechnique, as well as to meet the requirements of Site Auditor.

Soils contaminated with heavy metals were identified at a number locations in waste material zones and hematite zone (refer to Drawing No 12675/4-AA2). Elevated concentrations of the heavy metals would present or potentially present a risk of harm to human health and / or environment. Detectable concentrations of TPH F2 and F3 were noted in discrete samples collected through the central portion of the site.

The objectives of the DCA were to determine the requirements of remediation / management and to delineate the extent of soil contamination.

The findings of this assessment are summarised as follows:

- One AEC (area including hematite zone and waste material zones) and one potential AEC (central
 portion of the site where detectable concentrations of TPH F2 and F3 were identified previously)
 have been identified on the subject site based on the results of previous assessment.
- The site is proposed for combined residential (with garden / accessible soil) / open space and commercial land use.
- TPH F2 and F3 are not of concern in the soil in the central portion of the site.
- Based on the test results for this and previous assessments, soils impacted by heavy metals were
 identified at a number of locations in an area including hematite zone and waste material zones and
 hematite zone. Concentrations of the heavy metals would present or potentially present a risk of
 harm to human health and / or environment.
 - The identified locations and the estimated extent of impacted by metals are as indicated on the Drawing Nos 12675/4-AB4A and 12675/4-AB4B. The identified contaminants with the associated concentrations are summarised in the summary tables under the conditions for residential or commercial / industrial land use.
- An area with scattered debris and asbestos (bonded ACM and FA / AF) was identified (refer to Drawing No 12675/4-AB4A for the approximate extent).
- One groundwater monitoring well was installed. The monitoring well was dry at and after the completion of borehole drilling / well installation in February 2017.
- The concentrations of Cu (Total) in the unfiltered dam water sample and Cu (Dissolved) in the filtered dam water sample were both marginally in excess of the ANZECC freshwater guidelines.
- Potential off-site impacts of contaminants on groundwater and waterbodies are considered to be low.
- Some form of remediation / management and validation of the site are required.

12675/4-AB Executive Summary continued

Based on this assessment, it is considered that the site can be made suitable for the proposed redevelopment into combined residential (with garden / accessible soil) / open space and commercial land use subject to implementation of the following recommendations, prior to site preparation and earthworks:

- A human health and ecological risk assessment to determine the source of metal impacts and to determine the requirements and to devise strategies for remediation and / or management, if required.
- Checking the groundwater level when there is a substantial rainfall to recharge the groundwater table.
 - If the groundwater is available, it is recommended that the monitoring well should be developed and assessment of the groundwater be undertaken by appropriate sampling and laboratory testing of metals.
- 3. A remedial action plan / environmental management plan is to be developed to devise strategies for remediation / management of the metal impacted area if required based on the risk assessment.
- 4. Remediation / management of the area impacted by metals and / or asbestos, followed by site validation should be carried out.

It is our opinion that remediation / management and validation of soils in the area impacted by with metals and / or asbestos could be carried out in conjunction with the assessment, remediation and validation of the Exclusive Area (30m buffer around AEC10 and AEC13), following the demolition and removal of the site features at later stage.

If suspect materials are encountered during any stage of future earthworks / site preparation (identified by unusual staining, odour, discolouration or inclusions such as building rubble, asbestos sheets / pieces / pipes, ash material, etc.), we recommend that this office is contacted for assessment, and to take all necessary actions.

Reference should be made to Section 17.0 for details of the recommendations regarding any materials to be excavated and removed from the site, and any fill to be imported to the site. Reference should also be made to Section 18.0 for the limitations of this report.

TABLE OF CONTENTS

		Page
1.0	INTRODUCTION	
2.0	SCOPE OF WORK	
3.0	SITE DESCRIPTION	
4.0	SITE HISTORY & SUMMARY OF CONTAMINATION ASSESSMENT REPORT 12675/4-A	
5.0	SITE CONDITION AND SURROUNDING ENVIRONMENT	
6.0	GEOLOGY AND HYDROGEOLOGY	
7.0	REVISED CONCENTUAL SITE MODEL	
7.		
7.	= :	8
7.	a reconstruction of the great and the great	9
8.0	CONTAMINATION ASSESSMENT DATA QUALITY	
9.0	SITE INSPECTION, SAMPLING & ANALYSIS PLAN AND SAMPLING METHODOLOGY	
	MONITORING WELL INSTALLATION & DEVELOPMENT	
11.0	FIELD QUALITY ASSURANCE AND QUALITY CONTROL	- 18
	1.1 Sampling Personnel	
11	1.2 Decontamination Procedures	- 18
11	1.3 Rinsate Samples	- 18
11	1.4 Duplicate Samples	- 19
	1.5 Split Samples	
12.0	LABORATORY QUALITY ASSESSMENT AND QUALITY CONTROL	- 21
	2.1 Laboratory Accreditation	
	2.2 Sample Holding Times	
	2.3 Test Methods and Limits of Reporting / Practical Quantitation Limits	
	2.4 Method Blanks	
	2.5 Laboratory Duplicate Samples	
	2.6 Laboratory Control Samples	
	2.7 Matrix Spike	
	QA / QC DATA EVALUATION	
	ASSESSMENT CRITERIA	
	4.1 Soil Samples	
	4.2 Dam Water Sample	
	LABORATORY TEST RESULTS, ASSESSMENT & DISCUSSION	
15	5.1 Analytical Results for Soil Samples	
	15.1.1 Metals (As, Cd, Cr, Cu, Pb, Mn, Hg, Ni & Zn), CEC & pH	
	15.1.2 Total Petroleum Hydrocarbons (TPH)	
	15.1.3 Asbestos	
	5.2 Analytical Results for Dam Water Sample	
	SITE CHARACTERISATION	
	CONCLUSION AND RECOMMENDATIONS	
18.0	LIMITATIONS	- 33

LIST OF REFERENCES

DRAWINGS			
12675/4-AA1	Sample Locations		
12675/4-AA2	Locations of Contamination		
12675/4-AB1	Detailed Sampling Locations – Area including Hematite Zone and Waste Zones		
12675/4-AB2	Sampling Locations – Further Investigation TPH F2 and F3 (Central Portion of the Site)		
12675/4-AB3	Groundwater Bore Locations		
12675/4-PS1	Detailed Sampling Locations – Hematite Zone and Waste Area		
12675/4-PS2	Sampling Locations – Further Investigation TPH F2 and F3		
12675/4-ABP1	Proposed Sample Locations		
12675/4-ABP2	Existing and Proposed Groundwater Bore Locations		
12675/4-AB4A	Locations and Approximate Extent of Contamination Under Conditions for Residential Use Laboratory Summary Tables for Drawing No 12675/4-AB4A		
12675/4-AB4B	Locations and Approximate Extent of Contamination Under Conditions for Commercial Use Laboratory Summary Tables for Drawing No 12675/4-AB4B		
TARI ES			

TABLES	
Table A	Rinsate Samples
Tables B1-B5	Duplicate Samples
Tables C1-C5	Split Samples
Tables D1-D9	Metals, Cation Exchange Capacity (CEC) & pH Test Results – Soil Samples (Residential Setting)
Table D1A-D10	Metals, Cation Exchange Capacity (CEC) & pH Test Results – Soil Samples (Commercial/Industrial Setting)
Table E	Total Petroleum Hydrocarbons (TPH) F2 & F3 (Silica Gel Clean-up) Test Results – Soil Samples
Table F	Asbestos Test Results – Soil Sample & Fibro-cement Piece
Table G	Metals Test Results – Dam Water Sample

APPENDICES	
APPENDIX A	General Arrangement Plan (Drawing No 16-001756-D003+ dated 23 March 2017) prepared by Calibre Consulting
APPENDIX B	Table 1 - Test Pit / Sample Logs
APPENDIX C	Engineering Log – Monitoring Well
APPENDIX D	SGS Environmental Services Analytical Reports and Envirolab Services Certificates of Analysis
APPENDIX E	Environmental Notes
APPENDIX E	Environmental Notes The Trustee for Googang Township Unit Tr

1.0 INTRODUCTION

Further to the *Contamination Assessment* Report Ref: 12675/4-AA dated 31 May 2016 prepared by Geotechnique Pty Ltd (Geotechnique) and Interim Advice No. 1 (Ref. 16157L01_Interim Advice 1, dated 11 August 2016) prepared by Site Auditor Mr R Harwood, this report presents the results of a detailed contamination assessment (DCA) for the land known as Neighbourhood 1A Stage 7 & Neighbourhood 2 (the site), located at Googong Road, Googong, as indicated on Figure 1 below:

SITE RK Betty B

FIGURE 1

Map Data ©2016 Google

It is understood that the site is proposed for combined residential (with garden / accessible soil) / open space and commercial land use (refer to the plan in Appendix A for details of the proposed development layout).

The report has been prepared to supplement the findings and to address the recommendations presented in the Report 12675/4-AA, as well as to meet the requirements of the Site Auditor.

Soils contaminated with heavy metals were identified at a number locations in waste material zones and hematite zone (refer to Drawing No 12675/4-AA2). Elevated concentrations of the heavy metals would present or potentially present a risk of harm to human health and / or environment.

Detectable concentrations of TPH F2 and F3 were noted in discrete samples collected through the central portion of the site.

Subsequently, DCA was carried out by Geotechnique in order to determine the requirements of remediation / management and to delineate the extent of soil contamination.

2.0 SCOPE OF WORK

In order to achieve the objectives of the DCA, the following scope of work was carried out:

- Site inspection by an Environmental Engineer and an Environmental Scientist from Geotechnique to identify any visible or olfactory indicators of potential contamination.
- Sampling by the Environmental Engineer and the Environmental Scientist, in accordance with a predetermined sampling plan based on the sampling and testing plan (emails dated 30 September 2016, as well as 13 and 31 January 2017) prepared by Geotechnique and approved by Site Auditor.
- Drilling one bore using a drilling rig and installation of one single-level groundwater monitoring well.
- Implementation of industry standard quality assurance (QA) and quality control (QC) measures.
- Chemical analysis by laboratories accredited by the National Association of Testing Authorities (NATA), in accordance with Chains of Custody (COC) prepared by Geotechnique.
- Assessment of the laboratory analytical results.
- Assessment of field and laboratory QA and QC.
- Delineating the extents of contamination.

3.0 SITE DESCRIPTION

The site is located on the southern side of Googong Road, Googong, in the local government area of Queanbeyan and within the wider Googong Township Development.

The site comprises part of a parcel of land including; Lots 10 & 11 in DP754881, Lot 5 in DP1217396, Lot 1367 in DP1217419, Lot 21 in DP1203214 and Lot 101 in DP616217. The site, excluding a 30m buffer around areas of concern (AEC) AEC10 and AEC13, covers an area of approximately 209 hectares (ha).

4.0 SITE HISTORY & SUMMARY OF CONTAMINATION ASSESSMENT REPORT 12675/4-AA

Geotechnique conducted contamination assessment of the site in 2016 and the results were presented in the *Contamination Assessment* Report Ref: 12675/4-AA dated 31 May 2016.

The assessment was based on site historical data presented in the following reports and documents:

- Googong Local Environment Study, Phase 1 Environmental Site Assessment Report (Ref: C7552/1-AC dated 4 July 2004), prepared by Coffey Geosciences Pty Ltd (Coffey).
- Sampling, Analysis and Quality Plan for the Remediation of Googong Township Residential Development (Ref: J1526.2R-rev0 dated April 2012), prepared by C. M. Jewell & Associates Pty Ltd (CMJA).

- Supplementary Sampling, Analysis and Quality Plan (SAQP) & Remedial Works Plan (Ref: 12675/2-L1 dated 22 August 2014) for Neighbourhood 1B, prepared by Geotechnique and approved by Site Auditor Mr R Harwood.
- Detailed Contamination Assessment Report (Ref: 12675/2-AA dated 12 September 2014) for Neighbourhood 1B, prepared by Geotechnique.
- SAQP (Ref: 12675/4-L1 dated 19 February 2016) for Neighbourhood 1A Stage 7 & Neighbourhood 2, prepared by Geotechnique and approved by Site Auditor Mr R Harwood.
- Sampling & Testing Program (Ref: 12675/4-L2 dated 11 March 2016) for Neighbourhood 1A Stage 7
 & Neighbourhood 2, prepared by Geotechnique and approved by Site Auditor Mr R Harwood.
- Sampling & Testing Plan Update for Neighbourhood 1A Stage 7 & Neighbourhood 2 in an email dated 4 April 2016, prepared by Geotechnique and approved by Site Auditor Mr R Harwood.

Coffey undertook an assessment of land including the site in 2004, and CMJA prepared an appropriate SAQP in 2012 to address the AEC within the land.

It is understood that the site was once part of a larger grazing property that has been operating since the mid to late 1800s, and has typically been used for sheep and cattle grazing.

Coffey conducted a Phase 1 Environmental Site Assessment (ESA) of the land including the site and identified AEC10 within the site as an area containing drums and car batteries within the site (Report C7552/1-AC).

CMJA was commissioned by Canberra Investment Corporation (CIC) to prepare an appropriate SAQP (Ref: J1526.2R-rev0) to address the AEC within the land. As part of these works, CMJA identified a sheep and cattle yard as an additional AEC, referred to as AEC13.

Based on Coffey Report (Ref: C7552/1-AC), CMJA SAQP (Ref: J1526.2R-rev0) and Geotechnique Revised SAQP (Ref: Q6555-L1R1), Geotechnique carried out a detailed contamination assessment (DCA) (Report Ref: 12675/2-AA) of seven AEC, including AEC10 and AEC13, identified within and in the vicinity of the land known as Neighbourhood 1B of the Googong Township Development in 2014.

AEC 10 and AEC 13 were assessed (Report 12675/2-AA) previously by Geotechnique for Neighbourhood 1B. Elevated concentrations of lead, copper and zinc were identified within AEC10, isolated to areas around the farm house.

A supplementary SAQP & Remedial Works Plan (Ref: 12675/2-L1) was prepared to outline contamination assessment of residual soil in the seven identified AECs (including AEC10 and AEC13) following demolition and removal of site features and any hard stands, and to provide details for remediation and validation of the identified contaminated areas and any additional areas identified after completion of the contamination assessment of residual soil in the footprints of former features.

It was noted that the AEC10 and AEC13 are within the north eastern portion of Neighbourhood 2, which are to be excluded from the assessment. These areas are proposed to be assessed, remediated and validated in accordance with the recommendations and methodology outlined in the *Supplementary SAQP & Remedial Works Plan* (Ref: 12675/2-L1).

To allow works to commence within the Neighbourhood 2 which contains AEC10 and AEC13, a 30 metres (m) buffer radius should be enforced around the AEC10 and AEC13 in all directions; this would allow the demolition of the site features and remediation to occur at a later stage. Reference may be made to Drawing No 12675/4-AA1 for the location of Exclusive Area (30m buffer around AEC10 and AEC13).

The objectives of contamination assessment were to provide data on the contamination status of the surface soils within the site, to determine the suitability of the site for the proposed land use, and to make recommendations with regard to any future remedial works if required.

The scope of work for the assessment included review of site historical data presented in the relevant reports and documents, site inspection, as well as soil sampling and laboratory testing.

The following three additional AECs were identified by personnel from Environmental Strategies (ES) during the site walkover in early March 2016 (refer to Drawing No 12675/4-AA1):

- A car body.
- Two rubbish pits (waste material zones).
- Hematite zone.

Based on the information provided and the site inspection, the AEC and associated Contaminants of Potential Concern (CoPC) were identified and presented in the following table:

AEC & Associated CoPC

AEC	CoPC
	8 Heavy Metals including arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), mercury (Hg), nickel (Ni) and zinc (Zn), Organochlorine Pesticides (OCP), Organophosphorus Pesticides (OPP) and Total Petroleum Hydrocarbons (TPH).
Surface soil within the site due to former grazing activities.	For screening purposes, analysis of the other contaminants, such as BTEX (Benzene, Toluene, Ethyl Benzene and Xylenes), Polycyclic Aromatic Hydrocarbons (PAH) and Polychlorinated Biphenyls (PCB) was recommended. Asbestos might be present in the soil with inclusions of demolition waste and / or fibro-cement pieces / asbestos containing material (ACM).
Car body	8 Heavy Metals, TPH, BTEX and PAH
Two rubbish pits (waste material zones)	8 Heavy Metals, TPH, BTEX, PAH, OCP, OPP, PCB and asbestos
Hematite zone	The hematite zone is a naturally occurring, iron rich soil, which might have other naturally occurring heavy metals that could compromise the suitability of the area for future residential land use. For screening purposes, analysis of 13 heavy metals including As, beryllium (Be), boron (B), Cd, Cr, cobalt (Co), Cu, Pb, manganese (Mn), Hg, Ni, selenium (Se) and Zn was recommended.

Contamination assessment of surface soils within the site including the abovementioned three AECs was undertaken by Geotechnique based on the SAQP (Ref: 12675/4-L1), Sampling & Testing Program (Ref: 12675/4-L2), and Sampling & Testing Program Update (email dated 4 April 2016).

Based on the assessment, the majority of the laboratory test results satisfied the criteria for stating that the analytes selected were either not present (i.e. concentrations less than laboratory limits of reporting) or present in the sampled soils at concentrations that did not pose a risk of hazard to human health or the environment for the proposed land use.

However, the results of sampling and testing for the assessment identified soil contaminated with heavy metals in some soil samples.

The findings of the assessment are summarised as follows:

- Three areas of concern (car body, waste material zones and hematite zone) were identified on the subject site.
- Soil contaminated with heavy metals was identified at a number of locations in the waste material zones and hematite zone. Elevated concentrations of the heavy metals would present or potentially present a risk of harm to human health and / or environment.
- A groundwater assessment was not carried out. The potential for the abovementioned contamination to have leached to groundwater within the vicinity of the waste material zone and hematite zone should be addressed.
- No off-site migration issues were identified.
- Remediation and validation of the site are required.

Based on the assessment, it was considered that the site could be made suitable for the proposed redevelopment into residential with garden / accessible soil and open space land use subject to implementation of the following recommendations, prior to site preparation and earthworks:

- 1. Soil contaminated with heavy metals was identified at locations in waste material zones and hematite zone (refer to Drawing No 12675/4-AA2). Subsequently, a detailed contamination assessment (DCA) was recommended in order to delineate the extents of soil contamination.
- 2. Remediation of the contaminated area(s), followed by site validation should be carried out.
 - It was our opinion that remediation and validation of soil contamination in waste material zones and hematite zone could be carried out in conjunction with the assessment, remediation and validation of the Exclusive Area (30m buffer around AEC10 and AEC13) following the demolition and removal of the site features at later stage.
- The underlying groundwater would be investigated in the waste material zones and hematite zone.
- 4. A supplemental SAQP and remedial works plan would be prepared by Geotechnique to outline the abovementioned DCA, remediation, validation and groundwater investigation, which is to be approved by Site Auditor.

On completion of the DCA, remediation, validation and groundwater investigation, a report would be prepared by Geotechnique to determine the contamination status and recommend the suitability of the site for the proposed residential with garden / accessible soil and open space land use.

5.0 SITE CONDITION AND SURROUNDING ENVIRONMENT

At the time of the field sampling on 17 and 18 October 2016, as well as 13 to 17 February 2017, the site conditions were essentially unchanged as described in the Report Ref: 12675/4-AA, with exception that scattered debris and fibro-cement pieces were noted in an area in the vicinity of former sample location D112.

At the time of field work, the neighbouring properties were as follows:

To the north: Googong Road, beyond which is agricultural land

To the east: Neighbourhood 1A / agricultural land

To the south: Agricultural land

To the west: Old Cooma Road, beyond which is the Fernleigh Residential Estate

There were no air emissions emanating from the site or the neighbouring properties.

6.0 GEOLOGY AND HYDROGEOLOGY

The Geological Map of Canberra (Geological Series Sheet 8727, Scale 1:100,000, 1992), published by the Bureau of Mineral Resources, indicates that the site is underlain by Colinton Volcanics of late Silurian age, comprising dark green dacitic ignimbrite, minor volcaniclastic sediments, tuffaceous shale, limestone and dolomitic limestone.

The Soil Landscape Map of Canberra (Soil Landscape Series Sheet 8727, Scale 1:100,000, 2000), published by the NSW Department of Land and Water Conservation, indicates that the site is located within the Burra Landscape area, which comprises undulating to rolling low hills and alluvial fans on Silurian Volcanics. Soils within this landscape are generally shallow to moderately deep. The soils have low permeability, low available water holding capacity, moderate mass movement hazard and sheet erosion risk. The soils are also commonly strongly acidic.

Reference should be made to test pit / sample logs in Appendix B for descriptions of the soils encountered during sampling for this assessment on 17 and 18 October 2016, as well as 13 to 17 February 2017. Based on information from all test pit / sample locations (refer to Drawing Nos 12675/4-AB1 and 12675/4-AB2), the sub-surface profile in the investigated area is generalised as follows:

Topsoil	Silty Clay, brown, with root fibres, some with gravel, or grey, some with root fibres, was encountered in most of the test pit locations ranging in thickness from approximately 0.2m to 0.6m.
Natural Soil	Silty Clay, brown, some with ironstone gravels, or yellow-brown Shaley Clay, yellow-brown and dark grey / grey, with shale fragments and / or ironstone gravels / fragments
Bedrock	Shale was encountered at depth ranging from about 0.4m to 2.1m below existing ground level (EGL) in a number of test pit locations.

12675/4-AB

Neighbourhood 1A Stage 7 & Neighbourhood 2 - Googong Road, Googong

Field observations by the Environmental Engineer and Environmental Scientist during sampling indicated, with the exception of scattered debris and fibro-cement pieces noted in an area in the vicinity of former sample location D112 (refer to Drawing No 12675/4-AB1 for the approximate extent), no detectable odour, no obvious staining / discolouration of the soil and vegetation, nor ash materials or fibro/asbestoscement pieces on the bare surface, test pit locations or recovered soil samples that would indicate potential for contamination.

No groundwater or perched water was encountered during detailed sampling to a depth of approximately 2.5m below the EGL.

Reference should be made to the Engineering Log in Appendix C for descriptions of the soils encountered during installation of groundwater monitoring well GW1 (refer to Drawing No 12675/4-AB3) terminated at depth approximately 14.5m below the EGL on 15 February 2017 for this assessment. Topsoil comprising silty clay (thickness about 0.2m), underlain by natural silty clay, shaley clay then shale bedrock at depth approximately 2.5m below the EGL was encountered at the monitoring well location.

Field observations by an Environmental Scientist during the field work indicated that there were no detectable odour and no obvious fibro-cement pieces, ash materials, discolouration of the soils, or petroleum hydrocarbon staining noted at the well location.

The monitoring well was dry at the completion of borehole drilling / well installation.

It should be noted that the levels of groundwater / seepage might vary due to rainfall and other factors not evident during this investigation.

It is recommended that the groundwater level should be checked when there is a substantial rainfall to recharge the groundwater table.

There is no waterbody such as a creek, river or wetland close to the site. Queanbeyan River is located approximately 3 kilometres (km) to the north east, and Googong Dam is located approximately 2km to the south east of the site. An artificial drainage channel, a small surface water dam situated within the drainage channel to the southeast of the hematite zone and several farm dams that might capture or divert stormwater run-off were observed within the site.

As part of investigation for preparation of the SAQP for Neighbourhood 1A, CMJA undertook a desktop review of records held by the NSW Office of Water (NOW), covering boreholes within a 2km radius of the centre of the site and assessed the hydrogeology of the surrounding area. The search revealed many bores within this radius. Feature information was only available for three bores with recorded water bearing zones at depths ranging from 0m to 75m below the ground surface, and standing water levels between 20m and 31m.

The *May 2016 Monitoring Report* (Ref. 30011525-AQ, dated 22 June 2016) prepared by SMEC Australia Pty Ltd (SMEC) has been reviewed. The SMEC report revealed that:

- The groundwater monitoring bore network was installed between 13 August and 5 September 2013 and consists of eleven monitoring bores, comprising four shallow and seven deep.
- Groundwater flow direction in the deep aguifer appears to be to the north-east.

Groundwater flow direction in the shallow aquifer likely follows the topographic drainage lines with the direction between GGW4S and GGW7S in a northerly direction towards Beltana Pond, and the direction around GGW2 and GGW3S is likely easterly towards Googong Dam.

7.0 REVISED CONCENTUAL SITE MODEL

7.1 Revised AEC / Potential AEC

The results of the investigation during the previous contamination assessment indicated that:

- Soil contaminated with heavy metals was identified at locations in waste material zones and hematite zone (refer to Drawing No 12675/4-AA2).
- Detectable concentrations of TPH F2 and F3 were noted in discrete samples collected through the central portion of the site.

Subsequently, the AEC / potential AEC and associated CoPC have been revised and are presented in the following table:

Revised AEC / Potential AEC & Associated CoPC

AEC / Potential AEC	CoPC			
Area including Hematite Zone and Waste	9 heavy metals including As, Cd, Cr, Cu, Pb, Mn, Hg,			
Material Zones	Ni and Zn			
Central Portion of the Site	> TPH F2 & F3			

7.2 Potentially Contaminated Media

Potentially contaminated media present at the area(s) impacted by metals or with elevated concentrations of TPH includes:

- Surface soils;
- Natural soils/shale bedrock;
- Surface water; and
- Groundwater.

Soil contaminated with heavy metals was identified at a number of locations in the waste material zones and hematite zone.

The extents of soil contamination have not been defined; as such, surface soils within the vicinity contaminated locations are considered to be potentially contaminated media.

Detectable concentrations of TPH F2 and F3 were noted in discrete samples collected through the central portion of the site. The soil at and in the vicinity of those locations is also considered to be potentially contaminated media.

Based on the potential mobility of contaminants and associated potential leachability through the soil profile, vertical migration of contaminants from the surface soils into the underlying natural soils/shale bedrock might have occurred. As a result, the natural soils and underlying shale bedrock are also considered to be potentially contaminated media.

An artificial drainage channel and a small surface water dam situated within the drainage channel to the southeast of the hematite zone might capture or divert stormwater run-off. There is potential for off-site impact of the contaminants on the waterbodies due to surface water run-off from the site. As a result, surface water is also considered to be a potentially contaminated medium.

Groundwater is identified as a potentially contaminated medium due to the potential for the contamination to have leached to groundwater within the contaminated area(s).

7.3 Potential for Migration

Contaminants generally migrate from site via a combination of windblown dust, rainwater infiltration, groundwater migration and surface water run-off. The potential for contaminants to migrate is a combination of:

- The nature of the contaminants (solid / liquid and mobility characteristics).
- The extent of the contaminants (isolated or widespread).
- The locations of the contaminants (surface soils or at depth).
- The site topography, geology, hydrology and hydrogeology.

Off-site impacts of contaminants in soil are generally governed by the transport media available and likely receptors. The most common transport medium is water, whilst receptors include initially uncontaminated soils, groundwater, surface waterbodies, humans, flora and fauna.

The potential contaminants identified as the information obtained, site inspection and field sampling were generally in a solid form (e.g. heavy metals).

The ground surface within the site was in general grass covered. The potential for migration of contaminants via wind-blown dust is considered low as a result of the exposed soils within the site. The potential for migration of contamination via surface run-off is also expected to be minor. Some migration of contaminants via surface water might still occur in the event of heavy rain.

Migration of soil contaminants to the deeper soils or groundwater regime would generally be via leaching of contaminants from the surface soil, facilitated by infiltration of surface water. An artificial drainage channel and a small surface water dam situated within the drainage channel to the southeast of the hematite zone might act as a preferential pathway for contaminants in the area impacted to dissolve and migrate away from this area. Furthermore, the depth of contamination has not been completely delineated; therefore there is a possible risk of contaminants to migrate to deeper soils or the groundwater regime.

Sensitive receptors at the site and in the immediate vicinity, under current site conditions and based on the future land use of the site, are considered to include visitors and those living and working at the site who might come into contact with potentially contaminated media. The sensitive environmental receptors that could be adversely impacted by possible contamination are considered to be surface water bodies nearby and groundwater.

8.0 CONTAMINATION ASSESSMENT DATA QUALITY

Data quality objectives (DQO) are qualitative and quantitative statements that specify the quality of the data required for the contamination assessment. DQO must ensure that the data obtained is sufficient to characterise the contamination on a site, and enable appropriate assessment of health and environmental risks for the current or proposed use. The DQO were developed for this contamination assessment in accordance with the NSW Department of Environment and Conservation (DEC) (2006), Guidelines for the NSW Site Auditor Scheme (2nd edition), as well as with the Australian Standard "Guide to the Sampling and Investigation of Potentially Contaminated Soil Part 1: Non-volatile and semi-volatile compounds" (AS4482.1-2005) and "Guide to the Sampling and Investigation of Potentially Contaminated Soil Part 2: Volatile substances" (AS4482.2-1999). The DQO process adopted is detailed below.

State the Problem

The site was formerly used as grazing activities. Three AEC, namely, a car body, waste material zones and hematite zone, have been identified on the site.

Based on the results of detailed contamination assessment undertaken by Geotechnique as presented in Report Ref: 12675/4-AA; soil contaminated with heavy metals was identified at a number of locations in the waste material zones and hematite zone. Elevated concentrations of heavy metals would present or potentially present a risk of harm to human health and/or environment.

Detectable concentrations of TPH F2 and F3 were noted in discrete samples collected through the central portion of the site.

The 'problems' to be addressed are:

- What are the lateral and vertical extents of metal impacts;
- Whether the soil in the central portion of the site is contaminated with TPH F2 and F3; and
- Whether contamination exists within the surface water and groundwater within the vicinity of impacted area(s).

The following key professional personnel were involved in the contamination assessment:

John Xu Associate

Lan Ye Environmental Engineer
Saurabh Sapkota Environmental Engineer
Justin Hofmann Environmental Scientist

Identify the Decisions

The decisions to be made in completing the assessment are as follows:

- Is the data sufficient to enable the preparation of a Remediation Action Plan (RAP) and/or Environmental Management Plan (EMP) should the data suggest these are required?
- Are there any off-site migration issues that need to be considered?

Identify Inputs to the Decisions

The inputs into the decision process are as follows:

- Previous investigation data;
- Revision of conceptual site model;
- NearMap aerial photograph taken on 11 August 2016;
- Site conditions and observation details:
- Detailed soil sampling in grid pattern at various depths;
- Using a hand held XRF unit on site to obtain real time metal concentrations while sampling to assist with delineating the extent of metal impact;
- Collection of a water sample from the small surface water dam situated within the drainage channel to the southeast of the hematite zone;
- Installation of one single-level groundwater monitoring well;
- Soil profile information obtained through the sampling phase and during the installation of monitoring well;
- Laboratory test data on analysed samples;
- Assessment of test results against applicable assessment criteria; and
- Details of the proposed development.

Define the Study Boundaries

The lateral study boundaries for this assessment were defined by the investigation areas (area including Hematite Zone and Waste Zones, as well as central portion of the site) as shown on Drawing Nos 12675/4-AB1 and 12675/4-AB2.

The vertical study boundaries for this assessment were defined by the investigation depths as below:

- Ranging from approximately 0.3m to 2.5m below the EGL for soil in the area impacted by metals;
- Ranging from approximately 0.1m to 0.7m below the EGL for soil in the area with detectable concentrations of TPH F2 and F3 previously identified;
- Approximately 2.0m to 12.1m below the EGL for soil at the location of groundwater monitoring well;
- Approximately 14.5m below the EGL for groundwater.

Develop a Decision Rule

As soil samples in the area impacted by metals were all collected between the surface and 0.1m during the previous assessment, further investigation of metal concentrations at depths >0.1m is required to delineate the vertical extent of heavy metal concentrations.

The source of the elevated metal concentrations has not been defined and it is unknown if the metal concentrations are anthropogenic in origin associated with the waste material or if these concentrations are likely to be naturally occurring and associated with the hematite zone.

The metal concentrations in the samples collected from the waste area (samples A4 to A14) and those collected from the hematite zone (A15 to A18) all show similar trends in metal concentrations. The metal concentrations at each of these locations might be related. Based on these results and a review of the NearMap aerial photograph taken on 11 August 2016, it is possible that the area impacted by elevated metal concentrations could be significantly greater than the area previously sampled.

While no concentrations of TPH F2 and F3 measured exceed the assessment criteria, it is unknown what possible causes for those results are (e.g. are they naturally occurring or are they likely to be of anthropogenic origin) and whether they could indicate a more significant area of contamination. As such, further investigation of TPH F2 and F3 in surface soil (0-0.1m) at and in the vicinity of those locations should be undertaken. Some from at least 0.5m should also be collected and analysis to assess whether they are TPH concentrations lower down in the soil profiles.

The information obtained through this assessment will be used to characterise the AEC within the site in terms of contamination issues and risk to human health and the environment. The decision rules in characterising the AEC will be as follows:

- The assessment criteria are the NSW EPA produced and / or endorsed criteria, as specified in Section 13.0 of this report.
- The soil will be deemed contaminated if the assessment criteria are unfulfilled or containing contamination "hot spots". Reference should be made to NSW EPA (1995) " Contaminated Sites: Sampling Design Guidelines", which define what criteria determine whether an exceedance of a trigger value is a hot spots or not.
- A hand held XRF unit is to be used on site to obtain real time metal concentrations while sampling to
 assist with delineating the extent of heavy metal impact. Laboratory data is still required to delineate
 the extent of the heavy metal impacted area, but the XRF will be able to assist with determining
 whether enough samples have been collected for delineation purposes.
 - Upon completion of delineation of the lateral and vertical extents impacted by metals, a human health and ecological risk assessment will be recommended to determine the source of contamination, as well as to determine the requirements and to devise strategies for remediation and / or management.
- Further investigation, remediation and / or management will be recommended if the soil is found to be contaminated with TPH F2 and F3.
- There will be off-site migration issues that need to be considered, if contaminants in the surface water and groundwater samples present at concentrations exceeding the assessment criteria.

Laboratory test results will only be accepted and considered useable for this assessment under the following conditions:

- All laboratories used are accredited by NATA for the analyses undertaken.
- All detection limits set by the laboratories fall below the assessment criteria adopted.
- Analyte concentrations in the rinsate water sample should be less than laboratory limits of reporting (LOR) or should not be detected significantly.
- The differences between the reported concentrations of the analytes in the field duplicate and the corresponding original samples are within accepted limits (refer to Section 11.4).

- The differences between the reported concentrations of the analytes in the inter-laboratory duplicate (split) and the corresponding original samples are within accepted limits (refer to Section 11.5).
- The QA / QC protocols and results reported by the laboratories comply with the requirements of the NEPM 1999 (April 2013) "Guideline on Laboratory Analysis of Potentially Contaminated Soils".

Specify Limits on Decision Errors

This step is to establish the decision maker's tolerable limits on decision errors, which are used to establish performance goals for limiting uncertainty in the data. Data generated during this assessment must be appropriate to allow decisions to be made with confidence.

Decision errors for this assessment were minimised and measured by the following:

- Collection and analysis of samples, as well as installation of groundwater monitoring well were in accordance with the sampling and testing plan (emails dated 30 September 2016, as well as 13 and 31 January 2017) prepared by Geotechnique and approved by Site Auditor. Sample numbers and sampling plans are therefore considered to be adequate for site characterisation.
- The analyte selection is based on the previous site investigations and soil profiles. The possibility of
 any other potential contaminants that would be detected through field observation (odours, staining,
 colouring and inclusion of ACM and other foreign material) during sampling may need to be included.
 The potential for contaminants other than those analysed is considered remote.
- The assessment criteria adopted from the guidelines stated in Section 13.0 have risk probabilities already incorporated.
- The acceptable limits for field and inter-laboratory duplicate comparisons are outlined in Sections 11.4 and 11.5 of this report.
- The acceptance limits for laboratory QA / QC parameters are based on the laboratory reported acceptance limits and those stated in the NEPM1999 (April 2013) "Guideline on Laboratory Analysis of Potentially Contaminated Soils".

Optimise the Design for Obtaining Data

The following measures were undertaken to ensure accurate data collection:

- The procedures adopted for the location and collection of environmental samples were developed
 prior to implementation, in accordance with NSW EPA guidelines and current industry practice. The
 sampling program was designed to ensure integrity of data collection during the assessment,
 including decontamination techniques, sample labelling, storage and COC protocols.
- The analytical program was developed in theory prior to undertaking the sampling (based on the
 previous site investigations and soil profiles) and refined on the basis of field observations (both
 surface and sub-surface) during the sampling phase. All potential contaminants have been covered.
- A hand held XRF unit was used on site to assist with determining whether enough samples have been collected for delineation purposes.
- Only laboratories accredited by NATA for the analyses undertaken were used for this assessment.
 The laboratory performance is assessed through review of statistics calculated for QA samples such as blanks, spikes and duplicates.

The field QA / QC protocols adopted are outlined in Section 11.0 of this report. The QA / QC program incorporates preparation of traceable documentation of procedures used in the sampling and analytical program and in data validation procedures.

Data Quality Indicators

The performance of the assessment in achieving the DQO will be assessed through the application of Data Quality Indicators (DQI), defined as follows:

Precision: A quantitative measure of the variability (or reproducibility) of data;

Accuracy: A quantitative measure of the closeness of reported data to the "true" value;

Representativeness: The confidence (expressed qualitatively) that data is representative of each

media present on the site;

Completeness: A measure of the amount of useable data from a data collection activity;

Comparability: The confidence (expressed qualitatively) that data can be considered

equivalent for each sampling and analytical event.

Sensitivity: The appropriateness of the chosen laboratory methods, including the LOR, in

producing reliable data in relation to the adopted site assessment criteria.

An assessment of the DQI is presented in Sections 11.0 and 12.0 of this report for field procedures (soil sampling phase) and for laboratory procedures (analytical phase), respectively.

9.0 SITE INSPECTION, SAMPLING & ANALYSIS PLAN AND SAMPLING METHODOLOGY

On 17 and 18 October 2016, as well as 13 to 17 February 2017, our Environmental Engineer Lan Ye or Saurabh Sapkota and Environmental Scientist Justin Hofmann carried out a site inspection and sampling in the areas of concern.

Prior to carrying out field woks, the proposed sampling locations and groundwater bore location had been set up and marked with a tomato stake with flagging by surveyors from LANDdata Surveys in general according to Drawing Nos 12675/4-PS1, 12675/4-PS2, 12675/4-ABP1 and 12675/4-ABP2. A couple of the sampling points for the investigation in February 2017 were adjusted slightly so that they were not in the centre of access tracks. The proposed sample location D201 was unable to be marked due to the presence of dense bush / vegetation. The proposed D201 was relocated and recorded with a hand held GPS by our field engineer during the field works.

During the field works on 13 to 17 February 2017, a hand held XRF unit was operated by Ms A Singh or Mr M Sisic from Thermo Fisher Scientific to obtain real time metal concentrations while sampling to assist with delineating the extent of heavy metal impact. With the assistance of the XRF unit, our engineer was able to terminate the excavation test pits earlier than proposed in the southern and western portions and to further excavate additional test pits than proposed in the northern and eastern portions. Test pit locations D271 to D290 were recorded with a hand held GPS by our field engineer.

Scattered debris and fibro-cement pieces were noted in an area in the vicinity of former sample location, D112 (refer to Drawing No 12675/4-AB1 for the approximate extent recorded with a hand held GPS by our field engineer) on 17 February 2017. One fibro-cement piece FCP1 and one corresponding soil sample FCP1 (0-0.1m) were collected. The recovered fibro-cement piece and soil sample for asbestos

analysis were transferred into a labelled plastic bag. The sample location was recorded with a hand held GPS by our field engineer

Reference may be made to Drawing Nos 12675/4-AB1 and 12675/4-AB2 for details of the sampling locations.

One groundwater monitoring well (GW1) was installed on 15 February 2017 to a depth of 14.5m below the EGL. Location of the well is shown on Drawing No 12675/4-AB3.

A number of natural soil samples were recovered at various depths ranging from 2.0m to 12.1m below ESL.

An unfiltered water sample was collected from a small surface water dam situated within the drainage channel to the southeast of the hematite zone. The water sample was placed in a glass bottle supplied by the laboratory. The fully filled bottle were labelled and placed in a chilled container.

The soil sampling procedures adopted for the detailed assessment were generally as follows:

- The sample locations were excavated to a predetermined depth using an excavator. The sample was then recovered from the excavator bucket using a stainless steel trowel.
- The stainless steel trowel were decontaminated prior to use, in order to prevent cross contamination (refer to Section 11.2 for details of the procedures for decontamination of the trowel).
- To minimise the potential loss of organic compounds, the recovered soil sample for laboratory analysis was immediately transferred to a labelled, laboratory supplied, 250ml glass jar and sealed with an airtight, Teflon screw top lid. The fully filled jar was then placed in a chilled container.

In order to ensure the analytical performance of the primary laboratory, duplicate and split samples were prepared for analysis. Soil samples were kept in a labelled laboratory supplied glass jar (acid-washed and solvent-rinsed), and sealed with an airtight screw Teflon top lid. The fully filled jar was placed in a chilled container.

A rinsate water sample was collected daily at completion of sampling, and placed in a glass bottle supplied by the laboratory. The fully filled bottle were labelled and placed in a chilled container.

The primary samples in the chilled containers and plastic bags were forwarded under COC conditions to the primary NATA accredited laboratory, SGS Environmental Services (SGS). The split samples in the chilled container were forwarded under COC conditions to the secondary NATA accredited laboratory, Envirolab Services Pty Ltd (Envirolab).

On receipt of the samples, the laboratories returned the Sample Receipt Advice, verifying the integrity of all the samples received.

The Environmental Engineer and Environmental Scientist carried out sampling in locations shown on Drawing Nos 12675/4-AB1, 12675/4-AB2 and 12675/4-AB3, based on the sampling and testing plan (emails dated 30 September 2016, as well as 13 and 31 January 2017) prepared by Geotechnique and approved by site auditor. The numbers of samples recovered and analysed including duplicate and split samples, are summarised below.

In the Area including Hematite Zone and Waste Material Zones

Sample ID	Number of Samples Recovered & Analysed	Analytes	Duplicate Sample	Split Sample
D101 to D157 (all samples at depths 0-0.1m & 0.2-0.3)	114		D2=D152 (0-0.1m) D3=D139 (0-0.1m) D4=D157 (0-0.1m) D5=D103 (0-0.1m)	S1=D125 (0-0.1m) S3=D136 (0-0.1m) S4=D146 (0-0.1m) S5=D116 (0-0.1m)
A4, A6, A8, A9, A11, A13 & A15 to A18 (all samples at depths 0.25-0.35m & 0.5-0.6m)	20		D6=A4 (0.25-0.35m) D7=A13 (0.25-0.35m)	S6=A8 (0.25-0.35m) S7=A11 (0.25-0.35m)
D101, D116, D130, D132, D139, D142, D152, D157, A8, A11 & A15 to A18 (all samples at depth 1.0-1.1m)	14			
D116 (1.4-1.5m), D139 (1.4-1.5m) & A16 (1.5-1.6m)	3			
D101, D132, D142, D152, D157, A11 & A15 to A17 (all samples at depth 1.9-2.0m)	9		D1=D132 (1.9-20m)	S2=D152 (1.9-2.0m)
D201 to D226, D229 to D238, D243 to D249, D259, D263 to D265 & D271 to D290 (all samples at depths 0-0.1m & 0.2-0.3)	134	9 metals	DS1=D204 (0-0.1m) DS2=D205 (0-0.1m) DS3=D206 (0-0.1m) DS4=D221 (0-0.1m) DS5=D224 (0-0.1m) DS6=D234 (0-0.1m) DS7=D237 (0-0.1m) DS8=D285 (0-0.1m) DS9=D287 (0-0.1m) DS10=D289 (0-0.1m) DS11=D284 (0-0.1m) DS12=D259 (0-0.1m) DS13=D271 (0-0.1m) DS14=D273 (0-0.1m) DS15=D280 (0-0.1m)	SS1=D223 (0-0.1m) SS2=D233 (0-0.1m) SS3=D236 (0-0.1m) SS4=D238 (0-0.1m) SS5=D245 (0-0.1m) SS6=D230 (0-0.1m) SS7=D226 (0-0.1m) SS8=D286 (0-0.1m) SS9=D288 (0-0.1m) SS10=D283 (0-0.1m) SS11=D290 (0-0.1m) SS12=D272 (0-0.1m) SS13=D275 (0-0.1m) SS14=D277 (0-0.1m) SS15=D279 (0-0.1m)
D201, D202, D204, D207 to D226, D229 to D238, D243 to D249, D259, D265, D271, D273 to D278, D280 to D282, D285 to D287, D289 & D290 (all samples at depth 1.0-1.1m)	57			
D203 (0.9-1.0m), D205 (0.7-0.8m), D206 (0.6-0.7m), D272 (0.7-0.8m), D288 (0.6-0.7m) & D289 (0.5-0.6m)	6			
D201, D209, D211, D213, D215, D217, D219, D221, D225, D231, D233, D235, D237, D243, D245, D247, D259, D271, D273, D275, D277, D285 & D287 (all samples at depth 1.9-2.0m)	23			
DW1 (2.0-2.1m, 3.0-3.1m, 4.0-4.1m, 5.0-5.1m, 6.0-6.1m, 7.0-7.1m, 8.0-8.1m, 9.0-9.1m, 10.0-10.1m, 11.0-11.1m & 12.0-12.1m)	11			

Notes: 9 metals including As, Cd, Cr, Cu, Pb, Mn, Hg, Ni and Zn

In the Central Portion of the Site

Sample ID	Number of Samples Recovered & Analysed	Analytes	Duplicate Sample	Split Sample
DS11, DS16, DS18, DS19, DS22, CS12-1 to CS12-3, CS14-1 to CS14-3, CS15-1 to CS15-3, CS18-1 to CS18-3 & CS22-1 to CS22-3 (all samples at depth 0-0.1m)	20	TPH F2 & F3	D8=DS11 (0-0.1m) D9=DS22 (0-0.1m) D10=CS15-2 (0-0.1m)	S8=CS15-1 (0-0.1m) S9=CS22-1 (0-0.1m) S10=DS19 (0-0.1m)
DS18, DS19, DS22, CS12-2, CS15-2 & CS18-2 (all samples at depth 0.5-0.6m)	6			

In addition, the following samples were analysed:

- 147 samples selected for analysis of Cation Exchange Capacity (CEC).
- 95 samples selected for analysis of pH.
- Surface water sample (unfiltered and filtered) for analysis of metals.
- 7 rinsate samples (R1, R2 and RS1 to RS5) for analysis of metals.
- One rinsate sample R2 for analysis of TPH (F2 & F3)
- One fibro-cement piece FCP1 and one corresponding soil sample FCP1 (0-0.1m) for asbestos analysis.

Reference may be made to Sections 11.0 and 15.0 of this report for a summary and assessment of the laboratory test results. The laboratory analytical reports and certificates of analyses are included in Appendix D.

10.0 MONITORING WELL INSTALLATION & DEVELOPMENT

One groundwater monitoring well (GW1) was installed on 15 February 2017 to a depth of 14.5m below the EGL. Location of the well is shown on Drawing No 12675/4-AB3.

Epoca Environmental Pty Ltd (Epoca) used a drilling rig equipped with push tube to penetrate through the layers of silty clay and shaley clay, then with rotary air hammer to penetrate through the layer of bedrock, remove the soil and crushed rock and install the monitoring well under the supervision of Geotechnique.

A number of natural soil samples were recovered at various depths ranging from 2.0m to 12.1m below ESL and analysed for metals.

There was no petroleum hydrocarbon staining, discolouration of the soil or odour during installation of the wells that would indicate the potential for contamination.

Each monitoring well consisted of a standpipe of 50 millimetres (mm) internal diameter, Class 18 PVC casing and a 0.45mm machine slotted screen. The bottom of the standpipe was fitted with a push-on cap. The annulus was backfilled with clean sand and after that bentonite (seal material) and concrete capping/soil cutting to prevent ingress of surface run-off. The top of the standpipe was fitted with a lockable monument. Construction details of the monitoring well are shown on the Engineering Log in Appendix C.

The monitoring well was dry at and after the completion of borehole drilling/well installation on 15 and 16 February respectively.

It should be noted that the level of groundwater might vary due to rainfall and other factors not evident during this investigation.

It is recommended that the groundwater level should be checked when there is a substantial rainfall to recharge the groundwater table.

If the groundwater is available, our field engineer will develop the monitoring well and recover groundwater samples including QA and QC samples for laboratory testing of metals.

11.0 FIELD QUALITY ASSURANCE AND QUALITY CONTROL

11.1 Sampling Personnel

Geotechnique undertook all the sampling associated with this assessment. The Environmental Engineer (Lan Ye or Saurabh Sapkota) and Environmental Scientist (Justin Hofmann) from Geotechnique located sampling positions based on the project brief prepared by the Project Manager and site conditions, logged the soil profile encountered, recovered soil samples at a frequency determined by the sampling plan (project brief), and packaged the samples (refer to Section 9.0).

Lan Ye, Saurabh Sapkota and Justin Hofmann have undergone supervised training in Geotechnique procedures for sampling and logging.

An Environmental Scientist (Justin Hofmann) from Geotechnique supervised installation of the groundwater monitoring well.

Justin Hofmann has more than one year experience in supervising installation of groundwater monitoring well.

11.2 Decontamination Procedures

As stated in Section 9.0 of this report, the soil samples were recovered from the excavator bucket using a stainless steel trowel. Decontamination of the trowel involved the following:

- Removal of soils adhering to the trowel by scrubbing with a brush.
- Washing the trowel thoroughly in a solution of phosphate free detergent (Decon 90) using brushes and disposable towels (Bucket 1).
- Rinsing the trowel thoroughly with distilled water (Bucket 2).
- Repeating the washing / rinsing steps and rinsing with distilled water (Bucket 3).
- Drying the trowel with a clean cloth.

A sample of the final rinsate water (Bucket 3) was recovered at completion of sampling (one each day).

11.3 Rinsate Samples

Rinsate water samples (Rinsate R1, R2 and RS1 to RS5) were recovered at the end of field work (one each day) in order to identify possible cross contamination between the sampling locations.

The rinsate water samples were analysed for metals and / or TPH (>C10-C34). The test results for the rinsate water samples are summarised in Table A. A copy of the laboratory analytical reports is included in Appendix D.

As indicated in Table A, concentrations of analytes in the rinsate blank samples were in general less than the laboratory LOR, indicating that the cleaning and decontamination processes adopted in the field were adequate.

11.4 Duplicate Samples

A field duplicate sample was prepared in the field through the following processes:

- A larger than normal quantity of soil was recovered from the sample location selected for duplication.
- The sample was placed in a decontaminated stainless bowl and divided into two portions, using the decontaminated trowel.
- One portion of the sample was immediately transferred into a labelled, laboratory supplied, 250ml glass jar and sealed with an airtight, Teflon screw top lid. The fully filled jar was then placed in a chilled container.
- The remaining portion was stored in the same way and labelled as the original sample.

Duplicate samples were prepared on the basis of sample numbers recovered during the field work. The duplicate sample frequency was computed using the total number of samples analysed as part of this assessment.

The duplicate frequency adopted (6% for 9 metals and 12% for TPH) complies with Schedule B3 Guideline on Laboratory Analysis of Potentially Contaminated Soils of the NEPM 1999 (April 2013), which recommends a duplicate frequency of 5%.

The duplicate sample test results are summarised in Tables B1 to B5. A copy of the laboratory analytical reports is included in Appendix D.

A comparison was made of the laboratory test results for the duplicate sample with the original sample, and the Relative Percentage Differences (RPD) were computed in order to assess the accuracy of the laboratory test procedures. RPD within 30% are generally considered acceptable. However, this variation can be higher for organic analysis than for inorganics and for low concentrations of analytes or non-homogeneous samples.

As shown in Tables B1 to B5, the comparisons between the duplicate and corresponding original sample indicated generally acceptable RPD, with the exception of some metals (ranging from 33% to 126%), which were in excess of 30%, mainly due to the low concentrations of some analytes detected and / or the non-homogeneous nature of the soil samples.

All the concentrations with RPD in excess of 30% in the duplicate pairs were in general either both less than or both above the relevant assessment criteria, with exception of duplicate pairs D1 and D132 (1.9-2.0m), D6 and A4 (0.25-0.35m), as well as D7 and A13 (0.25-0.35m).

The duplicate pair D1 and D132 (1.9-2.0m) in Table B1 was found to have concentrations of Cd and/or Mn in the duplicate sample D1 that were higher than the corresponding original sample D132 (1.9-2.0m), and in excess of the relevant assessment criteria.

The duplicate pair D6 and A4 (0.25-0.35m) in Table B2 was found to have Pb concentration in the original sample A4 (0.25-0.35m) that was higher than the corresponding duplicate sample D6, and in excess of the relevant assessment criterion.

The duplicate pair D7 and A13 (0.25-0.35m) in Table B2 was found to have Mn concentration in the duplicate sample D7 that was higher than the corresponding original sample A13 (0.25-0.35m), and in excess of the relevant assessment criterion. The duplicate pair was also found to have Cu concentration in the original sample A13 (0.25-0.35m) that was higher than the corresponding duplicate sample D7, and in excess of the relevant assessment criterion.

As such, the higher concentrations of Cd, Cu, Pb and/or Mn were adopted for the assessment and included in Tables D3 and D3A.

Based on the above, the variations are not considered critical. Based on the overall duplicate sample numbers and comparisons, the RPD are not considered crucial, therefore it is concluded that the test results provided by the primary laboratory SGS are of adequate accuracy and reliability for this assessment.

11.5 Split Samples

Split samples provide a check on the analytical performance of the primary laboratory. The split samples were prepared based on sample numbers recovered during the field work, in the same manner as the duplicate sample. Reference should be made to Section 11.4. The split sample was forwarded to a secondary laboratory (Envirolab) for analysis.

The split sample frequency was computed using the total number of samples analysed as part of this assessment.

The split sample frequency adopted (6% for 9 metals and 12% for TPH) complies with Schedule B3 of the NEPM 1999 (April 2013), which recommends a frequency of 5%.

The split sample test results are summarised in Tables C1 to C5. A copy of the laboratory analytical reports and certificates of analysis is included in Appendix D.

Based on Schedule B3 of the NEPM 1999 (April 2013) the difference in the results between the split samples should generally be within 30% of the mean concentration determined by both laboratories, i.e., RPD should be within 30%. However, higher variations can be expected for organic analyses compared to inorganic analyses and for samples with low analyte concentrations or non-homogeneous samples.

As shown in Tables C1 to C5 the comparisons between the splits and corresponding original samples indicated generally acceptable RPD, with the exception of RPD for some metals (ranging from 31% to 168%), which are in excess of 30%. This is considered to be due to the low concentrations of some analytes detected and / or the non-homogeneous nature of the soil samples.

All the concentrations of metals with RPD in excess of 30% in the split pairs were in general either both less than or both above the relevant assessment criteria, with exception of split pair S2 and D152 (1.9-2.0m).

The split pair S2 and D152 (1.9-2.0m) in Table C1 were found to have concentrations of Cu, Mn and/or Ni in the split sample S2 that were higher than the corresponding original sample D152 (1.9-2.0m), and in excess of the relevant assessment criteria.

As such, the higher concentrations of Cu, Mn and / or Ni were adopted for the assessment and included in Tables D4 and D4A.

Based on the above, the variations are not considered critical. Based on the overall split sample numbers and comparisons, it is concluded that the test results provided by the primary laboratory can be relied upon for this assessment.

12.0 LABORATORY QUALITY ASSESSMENT AND QUALITY CONTROL

12.1 Laboratory Accreditation

Only laboratories accredited by the NATA for chemical analyses were used for analysis of samples recovered as part of this assessment. The laboratory must also incorporate quality laboratory management systems to ensure that trained analysts using validated methods and suitably calibrated equipment produce reliable results.

In addition to the QC samples, the laboratory must also ensure that all analysts receive certification as to their competence in carrying out the analysis and participate in national and international proficiency studies. SGS and Envirolab, the laboratories used for this assessment, are accredited by NATA. SGS and Envirolab also operate Quality Systems designed to comply with ISO / IEC 17025.

12.2 Sample Holding Times

The following table lists the allowable holding times of soils and water, detailed in Schedule B3 of the NEPM 1999 (April 2013), and in Standard Methods for the Examination of Water and Wastewater (APHA).

ANALYTE	HOLDING TIME (SOIL)	HOLDING TIME (WATER)
Metals *	6 months	6 months
Mercury (Hg)	28 days	28 days
Total Petroleum Hydrocarbons (TPH)	14 days	7 days
На	7 days	-
CEC	28 days	-

^{*} Metals include As, Cd, Cr, Cu, Pb, Mn, Ni and Zn

It should be noted that there is no specific holding time for asbestos analysis.

The actual holding times of the laboratories used for this assessment are shown in the laboratory analytical reports / certificates of analyses in Appendix D of this report. All analyses were in general conducted within the relevant holding times with the exception of pH.

The extraction times for pH analysis of some soil samples by SGS (Report Nos SE158264A, SE158264B, SE158264C, SE162156A and SE162178A) were ranging from 16 to 23 days, which were technically 9 to 16 days over the 'recommended' holding time. It is our opinion that 16 to 23 days over is insignificant for pH analysis as they were kept refrigerated the whole time in the laboratory.

12.3 Test Methods and Limits of Reporting / Practical Quantitation Limits

The test methods and LOR / Practical Quantitation Limits (PQL) adopted by the laboratories are indicated with the analytical reports / certificates of analysis in Appendix D.

All reported laboratory LOR / PQL were less than the assessment criteria adopted for each analyte or analyte group.

12.4 Method Blanks

Method blank samples are designed to monitor the introduction of incidental or accidental interferences into the analysis, which might result in a false increase in analyte concentration. The blank comprises reagents specific to each individual analytical method and is analysed in the same manner as the site sample. The reagents are carried through the preparation, extraction and digestion procedures and analysed at the beginning of every sample batch analysis, or at least 1 in 20 samples.

Reagent blank samples for soil samples were analysed by the primary and secondary laboratories for Metals and/or TPH.

The reagent blank samples for water samples were analysed for metals and/or TPH by the primary laboratory (SGS).

All reported blank concentrations were below the LOR or PQL, as detailed in the laboratory analytical reports from SGS and certificates of analysis from Envirolab. The results complied with the acceptance criteria for each laboratory (must not be detected at the LOR / PQL).

The test results indicate that there was no interference to the analysis.

12.5 Laboratory Duplicate Samples

The laboratory prepares duplicate samples from the supplied samples (original samples) and/or laboratory spike samples, carries out preparation and testing in the same manner as the original sample. The duplicate sample provides an indication of laboratory precision and reproducibility.

The laboratory prepared duplicates were analysed for the same range of analytes as the samples submitted from the site.

SGS requires 1 duplicate analysed for every 10 samples, whilst Envirolab requires 1 duplicate analysed for every 20 samples.

The comparisons between the laboratory duplicates and original samples have been reported on the laboratory test results certificates as RPD.

Maximum Allowable Difference (MAD) was suggested by SGS as RPD criteria for Lab Duplicates. Note: $MAD = 100 \times Statistical Detection Limit (SDL) / Mean + Limiting Repeatability$

Reference may be made to SGS analytical reports in Appendix D for details of the reported duplicate sample numbers, RPD ranges, as well as acceptance criteria.

As presented in the SGS analytical reports, the duplicate sample numbers and reported RPD were in general within the acceptance criteria adopted by the laboratory.

Some duplicate samples comparison reported RPD by SGS exceeding the generally accepted limit for some metals (As, Cr, Cu, Pb, Mn and / or Zn), mainly due to the heterogeneity of the soil samples.

All the concentrations with RPD in excess of the accepted limit by SGS in the laboratory duplicate pairs were in general either both less than or both above the relevant assessment criteria, with exception of laboratory duplicate pairs LB112410.024 and the corresponding original sample D115 (0.2-0.3m).

The duplicate pair LB112410.024 and D115 (0.2-0.3m) in SGS Report SE158264R1 was found to have Mn concentration in the duplicate sample LB112410.024 that was higher than the corresponding original sample D115 (0.2-0.3m), and in excess of the relevant assessment criterion.

As such, the higher concentration of Mn was adopted for the assessment and included in Tables D3 and D3A.

The RPD acceptance for Envirolab is less than 50% (if concentrations are at least 5 times the PQL). Any RPD is acceptable for lower concentrations (less than 5 times the PQL).

As presented in the Envirolab certificates of analysis in Appendix D, the duplicate sample numbers and reported RPD for metals were within the acceptance criteria adopted by the laboratory.

No duplicate sample for TPH F2 and F3 was reported for Envirolab but claims to run one sample in batches of 20 samples. The results are not reported with the laboratory certificate provided to clients; however, claim to be within the laboratory acceptance criteria.

12.6 Laboratory Control Samples

A laboratory control sample is a sample of material with known concentrations of various analytes, such as a standard reference material or control matrix. The control sample is analysed with the sample batch, and the recorded concentrations reported as a percentage recovery of the known or expected concentration. At least one control sample is included in each run to confirm calibration validity.

The acceptance criteria for both laboratories are presented below:

SGS: 70%-130% (soil) & 80%-120% (water) for inorganics and 60%-140% for organics, as

detailed in the laboratory analytical reports from SGS.

Envirolab: 70% to 130% for inorganics and 60%-140% for organics, as detailed in the laboratory

certificates of analysis from Envirolab.

Reference may be made to SGS analytical reports and Envirolab certificate of analyses in Appendix D for details of the reported percentage recoveries.

The control sample data presented by the laboratories fall within the acceptance limits of the laboratories.

12.7 Matrix Spike

The purpose of matrix spikes is to monitor the performance of the analytical methods used and to determine whether matrix interferences exist. Samples are spiked with identical concentrations of the target analyte before extraction or digestion. The results are reported as percentage recoveries of the known spike concentration.

The acceptance criteria for SGS are 60% to 130% for organics, and 70% to 130% for metals/inorganics.

The matrix spike data presented by SGS generally fall within the laboratory acceptance criteria, with the exception of the following failed matrix spike recoveries.

Batch	Reported Failed Recovery	Acceptance Criteria	Comments
SE158264	67% for As, -56% & 391% for Pb, -280% & 1164% for Mn, 66% & 67% for Hg and 16% for Zn	70%-130%	Recovery failed acceptance criteria due to matrix interference or sample heterogeneity
SE162156	68% for Cr, 49% for Pb, -116%, 53%, 214%, 167% & 183% for Mn, 54% & 66% for Hg and -45% for Zn	70%-130%	Recovery failed acceptance criteria due to matrix interference, the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level) and / or sample heterogeneity
SE162175	-15% for Mn and 63% for Zn	70%-130%	Recovery failed acceptance criteria due to sample heterogeneity
SE162178	259% for As, 63% for Pb, 15%, - 15%, -112% & 380% for Mn, and 70%, 63% & 69% for Zn	70%-130%	Recovery failed acceptance criteria due to the presence of significant concentration of analyte or sample heterogeneity

The matrix spike data for metals presented by Envirolab fall within the laboratory acceptance criteria.

However, no matrix spike for TPH F2 and F3 was reported for Envirolab, but claims to run one sample in batches of 20 samples. The results are generally not reported with the laboratory certificates provided to clients; however, claim to be within the laboratory acceptance criteria.

13.0 QA/QC DATA EVALUATION

All QA and QC details are presented in Sections 11.0 and 12.0 of this report.

The following table provides a list of the DQI for the field procedures (soil sampling phase) of the assessment, and the methods adopted to ensure that the DQI are met.

DATA QUALITY INDICATOR	ACHIEVEMENT		
Precision and Accuracy	Use of trained and qualified field staff. Appropriate industry standard decontamination procedures adopted. Rinsate blank water, field duplicate, and inter-laboratory duplicate (split) samples recovered or prepared.		
Representativeness	Good sampling coverage of the soils of concern.		
	Collection and analysis of samples was in accordance with the sampling and testing plan (emails dated 30 September 2016, as well as 13 and 31 January 2017) prepared by Geotechnique and approved by Site Auditor.		
	Representative coverage of potential contaminants, based on the previous site investigations, site observation and soil profiles.		
Completeness	Grid and Judgemental soil sampling at predetermined locations, spacing and depths. All soils of concern (potential contamination) sampled. On site visual assessment of soils uncovered. Preparation of sample location plan. Records of test pit / sample logs. Field duplicate sample numbers complying with NEPM. Split sample numbers complying with NEPM. Rinsate sample recovered daily. Preparation of COC records.		
Comparability	Using appropriate techniques for sample recovery. Using the same sampling and decontamination procedures for the fieldwork. Experienced sampler used. Using appropriate sample storage and transportation methods for sampling.		

The following table provides a list of the DQI for the laboratory procedures (analytical phase) of the assessment and the methods adopted in ensuring that the data DQI were met.

DATA QUALITY INDICATOR	ACHIEVEMENT
Precision and Accuracy	Use of analytical laboratories experienced in the analyses undertaken, with appropriate NATA certification.
	NATA accreditation requires adequately trained and experienced testing staff.
	Rinsate blank water, field duplicate and split samples analysed.
	Acceptable concentrations in rinsate blank water samples.
	Acceptable RPD for duplicate comparison overall.
	Acceptable RPD for split sample comparison overall.
	Appropriate and validated laboratory test methods used.
	Adequate laboratory performance based on results of the blank, duplicate, control and matrix spike samples.

12675/4-AB Neighbourhood 1A Stage 7 & Neighbourhood 2 - Googong Road, Googong

DATA QUALITY INDICATOR	ACHIEVEMENT
Representativeness	Representative coverage of potential contaminants, based on the previous site investigations.
	Adequate rinsate, duplicate and split sample numbers.
	Adequate laboratory internal QC and QA methods, complying with the NEPM.
Completeness	Analysis for all potential contaminants of concern.
	Laboratory sample receipt information received, confirming receipt of samples intact and appropriate COC.
	NATA registered laboratory analytical reports / certificates of analysis provided.
Comparability	Use of NATA registered laboratories.
	Test methods consistent for each sample.
	Test methods comparable between primary and secondary laboratory.
	Generally acceptable RPD between original samples and field duplicates and split samples.
	Some high RPD recorded mainly due to low concentrations of some analytes detected and / or the heterogeneity of the samples.
Sensitivity	Appropriate laboratory analysis methods.
	Appropriate laboratory LOR / PQL.

As discussed in Section 11.0, some of the duplicate/split sample comparisons reported RPD exceeding the generally accepted limits for some metals. These have been attributed to low concentrations of some analytes detected in duplicate / split and corresponding original samples, and/or the heterogeneity of the samples. The results are still considered acceptable, as virtually all remaining QA / QC sample data falls within acceptance limits.

As discussed in Section 12.0, a relatively minor amount of SGS laboratory matrix spike recoveries failed acceptance criteria due to matrix interference, sample heterogeneity and / or the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level). Some duplicate samples comparison reported RPD by SGS exceeding the generally accepted limit for some metals (As, Cr, Cu, Pb, Mn and / or Zn), mainly due to the heterogeneity of the soil samples. The results are still considered acceptable, as virtually all remaining QA / QC sample data of both laboratories fall within the acceptance criteria adopted. As such, these variations are not considered to have affected the laboratory data provided.

Based on the above, it is considered that the QC and QC DQI have been complied with, both in the field and in the laboratories. As such, it is concluded that the laboratory test data obtained as part of this assessment is reliable and useable.

14.0 ASSESSMENT CRITERIA

14.1 Soil Samples

Investigation levels and screening levels developed in the NEPM 1999 (April 2013), and the *Guidelines* for the NSW Site Auditor Scheme (NSW EPA/DEC, 2006) will be used for this assessment, as follows:

- Risk-based Health Investigation Levels (HIL) for a broad range of metals and organic substances.
 The HIL are applicable for assessing human health risk via all relevant pathways of exposure. The HIL as listed in Table 1A (1) of Schedule B1 "Guideline on Investigation Levels for Soil and Groundwater" are provided for different land uses.
 - The site is proposed for residential / open space and commercial land use, and as such the analytical results for the assessment will be assessed against the most stringent available HIL for *residential with garden / accessible soil* (HIL A) in the area proposed for residential / open space land use and the available HIL for *commercial / industrial* (HIL D) in the area proposed for commercial land use.
- Ecological Screening Levels (ESL) for selected petroleum hydrocarbon compounds and TPH fractions are applicable for assessing the risk to terrestrial ecosystems. ESL listed in Table 1B(6) of Schedule B1 "Guideline on Investigation Levels for Soil and Groundwater" broadly apply to coarse and fine-grained soils and various land uses, and are generally applicable to the top 2m of soil.
 - The analytical results will be assessed against the available ESL for *urban residential and public open space* land use for fine-grained soil (clay).
- Ecological Investigation Levels (EIL), a specific type of Soil Quality Guidelines (SQG) for selected metals, Naphthalene and DDT are applicable for assessing the risk to terrestrial ecosystems. EIL listed in Table 1B(1-5) of Schedule B1 "Guideline on Investigation Levels for Soil and Groundwater" depend on specific soil physicochemical properties and land use scenarios and generally apply to the top 2m of soil. The EIL are calculated using 30% effect concentration (EC30) or lowest observed effect concentrations (LOEC) toxicity data.
 - EIL are the sum of the added contaminant limit (ACL) and the ambient background concentration (ABC). Where required, EIL are calculated directly by using the EIL calculator developed by CSIRO for NEPC.
 - For this assessment, the analytical results will be assessed against the available EIL for *urban* residential and public open space land use in the area proposed for residential / open space land use and the available EIL for *commercial* / *industrial* land use in the area proposed for commercial land use for aged contamination in soil.
- Due to a lack of EIL for cadmium and mercury, the available Provisional Phytotoxicity Based Investigation Levels (PIL) published in the Guidelines for the NSW Site Auditor Scheme (NSW EPA, 2006) were used, with regard to protection of the environment and impact on plant growth.

The adopted assessment criteria are presented in the summarised Tables D1 to E.

For asbestos, the assessed soil must not contain bonded asbestos containing material (ACM) in excess of 0.01% w/w and surface soil within the site is free of visible ACM, as well as asbestos fines (AF) and fibrous asbestos (FA) in the soil is <0.001% w/w.

The soil will be deemed contaminated if the assessment criteria are unfulfilled or containing contamination "hot spots" as defined by the NSW EPA "Contaminated Sites: Sampling Design Guidelines". Further investigation, remediation and / or management will be recommended if the soil is found to be contaminated or contain contamination "hot spots".

14.2 Dam Water Sample

The available Trigger Values or Guideline Values presented in the Australian and New Zealand Guidelines for Fresh and Marine Water Quality, published by the Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand, 2000 (ANZECC & ARMCANZ Guidelines 2000) are considered applicable for assessment of any potential dam water impact on the aquatic ecosystem and irrigation use.

The dam water might be discharged into the local stormwater system, which may enter into regional creek / waterbody. In order to determine whether the dam water will impact on aquatic life if discharged into the local stormwater system, the dam water test results were assessed against the available Trigger Values for slightly-moderate disturbed freshwater system, at protection level of 95% of species, extracted from the abovementioned guidelines.

The dam water test results were also assessed against the available Short-term Trigger Values (STV) for irrigation water, also extracted from the abovementioned guidelines.

The "Guidelines for Managing Risks in Recreation Water" 2008, published by the Australian Government National Health and Medical Research Council (NHMRC) are is adopted for assessing water for recreational purposes.

The adopted assessment criteria are presented in Table G.

15.0 LABORATORY TEST RESULTS, ASSESSMENT & DISCUSSION

15.1 Analytical Results for Soil Samples

Reference may be made to Appendix D for the actual laboratory analytical reports from SGS. The laboratory test results for the soil samples analysed are presented in Tables D1 to F. A discussion of the test results is presented in the following sub-sections.

15.1.1 Metals (As, Cd, Cr, Cu, Pb, Mn, Hg, Ni & Zn), CEC & pH

Assessment Under the Conditions for Residential Land Use

With the exception of highlighted concentrations of As, Cd, Cu, Pb, Mn, Ni and Zn in Tables D1, D3 to D5, D7 and D8, the remaining concentrations of metals were below the HIL A, EIL and / or PIL.

The highlighted concentrations of:

- As (ranging from 110mg/kg to 1,600mg/kg) exceeded the HIL A and EIL (both 100mg/kg);
- Cd (ranging from 3.1mg/kg to 100mg/kg) was in excess of the PIL (3mg/kg) and / or the HIL A (20mg/kg);
- Cu (ranging from 120mg/kg to 1,700mg/kg) and Ni (ranging from 6.2mg/kg to 140mg/kg) were in excess of the EIL; however, were well below the HIL A of 6,000mg/kg and 400mg/kg for Cu and Ni respectively;

12675/4-AB

Neighbourhood 1A Stage 7 & Neighbourhood 2 - Googong Road, Googong

- Pb (ranging from 310mg/kg to 2,300mg/kg) exceeded the HIL A (300mg/kg) and / or EIL (1,200mg/kg);
- Mn (3,900mg/kg to 47,000mg/kg) exceeded the HIL A (3,800mg/kg); and
- Zn (ranging from 160mg/kg to 10,000mg/kg) was in excess of the EIL and / or HIL A (7,400mg/kg).

Assessment Under the Conditions for Commercial Land Use

With the exception of highlighted concentrations of As, Cd, Cu, Pb, Ni and Zn in Tables D1, D3 to D5, D7 and D8, the remaining concentrations of metals were below the HIL A, EIL and / or PIL.

The highlighted concentrations of:

- As (ranging from 170mg/kg to 1,600mg/k) exceeded the EIL (160mg/kg); however, were well below the HIL D (3,000mg/kg);
- Cd (ranging from 3.1mg/kg to 100mg/kg) was in excess of the PIL (3mg/kg), but well below the HIL D (900mg/kg);
- Cu (ranging from 170g/kg to 1,700mg/kg) and Ni (ranging from 7.2mg/kg to 140mg/kg) were in excess of the EIL; however, were well below the HIL D of 6,000mg/kg and 400mg/kg for Cu and Ni respectively;
- Pb concentrations (ranging from 1,600mg/kg to 2,300mg/kg) exceeded the HIL D (1,500mg/kg) and / or EIL (1,900mg/kg); and
- Zn (ranging from 340mg/kg to 10,000mg/kg) was in excess of the EIL; however, was well below the HIL D (400,000mg/kg).

Based on this detailed assessment, Hg concentrations in all the recovered soil samples were below the HIL A, HIL D and PIL.

The previous contamination assessment (refer to Report 12675/4-AA) revealed that Hg concentration (1.1mg/kg) was reported marginally above the PIL (1mg/kg) in duplicate sample D4; however, it was noted that the corresponding original sample A3 (0-0.1m) reported low Hg concentration (0.58mg/kg).

Given the relatively consistent and low concentrations / less than LOR of Hg reported in the other recovered samples in the area impacted by metals the phytotoxic risk of Hg to plants under the conditions for the proposed development of *residential* (with gardens / accessible soil) / open space and commercial land uses is likely to be low.

Based on the above, it was our opinion that the soil with an elevated concentration of Hg in one of the numerous samples is not of concern.

15.1.2 Total Petroleum Hydrocarbons (TPH)

As presented in Table E, the concentrations of F2 (TPH>C10-C16) and F3 (TPH >C16-C34) were below the ESL adopted and less than the laboratory LOR.

Based on this assessment, it was our opinion that TPH F2 and F3 are not of concern in the soil in the central portion of the site.

15.1.3 Asbestos

As indicated in Table F, the fibro-cement piece was confirmed to contain asbestos. Asbestos (>7mm ACM and <7mm AF / FA) was found in the soil sample.

15.2 Analytical Results for Dam Water Sample

Reference may be made to Appendix D for the actual laboratory analytical report from SGS. The laboratory test results for the dam water sample analysed are presented in Table G.

As indicated in Table G, with the exception of Cu, Pb and Zn concentrations, the concentrations of the remaining metals (Total and Dissolved) in dam water sample were below the assessment criteria.

The concentrations of Cu (Total) in the unfiltered dam water sample and Cu (Dissolved) in the filtered dam water sample were both marginally in excess of the ANZECC freshwater guidelines; however, were well below the available STV for irrigation water and Health Value for assessing water for recreational purposes.

The concentrations of Pb and Zn (Total) in an unfiltered dam water sample were marginally in excess of the ANZECC freshwater guidelines; however, the concentrations of Pb and Zn (Dissolved) in a filtered dam water sample were below the ANZECC freshwater guidelines.

The concentrations of Pb and Zn (Total and dissolved) were well below the available STV for irrigation water and Health Value for assessing water for recreational purposes.

16.0 SITE CHARACTERISATION

Based on the test results for this and previous assessments, soils impacted by heavy metals were identified at a number of locations in an area including hematite zone and waste material zones and hematite zone.

The test results for this detailed assessment indicate that sufficient samples have been collected for delineation purposes.

The identified locations and the estimated extent of impacted by metals are as indicated on the Drawing Nos 12675/4-AB4A and 12675/4-AB4B. The identified contaminants with the associated concentrations are summarised in the summary tables under the conditions for residential or commercial land use as detailed below:

Under the Conditions for Residential Land Use

As indicated in the table on Drawing No 12675/4-AB4A:

- Concentrations of As (ranging from 110mg/kg to 1,600mg/kg) would present / potentially present a risk to human health and terrestrial ecosystems.
- Concentrations of Cd (ranging from 3.1mg/kg to 100mg/kg) might pose potential risk to the environment and have impact on plant growth and present / potentially present a risk of harm to human health.
- Concentrations of Cu (ranging from 77mg/kg to 1,700mg/kg) and Ni (ranging from 6.2mg/kg to 140mg/kg) might pose potential risk to terrestrial ecosystems, but will not present a risk of harm to human health.

- Pb concentrations (ranging from 310mg/kg to 2,300mg/kg) would present / potentially present a risk of harm to human health and/or potentially post risk to terrestrial ecosystems.
- Mn concentrations (3,900mg/kg and 47,000mg/kg) would pose / potentially pose a risk to human health.
- Zn concentrations (ranging from 160mg/kg to 10,000mg/kg) might pose / potential pose risk to terrestrial ecosystems and / or potentially present a risk of harm to human health.

Under the Conditions for Commercial/Industrial Land Use

As shown in the table on Drawing No 12675/4-AB4B:

- Concentrations of As (ranging from 170mg/kg to 1600mg/kg), Cu (ranging from 110mg/kg to 1,700mg/kg), Ni (ranging from 7.2mg/kg to 140mg/kg) and Zn (ranging from 340mg/kg to 10,000mg/kg) might pose or potentially pose risk to terrestrial ecosystems, but will not present a risk of harm to human health.
- Concentrations of Cd (ranging from 3.1mg/kg to 100mg/kg) might pose potential risk to the environment and have impact on plant growth, but will not present a risk of harm to human health.

If the soil with elevated concentrations of As, Cd, Cu, Ni and Zn remains insitu and beneath the new building / structure / road, the EIL will no longer be the appropriate threshold level. However, an appropriate management plan should be prepared.

Pb concentrations (ranging from 1,600mg/kg to 2,300mg/kg) in samples D139 (0-0.1m), D140 (0.2-0.3m) and D151 (0-0.1m) would present / potentially present a risk of harm to human health and/or potentially post risk to terrestrial ecosystems.

An area with scattered debris and asbestos (ACM and AF / FA) was identified (refer to Drawing No 12675/4-AB4A for the approximate extent).

Bonded asbestos-cement sheets / pieces generally do not present a significant health risk unless tooled, cut, sanded, abraded or machined, which would release asbestos dust containing tiny, almost indestructible fibres that can cause damage to the lungs when breathed in.

As such, some form of remediation and/or management process is required.

Migration of soil contaminants to the groundwater regime would generally be via leaching of contaminants from the soil, facilitated by infiltration of surface water. Groundwater or seepage was not encountered during sampling to a depth of approximately 14.5m below the EGL at groundwater monitoring well GW1. As shown in Tables D9 and D9A, concentrations of metals in all the samples recovered from GW1 were below the assessment criteria adopted.

It should be noted that the level of groundwater might vary due to rainfall and other factors not evident during this investigation.

It is recommended that the groundwater level should be checked when there is a substantial rainfall to recharge the groundwater table.

Neighbourhood 1A Stage 7 & Neighbourhood 2 - Googong Road, Googong

If the groundwater is available, our field engineer will develop the monitoring well and recover groundwater samples including quality assurance (QA) and quality control (QC) samples for laboratory testing of metals.

An artificial drainage channel and a small surface water dam situated within the drainage channel to the southeast of the hematite zone were observed within the vicinity of the area impacted by metals that might capture or divert stormwater run-off.

The laboratory test results for the water sample collected from the small surface water dam indicated dissolved Cu concentration in excess of the ANZECC freshwater guidelines. It is our opinion that the impact on the dam water is minimal.

Based on the above, potential off-site impacts of contaminants on groundwater and waterbodies are considered to be low.

17.0 CONCLUSION AND RECOMMENDATIONS

The DQO outlined in the report have been satisfied.

The findings of this assessment are summarised as follows:

- One AEC (area including hematite zone and waste material zones) and one potential AEC (central
 portion of the site where detectable concentrations of TPH F2 and F3 were identified previously)
 have been identified on the subject site based on the results of previous assessment.
- The site is proposed for combined residential (with garden / accessible soil) / open space and commercial land use.
- TPH F2 and F3 are not of concern in the soil in the central portion of the site.
- Based on the test results for this and previous assessments, soils impacted by heavy metals were
 identified at a number of locations in an area including hematite zone and waste material zones and
 hematite zone. Concentrations of the heavy metals would present or potentially present a risk of
 harm to human health and / or environment.
 - The identified locations and the estimated extent of impacted by metals are as indicated on the Drawing Nos 12675/4-AB4A and 12675/4-AB4B. The identified contaminants with the associated concentrations are summarised in the summary tables under the conditions for residential or commercial / industrial land use.
- An area with scattered debris and asbestos (bonded ACM and FA / AF) was identified (refer to Drawing No 12675/4-AB4A for the approximate extent).
- One groundwater monitoring well was installed. The monitoring well was dry at and after the completion of borehole drilling / well installation in February 2017.
- The concentrations of Cu (Total) in the unfiltered dam water sample and Cu (Dissolved) in the filtered dam water sample were both marginally in excess of the ANZECC freshwater guidelines.
- Potential off-site impacts of contaminants on groundwater and waterbodies are considered to be low.
- Some form of remediation / management and validation of the site are required.

Based on this assessment, it is considered that the site can be made suitable for the proposed redevelopment into combined residential (with garden / accessible soil) / open space and commercial land use subject to implementation of the following recommendations, prior to site preparation and earthworks:

- A human health and ecological risk assessment to determine the source of metal impacts and to determine the requirements and to devise strategies for remediation and / or management, if required.
- 2. Checking the groundwater level when there is a substantial rainfall to recharge the groundwater table.
 - If the groundwater is available, it is recommended that the monitoring well should be developed and assessment of the groundwater be undertaken by appropriate sampling and laboratory testing of metals.
- 3. A remedial action plan / environmental management plan is to be developed to devise strategies for remediation / management of the metal impacted area if required based on the risk assessment.
- 4. Remediation / management of the area impacted by metals and/or asbestos, followed by site validation should be carried out.
 - It is our opinion that remediation / management and validation of soils in the area impacted by with metals and / or asbestos could be carried out in conjunction with the assessment, remediation and validation of the Exclusive Area (30m buffer around AEC10 and AEC13), following the demolition and removal of the site features at later stage.

If suspect materials are encountered during any stage of future earthworks / site preparation (identified by unusual staining, odour, discolouration or inclusions such as building rubble, asbestos sheets / pieces / pipes, ash material, etc.), we recommend that this office is contacted for assessment, and to take all necessary actions.

For any materials to be excavated and removed from the site, it is recommended that waste classification of the materials, in accordance with the "Waste Classification Guidelines Part 1: Classifying Waste" NSW EPA 2014; NSW EPA resource recovery exemptions and orders under the POEO (Waste) Regulation 2014; or NSW EPA *Certification: Virgin excavated natural material* is undertaken prior to disposal at a facility that can lawfully accept the materials.

Any imported soil (fill) must be assessed by a qualified environmental consultant, prior to importation, to ensure suitability for the proposed use. In addition, the imported fill must not contain asbestos and ash, be free of unusual odour, not be discoloured and not acid sulphate soil or potential acid sulphate soil. The imported fill should either be virgin excavated natural material (VENM) or excavated natural material (ENM).

18.0 LIMITATIONS

The services performed by Geotechnique in preparing this report were conducted in a manner consistent with the level of quality and skill generally exercised by members of the profession and consulting practice.

12675/4-AB

Neighbourhood 1A Stage 7 & Neighbourhood 2 - Googong Road, Googong

This report has been prepared for the purposes stated within. This report can also be relied upon by Queanbeyan City Council for development and building application assessment processes, and by Site Auditor Mr R Harwood for site auditing purposes. Any reliance on this report by other parties shall be at such parties' sole risk as the report might not contain sufficient information for other purposes.

This report shall only be presented in full and may not be used to support any other objective than those set out in the report, except where written approval is provided by Geotechnique.

The information in this report is considered accurate at the date of issue, in accordance with current site conditions during the recent field sampling for this assessment (13 to 17 February 2017). Any variations to the site form or use beyond these dates could nullify the conclusion stated.

No contamination assessment can eliminate all risk; even a rigorous professional assessment might not detect all contamination within a site. Although the assessment conducted at the site was carried out in accordance with current NSW guidelines, the potential always exists for contaminants and contaminated soils to be present between sampled locations and in the grass covered areas.

Presented in Appendix E is a document entitled "Environmental Notes", which should be read in conjunction with this report.

LIST OF REFERENCES

Australian Standard "Guide to the Sampling and Investigation of Potentially Contaminated Soil Part 1: Non-volatile and semi-volatile compounds" (AS4482.1-2005)

Australian Standard "Guide to the Sampling and Investigation of Potentially Contaminated Soil Part 2: Volatile substances" (AS4482.2-1999)

Contamination Assessment Report (Ref: 12675/4-AA dated 31 May 2016) prepared by Geotechnique Pty Ltd (Geotechnique)

Contaminated Land Management Act 1997

Contaminated Land Management Regulation 1998

Contaminated Sites: Guidelines for Consultants Reporting on Contaminated Sites – NSW Environment Protection Authority 1997 / 2011

Contaminated Sites: Guidelines for the NSW Site Auditor Scheme (2nd Edition) – Department of Environment and Conservation NSW 2006

Geology of Canberra 1:100,000 Sheet (8727) – Bureau of Mineral Resources, 1992

Detailed Contamination Assessment Report (Ref: 12675/2-AA dated 12 September 2014) prepared by Geotechnique

Googong Local Environment Study, Phase 1 Environmental Site Assessment Report (Ref: C7552/1-AC dated 4 July 2004) prepared by Coffey Geosciences Pty Ltd

Managing Land Contamination: Planning Guidelines SEPP 55 – Remediation of Land – Department of Urban Affairs and Planning / NSW Environment Protection Authority 1998

May 2016 Monitoring Report (Ref. 30011525-AQ, dated 22 June 2016) prepared by SMEC Australia Pty Ltd

National Environment Protection (Assessment of Site Contamination) Measures, 1999 (April 2013) - National Environmental Protection Council

Protection of the Environment Operations Act – 1997

Protection of the Environment Operations (Waste) Regulation 2005 – General Exemption Under Part 6, Clause 51 and 51A – The Excavated Natural Material Exemption 2012

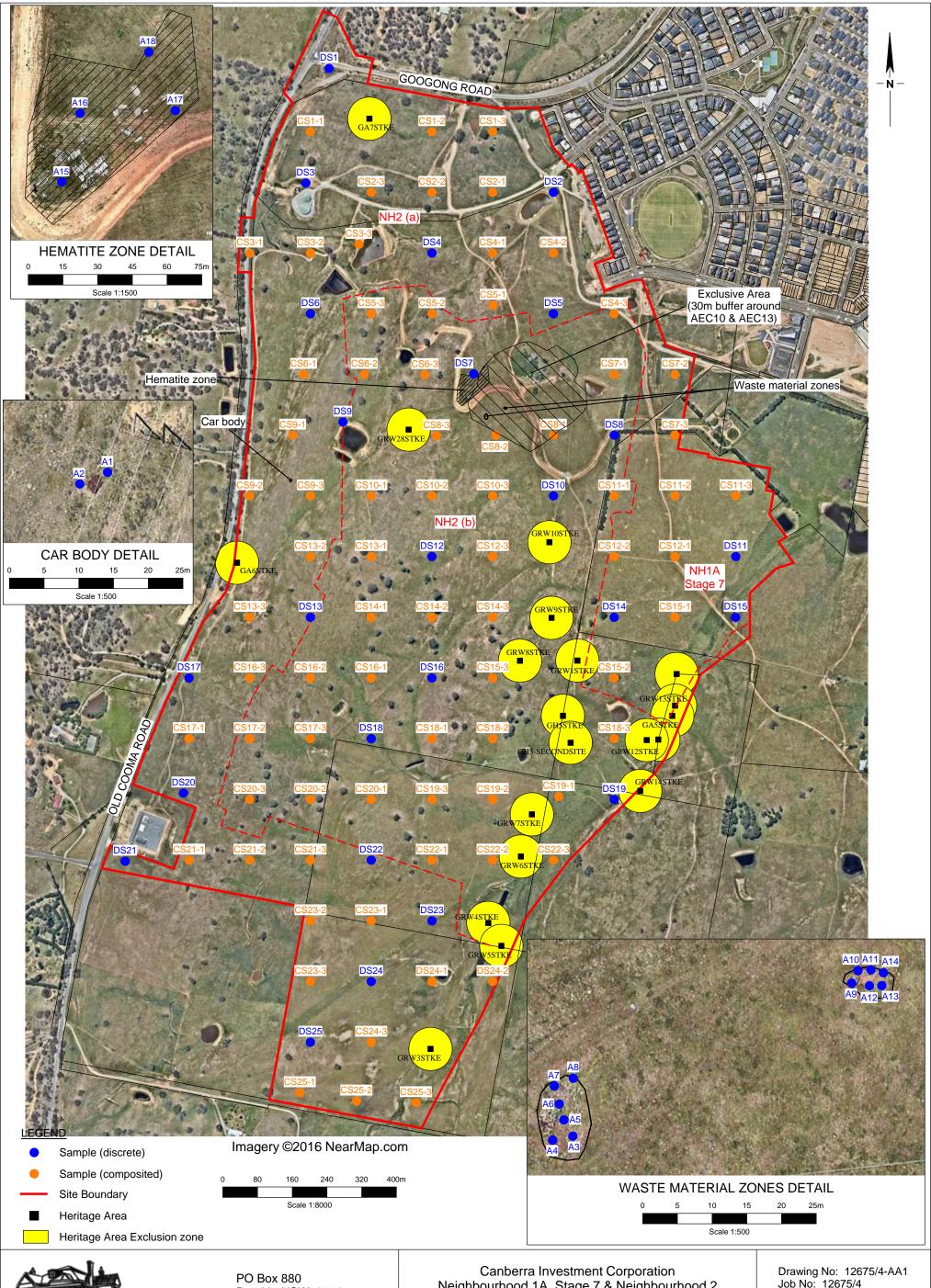
Remedial Works and Validation Plan (Ref: 12675/3-L3 dated 10 November 2015) prepared by Geotechnique

Revised Sampling, Analytical and Quality Plan (SAQP) (Ref: Q6555-L1R1 dated 11 April 2014) prepared by Geotechnique

Sampling, Analytical and Quality Plan for the Remediation of Googong Township Residential Development (Ref: J1526.2R-rev0 dated April 2012) prepared by CM Jewell & Associates Pty Ltd

Sampling, Analysis and Quality Plan (SAQP) (Ref: 12675/4-L1 dated 19 February 2016) prepared by Geotechnique

Sampling & Testing Program (Ref: 12675/4-L2 dated 11 March 2016) prepared by Geotechnique


Sampling & Testing Plan Update in an email dated 4 April 2016 prepared by Geotechnique

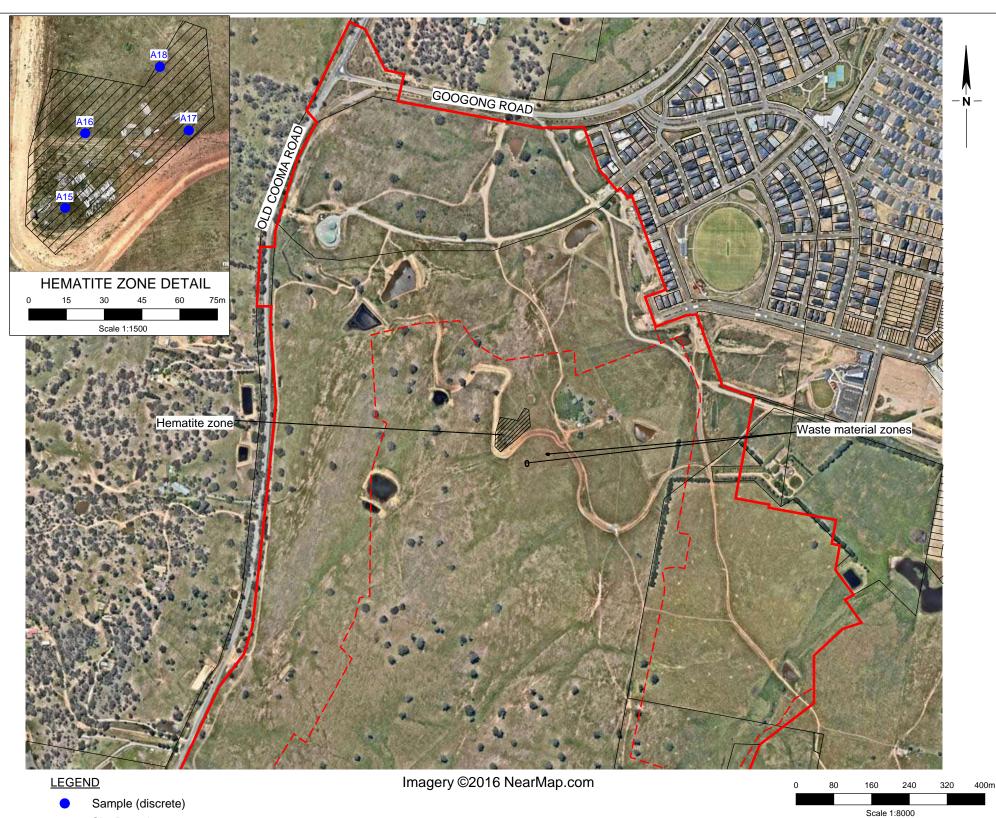
Soil Landscape of Canberra 1:100,000Sheet (8727) – NSW Department of Land and Water Conservation, 2000

Supplementary Sampling, Analysis and Quality Plan (SAQP) & Remedial Works Plan (Ref: 12675/2-L1 dated 22 August 2014) prepared by Geotechnique

DRAWINGS

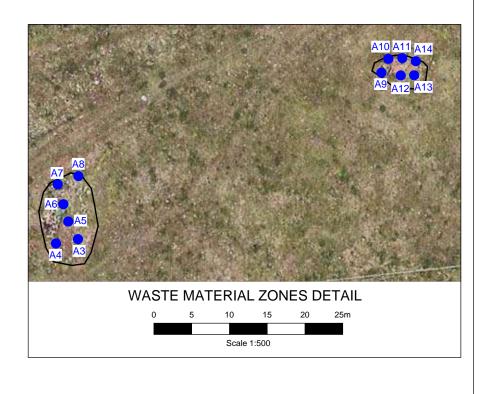
12675/4-AA1	Sample Locations
12675/4-AA2	Locations of Contamination
12675/4-AB1	Detailed Sampling Locations – Area including Hematite Zone and Waste Zones
12675/4-AB2	Sampling Locations – Further Investigation TPH F2 and F3 (Central Portion of the Site)
12675/4-AB3	Groundwater Bore Locations
12675/4-PS1	Detailed Sampling Locations – Hematite Zone and Waste Area
12675/4-PS2	Sampling Locations – Further Investigation TPH F2 and F3
12675/4-ABP1	Proposed Sample Locations
12675/4-ABP2	Existing and Proposed Groundwater Bore Locations
12675/4-AB4A	Locations and Approximate Extent of Contamination
	Under Conditions for Residential Use
	Laboratory Summary Tables for Drawing No 12675/4-AB4A
12675/4-AB4B	Locations and Approximate Extent of Contamination
	Under Conditions for Commercial Use
	Laboratory Summary Tables for Drawing No 12675/4-AB4B
	, , ,

PO Box 880 Penrith NSW 2750 Tel: 02 4722 2700 Fax: 02 4722 2777


e-mail:info@geotech.com.au www.geotech.com.au

Canberra Investment Corporation
Neighbourhood 1A, Stage 7 & Neighbourhood 2
Googong Road
Googong

Drawing No: 12675/4-AA1 Job No: 12675/4 Drawn By: MH Date: 16 May 2016 Checked By: JH/JX


Sample Locations

File Ref: 12675-4 Layers: 0, AA1

Site Boundary

Sample Location	Depth (m)	Contaminant	Concentration (mg/kg)			
A3	0-0.1	As, Cd, Cu, Pb, Ni & Zn	140, 4.8, 77, 360, 49 & 2400			
Duplicate	D4 = A3 (0-0.1m)	As, Cd, Hg, Ni & Zn	110, 4.8, 1.1, 18 & 2100			
A4	0-0.1	As, Cd, Ni & Zn	440, 8.0, 20 & 2700			
A5	0-0.1	As, Cd, Cu, Ni & Zn	270, 14, 83, 22 & 4100			
A6	0-0.1	As, Cd, Ni & Zn	350, 9.0, 20 & 3500			
A7	0-0.1	As, Cd, Pb, Ni & Zn	350, 8.6, 330, 23 & 2500			
A8	0-0.1	As, Cd, Pb, Ni & Zn	290, 8.5, 330, 26 & 2300			
A9	0-0.1	As, Cd, Cu, Pb & Zn	200, 3.3, 78, 330 & 1100			
A10	0-0.1	As, Cd, Cu, Pb & Zn	190, 3.6, 120, 330 & 1100			
A11	0-0.1	As, Cd, Cu, Pb, Ni & Zn	200, 4.0, 1100, 360, 29 & 1400			
A12	0-0.1	As, Cd, Cu, Pb & Zn	210, 3.2, 99, 340 & 1200			
A13	0-0.1	As, Cd, Cu, Pb & Zn	200, 3.2, 110, 320 & 1100			
A14	0-0.1	As, Cd, Cu & Zn	180, 3.3, 100 & 1000			
A15	0-0.1	As, Cd, Cu, Pb, Mn, Ni & Zn	170, 4.2, 580, 330, 4200, 19 & 100			
A16	0-0.1	As, Cd, Cu, Ni & Zn	160, 3.3, 1100, 18 & 1000			
A17	0-0.1	As, Cd, Cu & Zn	150, 3.7, 520 & 920			
A18	0-0.1	As, Cd, Cu, Mn, Ni & Zn	150, 3.7, 990, 5300, 18 & 1100			
		As = 100 (HIL A) & 100 (E	IL)			
		Cd = 3 (PIL)				
		Cu = 75 (EIL)				
Assessment		Pb = 300 (HIL A)				
Criteria		Mn = 3800 (HIL A)				
(mg/kg)	Hg = 1 (PIL)					
		Ni = 15 (EIL)				
		Zn = 170 (EIL)				

Notes:

 $\text{As, Cd, Cu, Pb, Mn, Hg, Ni, Zn:} \ \ \text{arsenic, cadmium, copper, lead, manganese, mercury, nickel, zinc}$

HIL A: Health-based Investigation Level for residential with

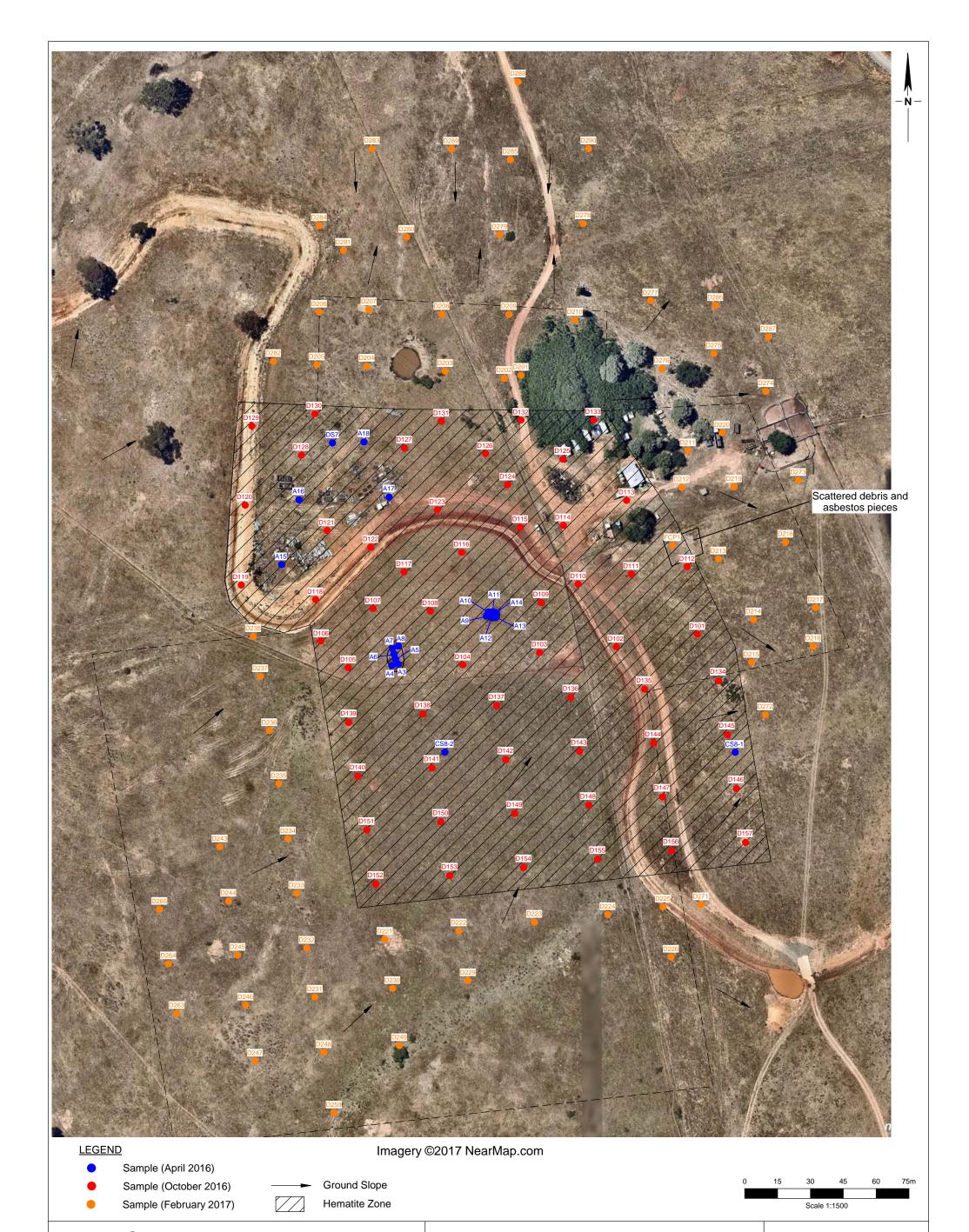
garden/accessible soil

 $\hbox{ElL}: \ \ \hbox{Ecological Investigation Level for urban residential land use}$

PIL: Provisional Phytotoxity-Based Investigation Level

OTECHNIQUE ®
PTY LTD

PO Box 880 Penrith NSW 2750 Tel: 02 4722 2700 Fax: 02 4722 2777


e-mail:info@geotech.com.au www.geotech.com.au

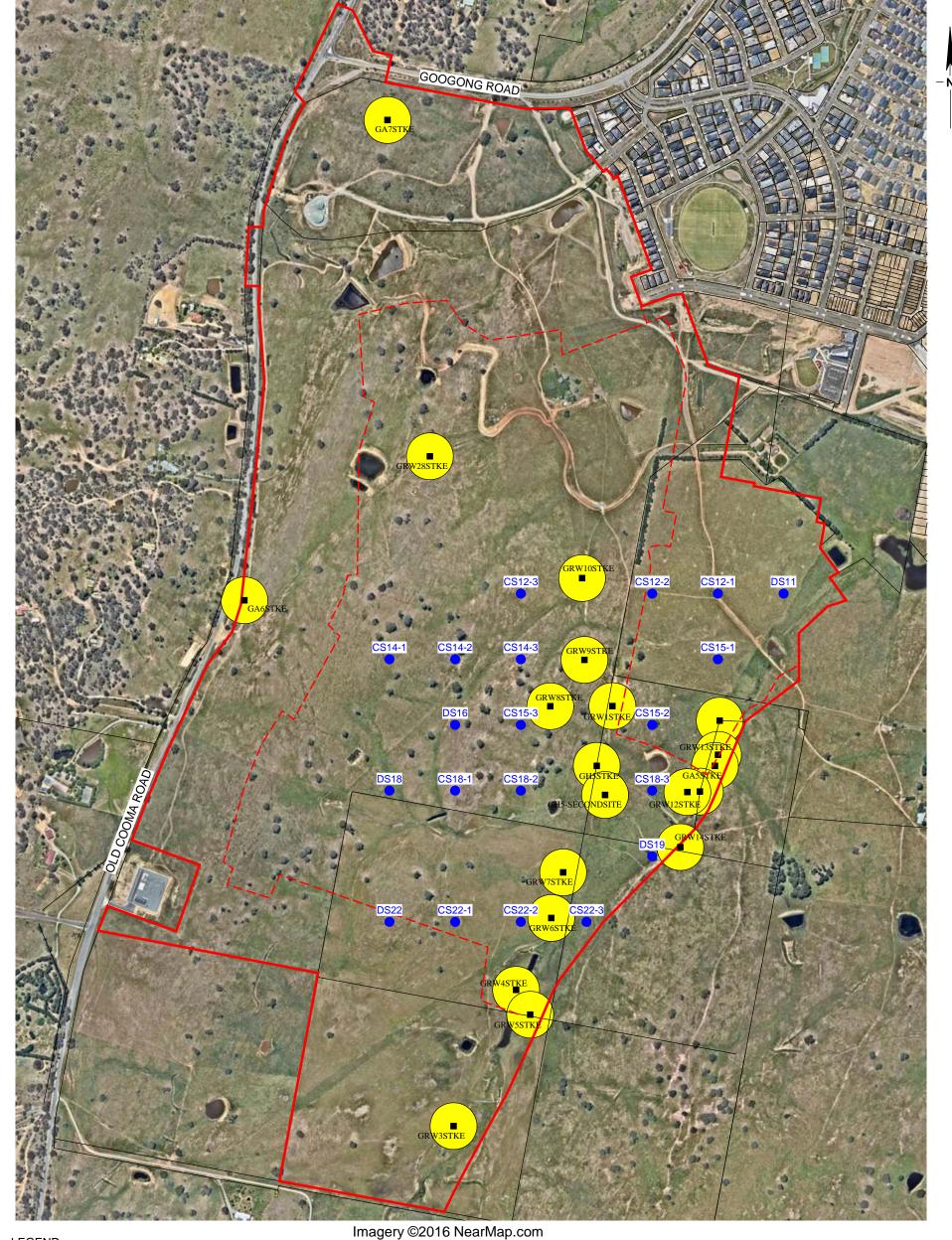
Canberra Investment Corporation Neighbourhood 1A, Stage 7 & Neighbourhood 2 Googong Road Googong

Locations of Contamination

Drawing No: 12675/4-AA2 Job No: 12675/4 Drawn By: MH Date: 16 May 2016 Checked By: X

File Ref: 12675-4 Layers: 0, AA2

PO Box 880 Penrith NSW 2750 Tel: 02 4722 2700 Fax: 02 4722 2777


e-mail:info@geotech.com.au www.geotech.com.au Peet Limited
Neighbourhood 1A, Stage 7 & Neighbourhood 2
Googong Road
Googong

Detailed Sampling Locations
Area Including Hematite Zone and Waste Zones

Drawing No: 12675/4-AB1 Job No: 12675/4 Drawn By: MH Date: 9 May 2017 Checked By: JX/JH/SS

File Ref: 12675-4 Layers: 0, AB1

CONSULTING ENGINEERS

LEGEND

Sample

Site Boundary

Heritage Area

Heritage Area Exclusion zone

CONSULTING ENGINEERS

PO Box 880 Penrith NSW 2750 Tel: 02 4722 2700 Fax: 02 4722 2777

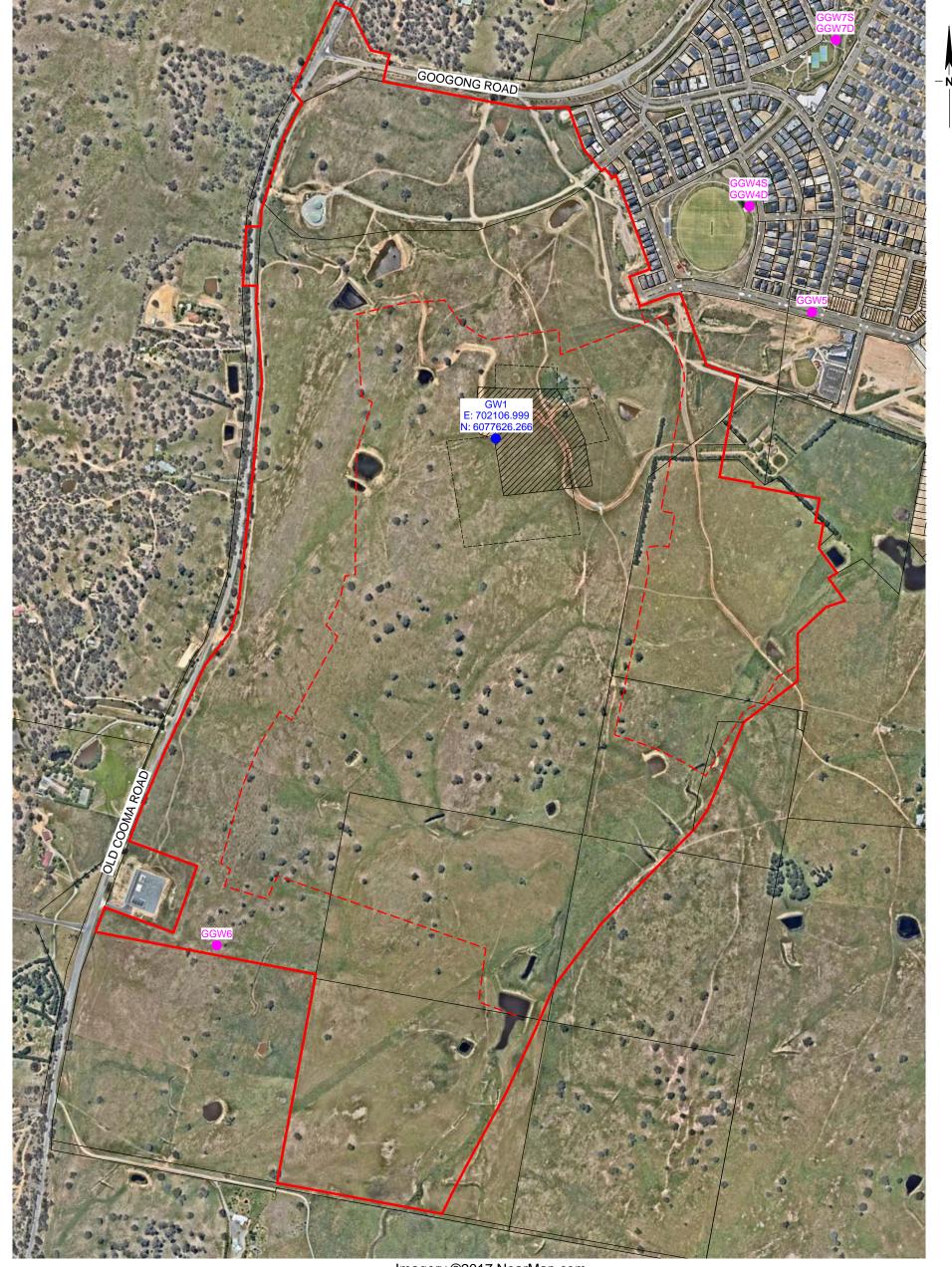
e-mail:info@geotech.com.au www.geotech.com.au

Peet Limited Neighbourhood 1A, Stage 7 & Neighbourhood 2 Googong Road Googong

Sampling Locations - Further Investigation of TPH F2 and F3 (Central Portion of the Site)

Drawing No: 12675/4-AB2 Job No: 12675/4 Drawn By: MH Date: 9 May 2017 Checked By: JX

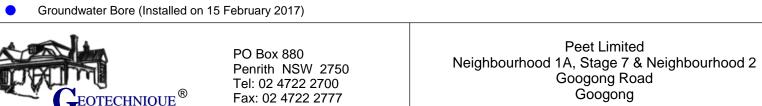
240


320

400m

File Ref: 12675-4 Layers: 0, AB2

160


Scale 1:8000

Imagery ©2017 NearMap.com

<u>LEGEND</u>

- Groundwater Bore (SMEC)

Drawing No: 12675/4-AB3 Job No: 12675/4 Drawn By: MH Date: 9 May 2017 Checked By: JX

400m

320


e-mail:info@geotech.com.au www.geotech.com.au **Groundwater Bore Locations**

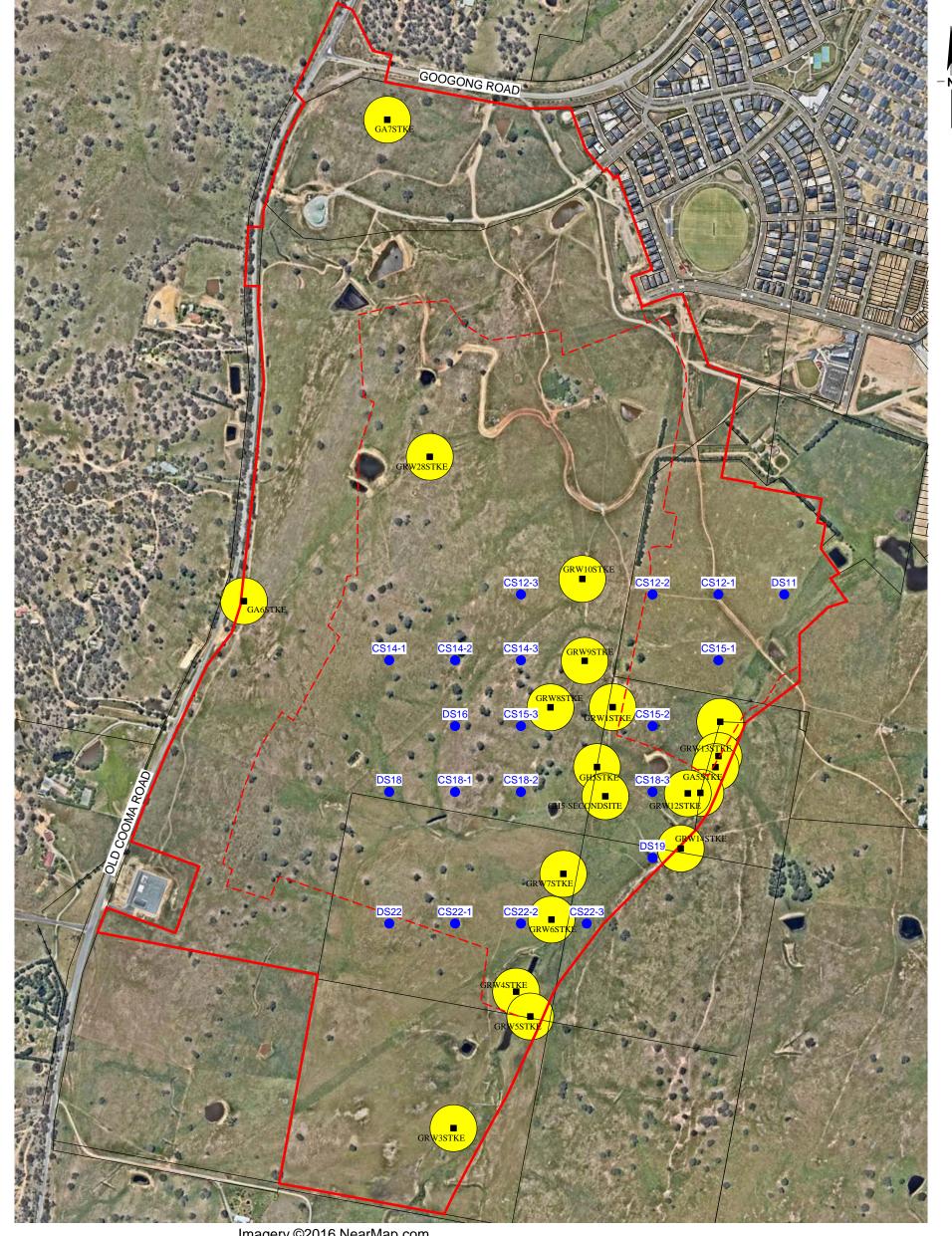
File Ref: 12675-4 Layers: 0, AB3

EOTECHNIQUE ® PTY LTD

CONSULTING ENGINEERS

PO Box 880 Penrith NSW 2750 Tel: 02 4722 2700 Fax: 02 4722 2777

CONSULTING ENGINEERS


PO Box 880 Penrith NSW 2750 Tel: 02 4722 2700 Fax: 02 4722 2777

e-mail:info@geotech.com.au www.geotech.com.au Canberra Investment Corporation Neighbourhood 1A, Stage 7 & Neighbourhood 2 Googong Road Googong

> Proposed Detailed Sampling Locations Hematite Zone and Waste Area

Drawing No: 12675/4-PS1 Job No: 12675/4 Drawn By: MH Date: 30 September 2016 Checked By: JX

File Ref: 12675-4 Layers: 0, PS1

LEGEND

Imagery ©2016 NearMap.com

Proposed Sample

Site Boundary

Heritage Area

Heritage Area Exclusion zone

CONSULTING ENGINEERS

EOTECHNIQUE ® PTY LTD

PO Box 880 Penrith NSW 2750 Tel: 02 4722 2700 Fax: 02 4722 2777

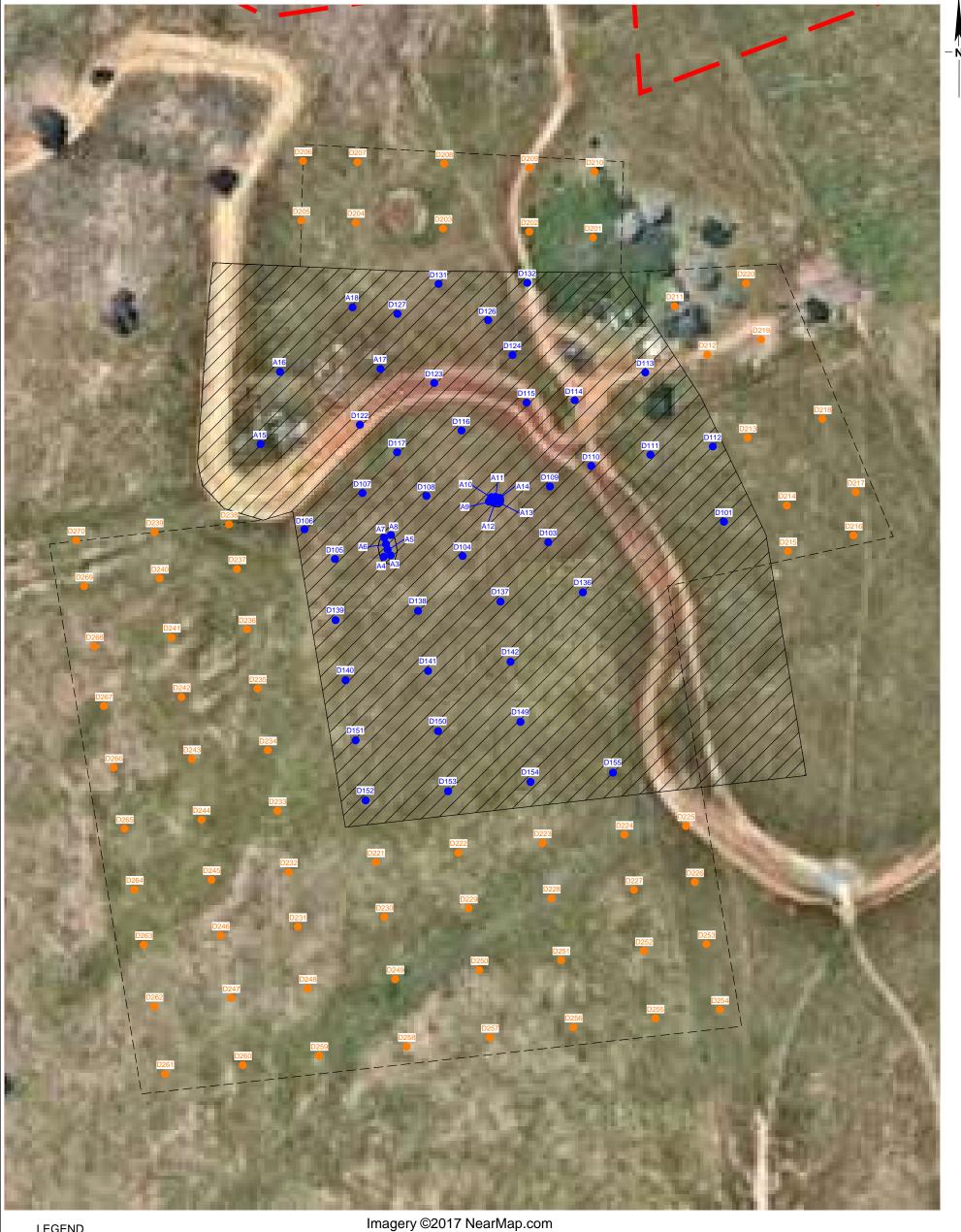
e-mail:info@geotech.com.au www.geotech.com.au

Canberra Investment Corporation Neighbourhood 1A, Stage 7 & Neighbourhood 2
Googong Road
Googong

Proposed Sampling Locations Further Investigation of TPH F2 and F3

Drawing No: 12675/4-PS2 Job No: 12675/4 Drawn By: MH Date: 26 September 2016 Checked By: JX

240


Scale 1:8000

320

400m

File Ref: 12675-4 Layers: 0, PS2

160

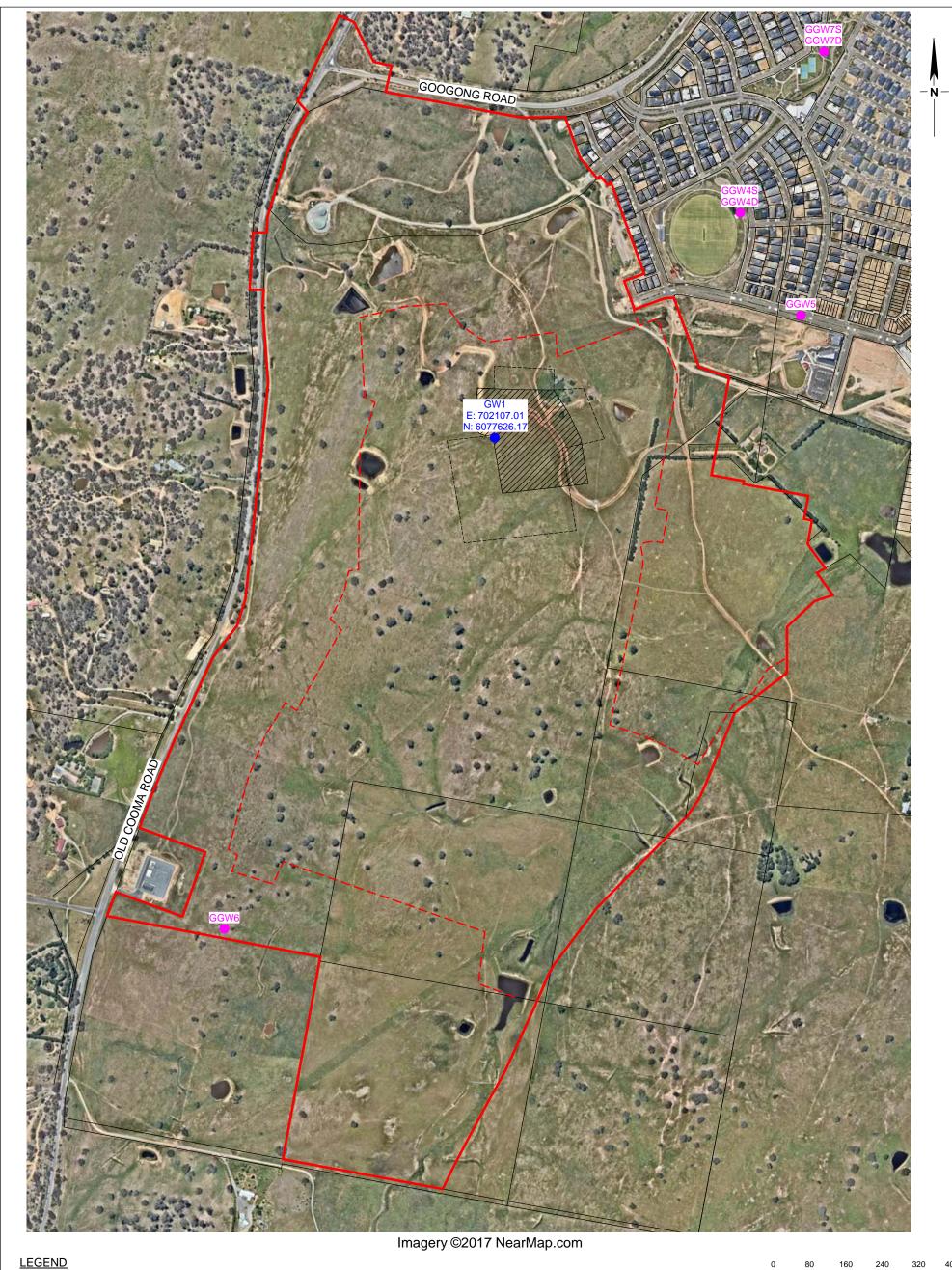
<u>LEGEND</u>

Sample (Location of Contamination)

CONSULTING ENGINEERS

Sample (Proposed Location for Further Investigation) Site Boundary

PO Box 880 Penrith NSW 2750 Tel: 02 4722 2707 Fax: 02 4722 2777


e-mail:info@geotech.com.au www.geotech.com.au

Canberra Investment Corporation Neighbourhood 1A, Stage 7 & Neighbourhood 2 Googong Road Googong

Drawing No: 12675/4-ABP1 Job No: 12675/4 Drawn By: MH Date: 11 January 2017 Checked By: JX

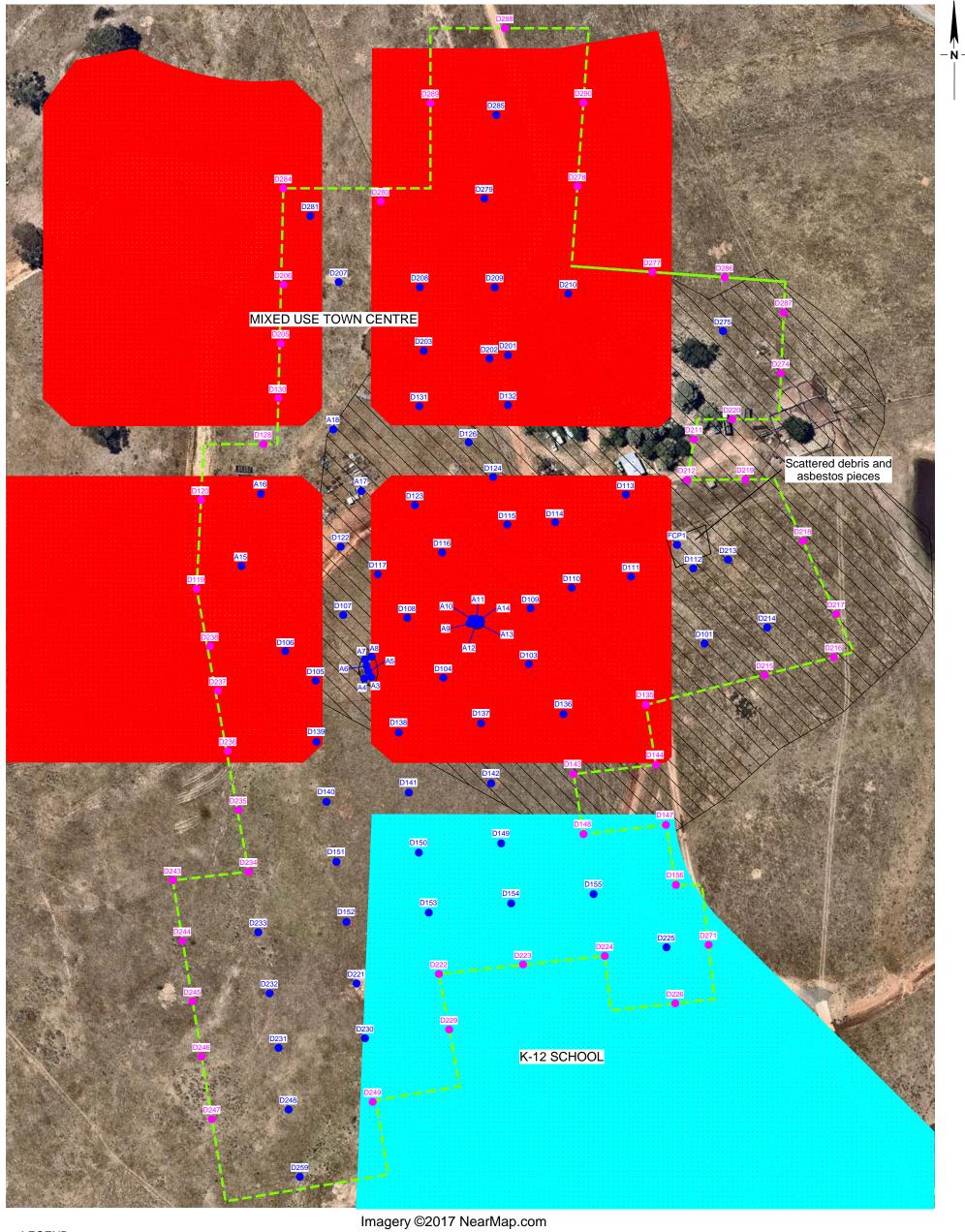
File Ref: 12675-4 Layers: 0, ABP1

Proposed Sample Locations

LEGEND

- Existing Groundwater Bore (SMEC)
- Proposed Groundwater Bore

PO Box 880 Penrith NSW 2750 Tel: 02 4722 2700 Fax: 02 4722 2777


e-mail:info@geotech.com.au www.geotech.com.au

Canberra Investment Corporation Neighbourhood 1A, Stage 7 & Neighbourhood 2 Googong Road Googong

Existing and Proposed Groundwater Bore Locations

Drawing No: 12675/4-ABP2 Job No: 12675/4 Drawn By: MH Date: 31 January 2017 Checked By: JX

File Ref: 12675-4 Layers: 0, ABP2

LEGEND

Sample (Location of Contamination)

Sample (Uncontaminated)

Estimated Extent of Contamination

Exclusive Area (30m Buffer Around AEC10 & AEC13)

PO Box 880 Penrith NSW 2750 Tel: 02 4722 2700 Fax: 02 4722 2777

e-mail:info@geotech.com.au www.geotech.com.au

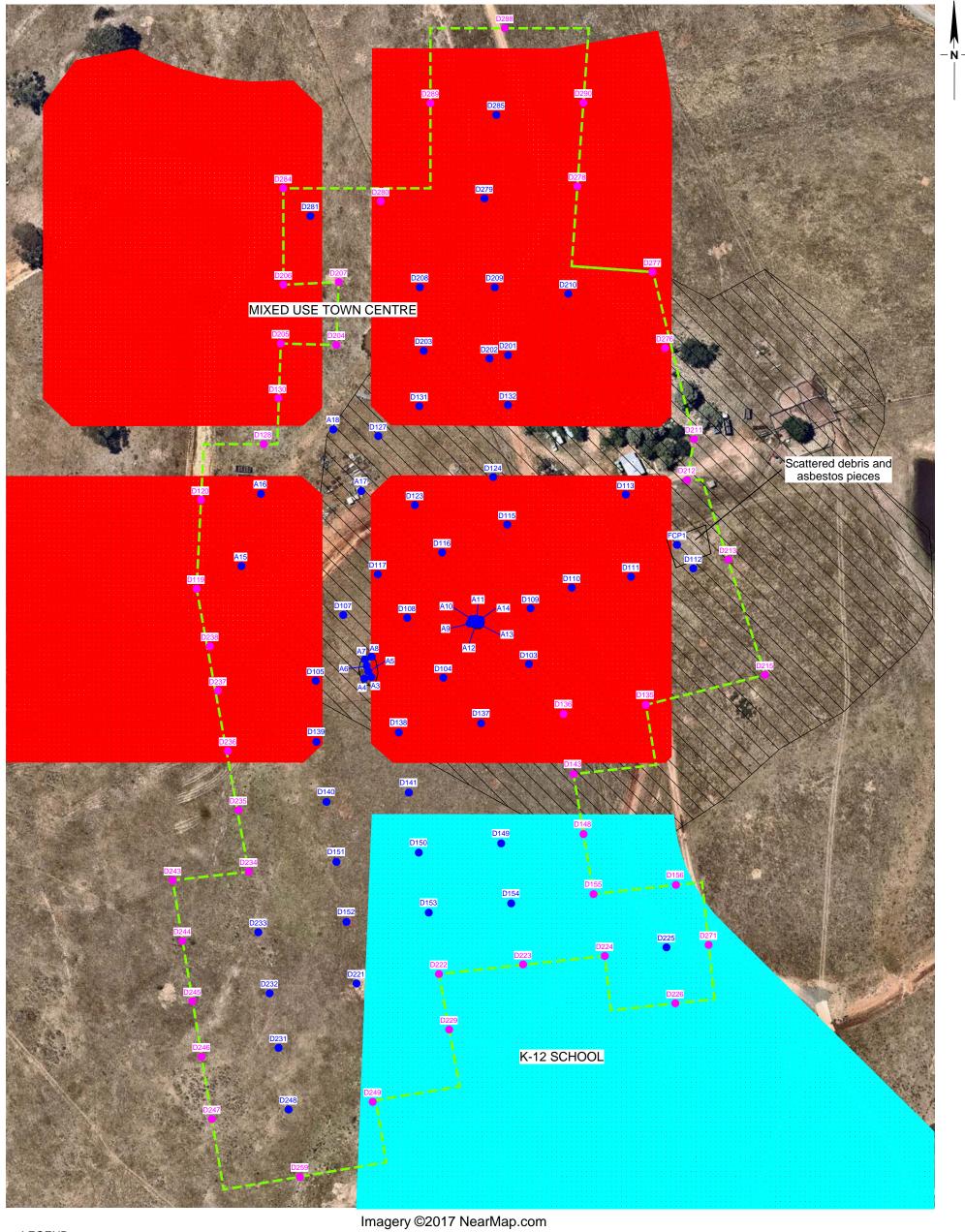
Peet Limited Neighbourhood 1A, Stage 7 & Neighbourhood 2 Googong Road Googong

Locations and Extent of Contamination Under Conditions for Residential Use

Drawing No: 12675/4-AB4A Job No: 12675/4 Drawn By: MH Date: 9 May 2017 Checked By: JX

File Ref: 12675-4 Layers: 0, AB4A

·	Depth (m)	Contaminant	Concentration (mg/kg)	Sample Location	Depth (m)	Contaminant	Concentration (mg/kg)	Sample Location	Depth (m)	Contaminant	Concentration (mg/kg)
				D111	0-0.1	Pb, Zn	310, 280	D153	0-0.1	As, Pb, Zn	140, 460, 400
A3	0-0.1	As, Cd, Cu, Pb, Ni & Zn	140, 4.8, 77, 360, 49 & 2400	וווט	0.2-0.3	Pb, Zn	330, 340	D153	0.2-0.3	As, Pb, Zn	170, 470, 430
.i	0-0.1	As, Cd, Ni & Zn	440, 8.0, 20 & 2700	D112	0-0.1	Pb, Zn	560, 280	D154	0.2-0.3	Pb	330
A4	0.25-0.35	As, Cd, Pb, Mn, Ni, Zn	300, 7, 420, 7400, 44, 2700		0.2-0.3	As, Pb	110, 420	D155	0-0.1	Mn	3900
	0.5-0.6	As, Cd, Pb, Mn, Zn	380, 7.6, 540, 6200, 3100	D113	0-0.1	As	110		0.2-0.3	As, Mn	120, 4400
A5	0-0.1	As, Cd, Cu, Ni & Zn	270, 14, 83, 22 & 4100	5	0.2-0.3	As, Zn	260, 300		0-0.1	As	190
J 46 -	0-0.1	As, Cd, Ni & Zn	350, 9.0, 20 & 3500	D114	0.2-0.3	Zn	300	D201	0.2-0.3	As	300
A6	0.25-0.35 0.5-0.6	As, Cd, Mn, Ni, Zn As, Cd, Mn, Zn	300, 9, 8800, 45, 3100 340, 12, 7400, 4100	D115	0-0.1	Pb, Zn Pb, Mn, Zn	320, 610 410, 5500, 630		1.0-1.1	As As	450 530
A7	0.5-0.6	As, Cd, Will, Zli As, Cd, Pb, Ni & Zn	350, 8.6, 330, 23 & 2500		0-0.1	As, Cd, Pb, Zn	120, 4, 620, 1200		0-0.1	As. Cd. Cu. Ni. Zn	200, 4.0, 150, 21, 460
A'	0-0.1	As, Cd, Pb, Ni & Zn	290, 8.5, 330, 26 & 2300		0.2-0.3	As, Cd, Cu, Pb, Mn, Zn	200, 6.7, 180, 760, 5200, 2900	D202	0.2-0.3	As, ou, ou, rvi, zir	500
j ⊨	0.25-0.35	As, Cd, Mn, Zn	310, 11, 9400, 3700	D116	1.0-1.1	As, Cd, Cu, Pb, Mn, Ni, Zn	220, 7.8, 210, 790, 4800, 35, 3100	DZOZ	1.0-1.1	As, Mn, Zn	670, 13000, 1000
A8	0.5-0.6	As, Cd, Pb, Mn, Zn	270, 10, 350, 7700, 3300		1.4-1.5	As, Cd, Cu, Pb, Mn, Ni, Zn	530, 46, 720, 710, 18000, 36, 2000		0-0.1	As, Zn	180, 490
, F	1.0-1.1	As, Cd, Mn, Zn	260, 8.2, 8000, 3000		0-0.1	As, Pb, Ni, Zn	180, 960, 23, 1100	D203	0.2-0.3	As	120
	0-0.1	As, Cd, Cu, Pb & Zn	200, 3.3, 78, 330 & 1100	D117	0.2-0.3	As, Pb, Zn	170, 1000, 1100		0.2-0.3	As	110
A9	0.25-0.35	As, Cd, Cu, Pb, Zn	180, 3.6, 310, 340, 1100	D.100	0-0.1	As, Pb, Ni, Zn	120, 430, 16, 250	D207	1.0-1.1	As	130
,	0.5-0.6	As, Pb, Mn, Zn	160, 310, 4200, 870	D122	0.2-0.3	As, Cu	140, 120		0-0.1	As, Cd, Ni, Zn	130, 3.4, 19, 370
A10	0-0.1	As, Cd, Cu, Pb & Zn	190, 3.6, 120, 330 & 1100	D123	0-0.1	Cd, Pb, Ni, Zn	3.9, 370, 18, 1300	D208	0.2-0.3	As, Cu, Zn	220, 170, 390
	0-0.1	As, Cd, Cu, Pb, Ni & Zn	200, 4.0, 1100, 360, 29 & 1400	D123	0.2-0.3	Zn	1100		1.0-1.1	As, Cd, Pb, Mn, Zn	1200, 100, 330, 34000, 9600
j [0.25-0.35	As, Cd, Mn, Zn	220, 3.9, 4600, 1400	D124	0-0.1	Zn	380		0-0.1	As, Zn	220, 390
A11	0.5-0.6	As, Cd, Mn, Ni, Zn	390, 17, 12000, 51, 6300	J124	0.2-0.3	Pb, Zn	310, 310	D209	0.2-0.3	As, Cd, Cu, Pb, Mn, Zn	570, 9.4, 230, 380, 5600, 1900
i [1.0-1.1	As, Cd, Mn, Zn	300, 14, 7300, 3900	D126	0.2-0.3	Zn	300	D209	1.0-1.1	As, Cd, Cu, Pb, Zn	1200, 8.6, 390, 320, 3800
	1.9-2.0	As, Cd, Mn, Zn	540, 49, 7800, 7600	D127	0-0.1	As, Cd, Cu, Pb, Ni, Zn	250, 3.5, 310, 660, 33, 1500		1.9-2.0	As, Cd, Cu, Zn	1200, 4.7, 250, 2500
A12	0-0.1	As, Cd, Cu, Pb & Zn	210, 3.2, 99, 340 & 1200	J 121	0.2-0.3	As, Cd, Cu, Pb, Zn	270, 3.3, 210, 630, 1800	D210	0.2-0.3	As, Mn	190, 4300
.i -	0-0.1	As, Cd, Cu, Pb & Zn	200, 3.2, 110, 320 & 1100	D131	0-0.1	As, Pb, Zn	180, 310, 630		1.0-1.1	As,Mn, Zn	590, 12000, 320
A13	0.25-0.35	As, Cd, Cu, Mn, Zn	250, 3.8, 200, 5700, 1400		0.2-0.3	As, Zn	190, 600	D213	1.0-1.1	As	120
	0.5-0.6	As, Cu, Zn	200, 160, 810		0-0.1	As, Mn	290, 4100	D214	0-0.1	Mn	4200
A14	0-0.1	As, Cd, Cu & Zn	180, 3.3, 100 & 1000	D132	0.2-0.3	As	530	D221	1.0-1.1	As, Cd, Pb, Mn, Zn	250, 3.6, 420, 4300, 860
A15	0-0.1	As, Cd, Cu, Pb, Mn, Ni & Zn	170, 4.2, 580, 330, 4200, 19 & 1000		1.0-1.1	As, Zn	940, 660	Door	1.9-2.0	As, Cd, Cu, Pb, Mn, Ni, Zn	1600, 50, 460, 320, 47000, 140, 10000
A16	0-0.1	As, Cd, Cu, Ni & Zn	160, 3.3, 1100, 18 & 1000	D400	1.9-2.0	As, Cd, Mn, Zn	540, 4.8, 6200, 1200	D225	1.9-2.0	Cd, Mn, Zn	13, 14000, 2400
,i -	0-0.1 0.2-0.3	As, Cd, Cu & Zn As, Cu, Zn	150, 3.7, 520 & 920 520, 640, 560	D136	0.2-0.3 0-0.1	Pb, Zn As, Cd, Pb, Mn, Zn	310, 290 160, 3.4, 380, 5900, 950	D230	0-0.1	As, Zn As, Pb, Ni	110, 160 110, 320, 6.2
A17	0.2-0.3	As, Cu, Zn As, Cd, Cu, Pb, Mn, Zn	600, 4, 870, 730, 4300, 1000	D137	0.2-0.3	As, Cd, Pb, Will, Zll As, Pb, Zn	180, 420, 770	D230	1.0-1.1	As, Pb, Ni As, Mn	130, 4200
j ^'' F	1.0-1.1	As, Cu, Cu, Fb, Will, Zil	420, 320, 770		0-0.1	As, Cd, Ni, Zn	360, 3.6, 17, 1700		0-0.1	Ni	7.2
j -	1.9-2.0	As, Cd, Cu, Pb, Mn, Ni, Zn	410, 16, 250, 570, 12000, 130, 2500	D138	0.2-0.3	As, Cd, Zn	360, 3.4, 1600	D231	1.0-1.1	Pb	440
A18	0-0.1	As, Cd, Cu, Mn, Ni & Zn	150, 3.7, 990, 5300, 18 & 1100		0-0.1	As, Cd, Cu, Pb, Mn, Zn	850, 4.3, 680, 1700, 4000, 1100		0-0.1	Ni	11
D101	1.0-1.1	Pb, Mn	490, 4000		0.2-0.3	As, Cd, Cu, Pb, Mn, Ni, Zn	1200, 6.6, 1100, 970, 16000, 110, 1400	D232	1.0-1.1	Pb	550
	0-0.1	As, Zn	140, 890	D139	1.0-1.1	As, Cd, Cu, Pb, Ni, Zn	860, 3.5, 1700, 960, 52, 630		0-0.1	Ni	7.0
D103	0.2-0.3	As, Pb, Zn	140, 310, 800		1.4-1.5	As, Cu, Ni, Zn	430, 560, 44, 400	D233	1.0-1.1	As, Cu	130, 220
D404	0-0.1	As, Zn	230, 830	D140	0-0.1	As, Cd, Pb, Mn, Ni, Zn	330, 3.7, 900, 4400, 24, 1000		1.9-2.0	As, Cu	140, 170
D104	0.2-0.3	As, Pb, Zn	210, 310, 960	D140	0.2-0.3	As, Cd, Cu, Pb, Mn, Ni, Zn	630, 6.1, 270, 2300, 8400, 44, 2800	D240	0.2-0.3	As	150
D105	0-0.1	As, Pb	150, 370	D141	0.2-0.3	As, Pb, Zn	320, 570, 770	D248	1.0-1.1	As, Zn	290, 700
D103	0.2-0.3	As, Cu, Pb, Zn	240, 140, 410, 320	D142	0.2-0.3	As	110	D259	1.9-2.0	Ni	36
D106	0-0.1	Ni	20	D149	0-0.1	As, Pb, Mn, Ni, Zn	190, 310, 4200, 20, 520	D275	1.9-2.0	As, Mn	130, 6200
D107	0-0.1	As, Cu, Pb, Ni, Zn	180, 150, 500, 25, 630	20	0.2-0.3	As, Zn	120, 290	D279	0-0.1	As, Cd, Pb, Mn, Zn	280, 3.4, 310, 4300, 570
	0.2-0.3	As, Cu, Pb, Zn	200, 170, 430, 640	D150	0-0.1	As, Pb, Mn, Ni, Zn	260, 380, 4500, 21, 750		0.2-0.3	As, Cd, Pb, Mn, Zn	300, 3.4, 330, 4400, 560
D108	0-0.1	As, Pb, Ni, Zn	110, 620, 16, 870		0.2-0.3	As, Pb, Mn, Zn	300, 350, 4000, 770	P.00.	0-0.1	Cu	330
	0.2-0.3	As, Cd, Pb, Zn As, Pb, Ni, Zn	150, 3.1, 710, 1000	D151	0-0.1	As, Cu, Pb, Ni, Zn	250, 120, 1600, 23, 1100	D281	0.2-0.3	Cu	440
1 +	0-0.1	AC PR NI /n			0.2-0.3	As, Cu, Pb, Zn	240, 120, 870, 920		1.0-1.1	Cu	500
D109			120, 310, 17, 650		0.04	A o D- 7-			0.2-0.3	Zn	340
	0.2-0.3	As, Zn	120, 630		0-0.1	As, Pb, Zn	250, 510, 450	Dage	-		200 670
	0.2-0.3 0-0.1	As, Zn As, Pb, Ni, Zn	120, 630 150, 330, 16, 520	D152	0.2-0.3	As, Pb, Zn	270, 600, 540	D285	1.0-1.1	As, Zn	200, 670
D109	0.2-0.3	As, Zn	120, 630	D152	0.2-0.3 1.0-1.1	As, Pb, Zn As, Cd, Cu, Pb, Mn, Zn	270, 600, 540 390, 5.9, 240, 360, 4700, 950		1.0-1.1 1.9-2.0	As, Zn As, Cd, Zn	200, 670 260, 9.8, 1600 0.66% w/w ACM (>7mm) & 0.36% w/w
D109	0.2-0.3 0-0.1	As, Zn As, Pb, Ni, Zn	120, 630 150, 330, 16, 520	D152	0.2-0.3	As, Pb, Zn As, Cd, Cu, Pb, Mn, Zn As, Cd, Cu, Mn, Ni, Zn	270, 600, 540 390, 5.9, 240, 360, 4700, 950 680, 17, 180, 21000, 52, 1200	D285 FCP1 *	1.0-1.1	As, Zn	260, 9.8, 1600
D109	0.2-0.3 0-0.1	As, Zn As, Pb, Ni, Zn	120, 630 150, 330, 16, 520	D152	0.2-0.3 1.0-1.1	As, Pb, Zn As, Cd, Cu, Pb, Mn, Zn As, Cd, Cu, Mn, Ni, Zn arsenic (A:	270, 600, 540 390, 5.9, 240, 360, 4700, 950 680, 17, 180, 21000, 52, 1200 s) = 100 (HIL A) & 100 (EIL)		1.0-1.1 1.9-2.0	As, Zn As, Cd, Zn	260, 9.8, 1600 0.66% w/w ACM (>7mm) & 0.36% w/w
D109	0.2-0.3 0-0.1	As, Zn As, Pb, Ni, Zn	120, 630 150, 330, 16, 520	D152	0.2-0.3 1.0-1.1	As, Pb, Zn As, Cd, Cu, Pb, Mn, Zn As, Cd, Cu, Mn, Ni, Zn arsenic (As	270, 600, 540 390, 5.9, 240, 360, 4700, 950 680, 17, 180, 21000, 52, 1200 s) = 100 (HIL A) & 100 (EIL) (Cd) = 20 (HIL A) & 3 (PIL)		1.0-1.1 1.9-2.0	As, Zn As, Cd, Zn	260, 9.8, 1600 0.66% w/w ACM (>7mm) & 0.36% w/w
D109	0.2-0.3 0-0.1	As, Zn As, Pb, Ni, Zn	120, 630 150, 330, 16, 520	D152	0.2-0.3 1.0-1.1	As, Pb, Zn As, Cd, Cu, Pb, Mn, Zn As, Cd, Cu, Mn, Ni, Zn arsenic (As	270, 600, 540 390, 5.9, 240, 360, 4700, 950 680, 17, 180, 21000, 52, 1200 s) = 100 (HIL A) & 100 (EIL) (Cd) = 20 (HIL A) & 3 (PIL) er (Cu) = 75-110 (EIL)		1.0-1.1 1.9-2.0	As, Zn As, Cd, Zn	260, 9.8, 1600 0.66% w/w ACM (>7mm) & 0.36% w/w
D109	0.2-0.3 0-0.1	As, Zn As, Pb, Ni, Zn	120, 630 150, 330, 16, 520	D152	0.2-0.3 1.0-1.1	As, Pb, Zn As, Cd, Cu, Pb, Mn, Zn As, Cd, Cu, Mn, Ni, Zn arsenic (As cadmium copp lead (Pb)	270, 600, 540 390, 5.9, 240, 360, 4700, 950 680, 17, 180, 21000, 52, 1200 s) = 100 (HIL A) & 100 (EIL) (Cd) = 20 (HIL A) & 3 (PIL) er (Cu) = 75-110 (EIL) = 300 (HIL A) & 1200 (EIL)		1.0-1.1 1.9-2.0	As, Zn As, Cd, Zn	260, 9.8, 1600 0.66% w/w ACM (>7mm) & 0.36% w/w
D109 -	0.2-0.3 0-0.1 0.2-0.3	As, Zn As, Pb, Ni, Zn	120, 630 150, 330, 16, 520	D152	0.2-0.3 1.0-1.1	As, Pb, Zn As, Cd, Cu, Pb, Mn, Zn As, Cd, Cu, Mn, Ni, Zn arsenic (As cadmium copp lead (Pb) mangar	270, 600, 540 390, 5.9, 240, 360, 4700, 950 680, 17, 180, 21000, 52, 1200 s) = 100 (HIL A) & 100 (EIL) (Cd) = 20 (HIL A) & 3 (PIL) er (Cu) = 75-110 (EIL) = 300 (HIL A) & 1200 (EIL) sese (Mn) = 3800 (HIL A)		1.0-1.1 1.9-2.0	As, Zn As, Cd, Zn	260, 9.8, 1600 0.66% w/w ACM (>7mm) & 0.36% w/w
D109	0.2-0.3 0-0.1 0.2-0.3	As, Zn As, Pb, Ni, Zn	120, 630 150, 330, 16, 520	D152	0.2-0.3 1.0-1.1	As, Pb, Zn As, Cd, Cu, Pb, Mn, Zn As, Cd, Cu, Mn, Ni, Zn arsenic (At cadmium copp lead (Pb) mangar	270, 600, 540 390, 5.9, 240, 360, 4700, 950 680, 17, 180, 21000, 52, 1200 s) = 100 (HIL A) & 100 (EIL) (Cd) = 20 (HIL A) & 3 (PIL) er (Cu) = 75-110 (EIL) esse (Mn) = 3800 (HIL A) kel (Ni) = 6-40 (EIL)		1.0-1.1 1.9-2.0	As, Zn As, Cd, Zn	260, 9.8, 1600 0.66% w/w ACM (>7mm) & 0.36% w/w
D109 -	0.2-0.3 0-0.1 0.2-0.3	As, Zn As, Pb, Ni, Zn	120, 630 150, 330, 16, 520	D152	0.2-0.3 1.0-1.1	As, Pb, Zn As, Cd, Cu, Pb, Mn, Zn As, Cd, Cu, Mn, Ni, Zn arsenic (At cadmium copp lead (Pb) mangar	270, 600, 540 390, 5.9, 240, 360, 4700, 950 680, 17, 180, 21000, 52, 1200 s) = 100 (HIL A) & 100 (EIL) (Cd) = 20 (HIL A) & 3 (PIL) er (Cu) = 75-110 (EIL) = 300 (HIL A) & 1200 (EIL) sese (Mn) = 3800 (HIL A)		1.0-1.1 1.9-2.0	As, Zn As, Cd, Zn	260, 9.8, 1600 0.66% w/w ACM (>7mm) & 0.36% w/w
D109 -	0.2-0.3 0-0.1 0.2-0.3	As, Zn As, Pb, Ni, Zn	120, 630 150, 330, 16, 520	D152	0.2-0.3 1.0-1.1	As, Pb, Zn As, Cd, Cu, Pb, Mn, Zn As, Cd, Cu, Mn, Ni, Zn arsenic (At cadmium copp lead (Pb) mangar nic zinc (Zn) = 1	270, 600, 540 390, 5.9, 240, 360, 4700, 950 680, 17, 180, 21000, 52, 1200 s) = 100 (HIL A) & 100 (EIL) (Cd) = 20 (HIL A) & 3 (PIL) er (Cu) = 75-110 (EIL) esse (Mn) = 3800 (HIL A) kel (Ni) = 6-40 (EIL)		1.0-1.1 1.9-2.0	As, Zn As, Cd, Zn	260, 9.8, 1600 0.66% w/w ACM (>7mm) & 0.36% w/w
D109 -	0.2-0.3 0-0.1 0.2-0.3	As, Zn As, Pb, Ni, Zn	120, 630 150, 330, 16, 520	D152	0.2-0.3 1.0-1.1	As, Pb, Zn As, Cd, Cu, Pb, Mn, Zn As, Cd, Cu, Mn, Ni, Zn arsenic (At cadmium copp lead (Pb) mangar nic zinc (Zn) = 1 0.01% w	270, 600, 540 390, 5.9, 240, 360, 4700, 950 680, 17, 180, 21000, 52, 1200 s) = 100 (HIL A) & 100 (EIL) (Cd) = 20 (HIL A) & 3 (PIL) er (Cu) = 75-110 (EIL) = 300 (HIL A) & 1200 (EIL) telse (Mn) = 3800 (HIL A) kel (Ni) = 6-40 (EIL) 7400 (HIL A) & 150-480 (EIL)		1.0-1.1 1.9-2.0	As, Zn As, Cd, Zn	260, 9.8, 1600 0.66% w/w ACM (>7mm) & 0.36% w/w


Notes:

HIL A: Health-based Investigation Level for residential with garden/accessible soil

EIL: Ecological Investigation Level for urban residential land use depending on the value of Cation Exchange Capacity (CEC) and/or pH

PIL: Provisional Phytotoxity-Based Investigation Level

^{*:} Scattered ACM pieces identified on ground surface at and in the vicinity of FCP1

LEGEND

Sample (Location of Contamination)

CONSULTING ENGINEERS

Sample (Uncontaminated)

Estimated Extent of Contamination

Exclusive Area (30m Buffer Around AEC10 & AEC13)

PO Box 880 Penrith NSW 2750 Tel: 02 4722 2700 Fax: 02 4722 2777

e-mail:info@geotech.com.au www.geotech.com.au

Peet Limited Neighbourhood 1A, Stage 7 & Neighbourhood 2 Googong Road Googong

Locations and Extent of Contamination Under Conditions for Commercial Use

Drawing No: 12675/4-AB4B Job No: 12675/4 Drawn By: MH Date: 9 May 2017 Checked By: JX

File Ref: 12675-4 Layers: 0, AB4B

Table for the Locations of Contamination Plan

Drawing No. 12675/4-AB4B

Sample Location	Depth (m)	Contaminant	Concentration (mg/kg)	Sample Location	Depth (m)	Contaminant	Concentration (mg/kg)	Sample Location	Depth (m)	Contaminant	Concentration (mg/kg)
A3	0-0.1	Cd, Ni, Zn	4.8, 49, 2400	D108	0-0.1	Zn	870	D151	0-0.1	As, Pb, Ni, Zn	250, 1600, 23, 1100
	0-0.1	As, Cd, Zn	440, 8.0, 2700	D108	0.2-0.3	Cd, Zn	3.1, 1000	D151	0.2-0.3	As, Zn	240, 920
A4	0.25-0.35	As, Cd, Zn	300, 7, 2700	D109	0-0.1	Zn	650		0-0.1	As	250
	0.5-0.6	As, Cd, Zn	380, 7.6, 3100	D109	0.2-0.3	Zn	630	D450	0.2-0.3	As, Zn	270, 540
A5	0-0.1	As, Cd, Ni, Zn	270, 14, 22, 4100	D110	0-0.1	Zn	520	D152	1.0-1.1	As, Cd, Cu, Zn	390, 5.9, 240, 950
	0-0.1	As, Cd, Zn	350, 9.0, 3500	טווט	0.2-0.3	As, Zn	270, 490		1.9-2.0	As, Cd, Cu, Ni, Zn	680, 17, 180, 52, 1200
A6	0.25-0.35	As, Cd, Zn	300, 9, 3100	D111	0-0.1	Zn	280	D153	0.2-0.3	As, Zn	170, 430
	0.5-0.6	As, Cd, Zn	340, 12, 4100	וווט	0.2-0.3	Zn	340		0-0.1	As	190
A7	0-0.1	As, Cd, Ni, Zn	350, 8.6, 23, 2500	D112	0-0.1	Zn	280	D201	0.2-0.3	As	300
	0-0.1	As, Cd, Ni, Zn	290, 8.5, 26, 2300	D113	0.2-0.3	As	260	D201	1.0-1.1	As	450
A8	0.25-0.35	As, Cd, Zn	310, 11, 3700	D115	0-0.1	Zn	610		1.9-2.0	As	530
Au	0.5-0.6	As, Cd, Zn	270, 10, 3300	DIIS	0.2-0.3	Zn	630		0-0.1	As, Cd, Zn	200, 4.0, 460
	1.0-1.1	As, Cd, Zn	260, 8.2, 3000		0-0.1	Cd, Zn	4.0, 1200	D202	0.2-0.3	As	500
	0-0.1	As, Cd, Zn	200, 3.3, 1100	D116	0.2-0.3	As, Cd, Cu, Zn	200, 6.7, 180, 2900		1.0-1.1	As, Zn	670, 1000
A9	0.25-0.35	As, Cd, Cu, Zn	180, 3.6, 310, 1100	5110	1.0-1.1	As, Cd, Cu, Zn	220, 7.8, 210, 3100	D203	0-0.1	As, Zn	180, 490
	0.5-0.6	Zn	870		1.4-1.5	As, Cd, Cu, Ni, Zn	530, 46, 720, 36, 2000		0-0.1	Cd, Zn	3.4, 370
A10	0-0.1	As, Cd, Cu, Zn	190, 3.6, 120, 1100	D117	0-0.1	As, Ni, Zn	180, 23, 1100	D208	0.2-0.3	As, Cu, Zn	220, 170, 390
	0-0.1	As, Cd, Cu, Ni, Zn	200, 4.0, 1100, 29, 1400		0.2-0.3	As, Zn	170, 1100		1.0-1.1	As, Cd, Zn	1200, 100, 9600
	0.25-0.35	As, Cd, Zn	220, 3.9, 1400	D123	0-0.1	Cd, Zn	3.9, 1300		0-0.1	As, Zn	220, 390
A11	0.5-0.6	As, Cd, Zn	390, 17, 6300		0.2-0.3	Zn	1100	D209	0.2-0.3	As, Cd, Cu, Zn	570, 9.4, 230, 1900
	1.0-1.1	As, Cd, Zn	300, 14, 3900	D124	0-0.1	Zn	380		1.0-1.1	As, Cd, Cu, Zn	1200, 8.6, 390, 3800
	1.9-2.0	As, Cd, Zn	540, 49, 7600	D127	0-0.1	As, Cd, Cu, Ni, Zn	250, 3.5, 310, 33, 1500		1.9-2.0	As, Cd, Cu, Zn	1200, 4.7, 250, 2500
A12	0-0.1	As, Cd, Zn	210, 3.2, 1200		0.2-0.3	As, Cd, Zn	270, 3.3, 1800	D210	0.2-0.3	As	190
	0-0.1	As, Cd, Cu, Zn	200, 3.2, 110, 1100	D131	0-0.1	As, Zn	180, 630		1.0-1.1	As	590
A13	0.25-0.35	As, Cd, Cu, Zn	250, 3.8, 200, 1400		0.2-0.3	As, Zn	190, 600	D221	1.0-1.1	As, Cd, Zn	250, 3.6,
	0.5-0.6	As, Zn	200, 810		0-0.1	As	290		1.9-2.0	As, Cd, Cu, Ni, Zn	1600, 50, 460, 140, 10000
A14	0-0.1	As, Cd, Zn	180, 3.3, 1000	D132	0.2-0.3	As	530	D225	1.9-2.0	Cd, Zn	13, 2400
A15	0-0.1	As, Cd, Cu, Zn	170, 4.2, 580, 1000		1.0-1.1	As, Zn	940, 660	D231	0-0.1	Ni	7.2
A16	0-0.1	Cd, Cu, Zn	3.3, 1100, 1000		1.9-2.0	As, Cd, Zn	540, 4.8, 1200	D232	0-0.1	Ni	11
	0-0.1	Cd, Cu & Zn	3.7, 520, 920	D137	0-0.1	Cd, Zn	3.4, 950	D233	1.0-1.1	Cu	220
A 4.7	0.2-0.3	As, Cu, Zn	520, 640, 560		0.2-0.3	As, Zn	180, 770	D040	1.9-2.0	Cu	170
A17	0.5-0.6	As, Cd, Cu, Zn	600, 4, 870, 1000	D138	0-0.1	As, Cd, Zn	360, 3.6, 1700	D248	1.0-1.1	As, Zn	290, 700
	1.0-1.1	As, Cu, Zn	420, 320, 770		0.2-0.3	As, Cd, Zn	360, 3.4, 1600	D279	0-0.1	As, Cd, Zn	280, 3.4,
A18	1.9-2.0 0-0.1	As, Cd, Cu, Ni, Zn	410, 16, 250, 130, 2500		0-0.1	As, Cd, Cu, Pb, Zn	850, 4.3, 680, 1700, 1100 1200, 6.6, 1100, 110, 1400		0.2-0.3 0-0.1	As, Cd, Zn Cu	300, 3.4, 560 330
Alo	0-0.1	Cd, Cu, Zn Zn	3.7, 990, 1100 890	D139	1.0-1.1	As, Cd, Cu, Ni, Zn As, Cd, Cu, Ni, Zn	860, 3.5, 1700, 52, 630	D281	0.2-0.3	Cu	440
D103	0.2-0.3	Zn	800		1.4-1.5	As, Cu, Cu, Ni, Zii	430, 560, 400	D201	1.0-1.1	Cu	500
	0-0.1	As, Zn	230, 830		0-0.1	As, Cd, Ni, Zn	330, 3.7, 24, 1000		1.0-1.1	As, Zn	200, 670
D104	0.2-0.3	As, Zn	210, 960	D140	0.2-0.3	As, Cd, Ni, Zn	630, 6.1, 270, 2300, 2800	D285	1.9-2.0	As, Cd, Zn	260, 9.8, 1600
D105	0.2-0.3	As, 211	240	D149	0.2-0.3	As, Cu, Cu, Fb, Zii	190, 520		1.0 2.0	7.0, 00, 211	0.66% w/w ACM (>7mm) & 0.36% w/w
2103	0-0.1	As, Ni, Zn	180, 25, 630	טדוע	0-0.1	As, Ni, Zn	260, 21, 750	FCP1 *	0-0.1	Asbestos	AF/FA (<7mm)
D107	0.2-0.3	As, Cu, Zn	200, 170, 640	D150	0.2-0.3	As, Zn	300, 770				, ,
	0.2 0.3	713, Ou, ZII	200, 170, 040		0.2 0.0	·	senic (As) = 160 (EIL)			<u> </u>	
							dmium (Cd) = 3 (PIL)				
							er (Cu) = 100-160 (EIL)				
							= 1500 (HIL D) & 1900 (EIL)				
	signal (AE) - 7.05 (FIII.)										
Assessment C	Criteria (mg/kg)						c (Zn) = 190-550 (EIL)				
							v/w for bonded ACM in soil				
							% w/w for AF & FA in soil				
						No visib	le asbestos for surface soil				

Notes:

HIL A: Health-based Investigation Level for commercial / industral

EIL: Ecological Investigation Level for commercial / industral land use depending on the value of Cation Exchange Capacity (CEC) and/or pH

PIL: Provisional Phytotoxity-Based Investigation Level

*: Scattered ACM pieces identified on ground surface at and in the vicinity of FCP1

ACM, AF, FA: Asbestos Containing Material, Asbestos Fine, Fibrous Asb

TABLES

Table A	Rinsate Samples
Tables B1-B5	Duplicate Samples
Tables C1-C5	Split Samples
Tables D1-D9	Metals, Cation Exchange Capacity (CEC) & pH Test Results – Soil Samples (Residential Setting)
Table D1A-D10	Metals, Cation Exchange Capacity (CEC) & pH Test Results – Soil Samples (Commercial/Industrial Setting)
Table E	Total Petroleum Hydrocarbons (TPH) F2 & F3 (Silica Gel Clean-up) Test Results – Soil Samples
Table F	Asbestos Test Results – Soil Sample & Fibro-cement Piece
Table G	Metals Test Results – Dam Water Sample

TABLE A RINSATE SAMPLES (Ref No: 12675/4-AB)

Rinsate Rinsate ANALYTES Sam ple Sam ple R1 R2 17/10/2016 18/10/2016 **METALS** (mg/L)(mg/L)Arsenic < 0.02 < 0.02 <0.001 Cadmium < 0.001 Chromium < 0.005 < 0.005 Copper < 0.005 < 0.005 < 0.02 < 0.02 Lead Manganese < 0.005 < 0.005 Mercury < 0.0001 < 0.0001 Nickel < 0.005 < 0.005 Zinc < 0.01 < 0.01 TOTAL PETROLEUM HYDROCARBONS (TPH) - Silica Clean-up (µg/L) (µg/L) F2 (>C10-C16) <60 F3 (>C16-C34) < 500 RS1 RS2 13/02/2017 14/02/2017 **METALS** (mg/L)(mg/L)Arsenic < 0.02 < 0.02 Cadmium < 0.001 0.001 Chromium < 0.005 < 0.005 Copper < 0.005 <0.005 Lead < 0.02 < 0.02 < 0.005 < 0.005 Manganese < 0.0001 Mercury < 0.0001 Nickel < 0.005 < 0.005 Zinc < 0.01 < 0.01 RS3 RS4 15/02/2017 16/02/2017 **METALS** (mg/L)(mg/L)Arsenic < 0.02 < 0.02 Cadmium < 0.001 < 0.001 Chromium < 0.005 < 0.005 Copper < 0.005 < 0.005 < 0.02 Lead < 0.02 Manganese < 0.005 < 0.005 < 0.0001 Mercury < 0.0001 Nickel < 0.005 < 0.005 Zinc <0.01 < 0.01 RS5 17/02/2017 **METALS** (mg/L)Arsenic < 0.02 Cadmium <0.001 Chromium < 0.005 Copper <0.005 < 0.02 Lead < 0.005 Manganese < 0.0001 Mercury Nickel < 0.005 Zinc < 0.01

TABLE B1 DUPLICATE SAMPLES

(NC	Original	(Ref No: 12675/4-AB) Original Duplicate RELATIVE PERCENTAGE							
ANALYTES	Sample	Sample	DIFFERENCES (RPD)						
ANALTIES	mg/kg	mg/kg	%						
	D132	Duplicate	76						
METALS	1.9-2.0 m	Duplicate D1							
Arsenic	540	390	32						
Cadmium	1.2	4.8	120						
Chromium	35	24 72	37						
Copper	71		1						
Lead	55	50	10						
Manganese	1400	6200	126						
Mercury	0.12	0.12	0						
Nickel	14	31	76						
Zinc	580	1200	70						
	D152	Duplicate							
METALS	0-0.1 m	D2							
Arsenic	250	310	21						
Cadmium	1.8	2.3	24						
Chromium	39	58	39						
Copper	92	110	18						
Lead	510	630	21						
Manganese	2500	2700	8						
Mercury	0.05	<0.05	-						
Nickel	17	18	6						
Zinc	450	550	20						
	D139	Duplicate							
METALS	0-0.1 m	D3							
Arsenic	850	840	1						
Cadmium	4.3	4.8	11						
Chromium	30	32	6						
Copper	680	850	22						
Lead	1700	1900	11						
Manganese	4000	3400	16						
Mercury	<0.05	<0.05	-						
Nickel	36	31	15						
Zinc	1100	1000	10						
	D157	Duplicate							
METALS	0-0.1 m	D4							
Arsenic	33	30	10						
Cadmium	0.4	0.4	0						
Chromium	26	24	8						
Copper	9.2	8.6	7						
Lead	75	70	7						
Manganese	1200	1500	22						
Mercury	<0.05	<0.05							
Nickel	6.8	7.3	7						
Zinc	59	69	16						
ZIIIC	29	99	10						

TABLE B2 DUPLICATE SAMPLES

	Original	Duplicate	RELATIVE PERCENTAGE
ANALYTES	Sample	Sample	DIFFERENCES (RPD)
7.10 (Z.1.23	mg/kg	mg/kg	%
	D103	Duplicate	7.0
METALS	0-0.1 m	D5	
Arsenic	140	130	7
Cadmium	2.9	3.2	10
Chromium	34	31	9
Copper	100	97	3
Lead	300	280	7
Manganese	3700	4100	10
Mercury	<0.05	<0.05	-
Nickel	19	26	31
Zinc	890	830	7
ZIIIC	A4	Duplicate	,
METALS	0.25-0.35 m	Duplicate D6	
Arsenic	300	260	14
Cadmium	7.0	260 4.8	37
Cadmium	29	4.6 34	16
	89	53	51
Copper	420		51
Lead		250	
Manganese	7400	3900	62
Mercury	0.05	<0.05	-
Nickel	44	16	93
Zinc	2700	1600	51
	A13	Duplicate	
METALS	0.25-0.35 m	D7	
Arsenic	230	250	8
Cadmium	3.4	3.8	11
Chromium	41	37	10
Copper	200	62	105
Lead	300	210	35
Manganese	3500	5700	48
Mercury	<0.05	0.08	-
Nickel	17	32	61
Zinc	1000	1400	33
	DS11	Duplicate	
TOTAL PETROLEUM HYDROCARBONS (TPH)-Silica Gel Clean-up	0-0.1 m	D8	
F2 (>C10-C16)	<25	<25	-
F3 (>C16-C34)	<90	<90	-
	DS22	Duplicate	
TPH-Silica Gel Clean-up	0-0.1 m	D9	
F2 (>C10-C16)	<25	<25	-
F3 (>C16-C34)	<90	<90	-
	CS15-2	Duplicate	
TPH-Silica Gel Clean-up	0-0.1 m	D10	
F2 (>C10-C16)	<25	<25	-
F3 (>C16-C34)	<90	<90	-

TABLE B3 DUPLICATE SAMPLES

(Re	† NO: 1267	•	
	Original	Duplicate	RELATIVE PERCENTAGE
ANALYTES	Sam ple	Sam ple	DIFFERENCES (RPD)
	mg/kg	mg/kg	%
	D204	Duplicate	
METALS	0-0.1 m	DS1	
Arsenic	14	12	15
Cadmium	<0.3	<0.3	-
Chromium	15	13	14
Copper	7.8	7	11
Lead	52	43	19
Manganese	880	730	19
Mercury	<0.05	<0.05	-
Nickel	8.3	8.2	1
Zinc	65	62	5
	D205	Duplicate	-
METALS	0-0.1 m	DS2	
Arsenic	14	15	7
Cadmium	<0.3	<0.3	, _
Chromium	17	16	6
Copper	13	8.8	39
		61	
Lead	50		20
Manganese	310	300	3
Mercury	<0.05	<0.05	-
Nickel	13	10	26
Zinc	78	74	5
	D206	Duplicate	
METALS	0-0.1 m	DS3	
Arsenic	9	11	20
Cadmium	<0.3	<0.3	-
Chromium	13	15	14
Copper	2.7	2.5	8
Lead	15	16	6
Manganese	300	190	45
Mercury	<0.05	< 0.05	-
Nickel	10	11	10
Zinc	63	68	8
	D221	Duplicate	
METALS	0-0.1 m	DS4	
Arsenic	55	53	4
Cadmium	0.6	0.4	40
Chromium	27	30	11
Copper	24	19	23
Lead	240	190	23
Manganese State of the state of	570	470	19
Mercury	<0.05	<0.05	-
Nickel	6.2	5.5	- 12
	0.2	5.5	
Zino	110	02	20
Zinc	110	82 Duplicate	29
	D224	Duplicate	29
METALS	D224 0-0.1 m	Duplicate DS5	
METALS Arsenic	D224 0-0.1 m 23	Duplicate DS5 27	16
METALS Arsenic Cadmium	D224 0-0.1 m 23 0.4	Duplicate DS5 27 0.4	16 0
METALS Arsenic Cadmium Chromium	D224 0-0.1 m 23 0.4 17	Duplicate	16 0 0
METALS Arsenic Cadmium Chromium Copper	D224 0-0.1 m 23 0.4 17 14	Duplicate	16 0 0 7
METALS Arsenic Cadmium Chromium Copper Lead	D224 0-0.1 m 23 0.4 17 14 58	Duplicate	16 0 0 7 16
METALS Arsenic Cadmium Chromium Copper Lead Manganese	D224 0-0.1 m 23 0.4 17 14	Duplicate	16 0 0 7
METALS Arsenic Cadmium Chromium Copper Lead Manganese Mercury	D224 0-0.1 m 23 0.4 17 14 58 1600 <0.05	Duplicate DS5 27 0.4 17 15 68 1800 <0.05	16 0 0 7 16 12
METALS Arsenic Cadmium Chromium Copper Lead Manganese	D224 0-0.1 m 23 0.4 17 14 58 1600	Duplicate	16 0 0 7 16 12

TABLE B4 DUPLICATE SAMPLES

(Ref No: 12675/4-AB) **Duplicate** RELATIVE PERCENTAGE Original ANALYTES Sam ple Sample DIFFERENCES (RPD) mg/kg mg/kg % D234 **Duplicate** METALS DS6 0-0.1 m Arsenic 11 12 9 Cadmium <0.3 <0.3 0 Chromium 21 21 20 19 5 Copper Lead 20 23 14 Manganese 940 950 1 Mercury <0.05 < 0.05 Nickel 4 8.6 8.3 7 Zinc 46 43 D237 Duplicate METALS 0-0.1 m DS7 Arsenic 10 10 11 Cadmium <0.3 <0.3 Chromium 18 19 5 0 Copper 13 13 Lead 6 16 15 Manganese 810 730 10 Mercury <0.05 <0.05 Nickel 6.9 6.8 1 Zinc 33 6 35 Duplicate D285 METALS 0-0.1 m DS8 Arsenic 43 39 10 0.8 Cadmium 0.7 13 27 Chromium 26 4 Copper 16 16 0 Lead 82 63 26 Manganese 910 830 9 Mercury <0.05 < 0.05 6 Nickel 8.6 9.1 Zinc 170 160 6 D287 Duplicate DS9 METALS 0-0.1 m Arsenic 29 34 16 Cadmium 0.5 0.5 0 Chromium 34 31 9 Copper 12 14 15 Lead 73 69 6 Manganese 780 710 9 Mercury 0.05 0.06 18 Nickel 25 3.8 4.9 Zinc 57 65 13 D289 **Duplicate** METALS 0-0.1 m DS10 Arsenic 16 14 13 Cadmium 0.3 0 0.3 Chromium 23 20 14 31 Copper 20 43 Lead 17 18 6 Manganese 210 310 38 Mercury <0.05 < 0.05 Nickel 16 11 37 Zinc 69 50 32

TABLE B5 DUPLICATE SAMPLES

	(Ref No		•	
		iginal	Duplicate	RELATIVE PERCENTAGE
ANALYTES		m ple	Sam ple	DIFFERENCES (RPD)
		g/kg	mg/kg	%
		0284	Duplicate	
METALS	0-0	0.1 m	DS11	
Arsenic		10	12	18
Cadmium		<0.3	<0.3	-
Chromium		17	15	13
Copper		2.3	2.3	0
Lead		9	10	11
Manganese		110	110	0
Mercury	<	:0.05	<0.05	-
Nickel		12	11	9
Zinc		44	43	2
-		0259	Duplicate	
METALS		0.1 m	DS12	
Arsenic		40	37	8
Cadmium		0.7	0.6	15
Chromium		26	29	11
Copper		∠o 14	29 13	7
• •				·
Lead		50	60	18
Manganese		1400	1600	13
Mercury	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	:0.05	<0.05	
Nickel		12	11	9
Zinc		190	110	53
		0271	Duplicate	
METALS	0-0	0.1 m	DS13	
Arsenic		30	33	10
Cadmium		0.3	0.4	29
Chromium		26	31	18
Copper		13	13	0
Lead		96	96	0
Manganese	1	1300	1200	8
Mercury	<	:0.05	<0.05	-
Nickel		6.3	6.2	2
Zinc		57	59	3
	С	0273	Duplicate	
METALS	0-0	0.1 m	DS14	
Arsenic		51	53	4
Cadmium		0.5	0.6	18
Chromium		49	54	10
Copper		4.6	5.9	25
Lead		100	110	10
Manganese		640	730	13
Mercury		:0.05	<0.05	-
Nickel	`	3	3.7	- 21
Zinc		56	53	6
METALO		0280	Duplicate	
METALS	0-0	0.1 m	DS15	,
Arsenic		25	24	4
Cadmium		0.4	0.3	29
Chromium		18	20	11
Copper		25	27	8
Lead		20	18	11
Manganese		320	290	10
Mercury	<	:0.05	<0.05	-
Nickel		15	16	6
Zinc		55	56	2

TABLE C1 SPLIT SAMPLES (Ref No: 12675/4-AB)

Original Split RELATIVE PERCENTAGE ANALYTES DIFFERENCES (RPD) sample Sam ple mg/kg mg/kg (ENVIROLAB) (SGS) % D125 Split **METALS** 0-0.1 m S1 Arsenic 50 46 8 Cadmium 18 0.5 0.6 Chromium 39 41 5 Copper 18 17 6 Lead 190 230 19 Manganese 1900 2100 10 Mercury < 0.05 <0.1 Nickel 7.4 8 8 7 Zinc 130 140 D152 **Split METALS** 1.9-2.0m S2 54 Arsenic 390 680 Cadmium 4.5 17 116 Chromium 37 10 115 Copper 150 180 18 Lead 85 85 0 Manganese 1800 21000 168 0.28 0.5 56 Mercury Nickel 19 52 93 Zinc 1100 1200 9 D136 Split **METALS** 0-0.1 m S3 Arsenic 67 43 44 Cadmium 0.6 29 8.0 Chromium 28 35 22 Copper 32 15 72 Lead 280 260 7 Manganese 2300 2200 4 <0.05 <0.1 Mercury Nickel 12 8 40 140 Zinc 250 56 D146 Split METALS 0-0.1 m **S4** Arsenic 31 43 32 Cadmium 0.4 0.5 22 Chromium 32 21 26 Copper 13 24 59 Lead 80 90 12 Manganese 1100 1200 9 Mercury < 0.05 <0.1 Nickel 8.6 10 15 Zinc 74 86 15

TABLE C2 SPLIT SAMPLES

ANALYTES Samp mg/l (SG: SG:	ple kg iS) I6	Split Sample mg/kg (ENVIROLAB) Split	RELATIVE PERCENTAGE DIFFERENCES (RPD) %
mg/k (SG CSG CSG	kg (S) 16	mg/kg (ENVIROLAB)	
(SG: D11 METALS 0-0.1 Arsenic 120 Cadmium 4.0 Chromium 36 Copper 66 Lead 620	iS) 16	(ENVIROLAB)	0/
D11 METALS 0-0.1 Arsenic 120 Cadmium 4.0 Chromium 36 Copper 66 Lead 620	16		
METALS 0-0.1 Arsenic 120 Cadmium 4.0 Chromium 36 Copper 66 Lead 620		Split	/0
Arsenic 120 Cadmium 4.0 Chromium 36 Copper 66 Lead 620	m I	_	
Cadmium 4.0 Chromium 36 Copper 66 Lead 620		S 5	
Chromium 36 Copper 66 Lead 620		150	22
Copper 66 Lead 620		4.4	10
Lead 620		38	5
		81	20
Manganese 370		700	12
		3900	5
Mercury 0.1		<0.1	-
Nickel 27		26	4
Zinc 120		1200	0
A8		Split	
METALS 0.25-0.3		S6	
Arsenic 310		310	0
Cadmium 11		13	17
Chromium 30)	26	14
Copper 110	0	91	19
Lead 250	0	230	8
Manganese 940	00	9000	4
Mercury 0.1	1	0.1	0
Nickel 24	1	19	23
Zinc 370	00	3400	8
A1 ¹	1	Split	
METALS 0.25-0.3	.35 m	S7	
Arsenic 220	0	260	17
Cadmium 3.9	9	4	3
Chromium 42	2	44	5
Copper 64	1	66	3
Lead 220	0	210	5
Manganese 460	00	3600	24
Mercury 0.1	1	0.1	10
Nickel 29	9	25	15
Zinc 140	00	1800	25
CS15	5-1	Split	
TOTAL PETROLEUM HYDROCARBONS (TPH)-Silica Gel Clean-up 0-0.1	m	S8	
F2 (>C10-C16) <25	5	<50	-
F3 (>C16-C34) <90	0	<100	-
CS22	2-1	Split	
TPH-Silica Gel Clean-up 0-0.1	m	S9	
F2 (>C10-C16) <25	5	<50	-
F3 (>C16-C34) <90	0	<100	-
DS1	19	Split	
TPH-Silica Gel Clean-up 0-0.1	m	S10	
F2 (>C10-C16) <25	5	<50	-
F3 (>C16-C34) <90	0	<100	-

TABLE C3 SPLIT SAMPLES

	Original	Split	RELATIVE PERCENTAGE
ANALYTES	sample	Sample	DIFFERENCES (RPD)
	mg/kg	mg/kg	,
	(SGS)	(ENVIROLAB)	%
	D223	Split	
METALS	0-0.1 m	SS1	
Arsenic	35	35	0
Cadmium	0.4	<0.4	-
Chromium	29	24	19
Copper	11	8	32
Lead	76	77	1
Manganese	180	240	29
Mercury	<0.05	<0.1	-
Nickel	5.3	5	6
Zinc	60	46	26
	D233	Split	
METALS	0-0.1m	SS2	
Arsenic	54	32	51
Cadmium	0.3	<0.4	-
Chromium	23	16	36
Copper	37	17	74
Lead	75	55	31
Manganese	330	170	64
Mercury	<0.05	<0.1	-
Nickel	7.0	4	55
Zinc	36	20	57
	D236	Split	Ţ.
METALS	0-0.1m	SS3	
Arsenic	11	14	24
Cadmium	<0.3	<0.4	
Chromium	22	28	24
Copper	24	31	25
Lead	13	16	21
Manganese	650	870	29
Mercury	<0.05	<0.1	-
Nickel	7.8	10	25
Zinc	33	35	6
	D238	Split	
METALS	0-0.1m	SS4	
Arsenic	18	11	48
Cadmium	<0.3	<0.4	-
Chromium	29	27	7
Copper	15	16	6
Lead	28	18	43
Manganese State of the state of	980	800	20
Mercury	<0.05	<0.1	-
Nickel	8.8	12	31
Zinc	49	55	12
	D245	Split	1-
METALS	0-0.1m	SS5	
Arsenic	13	15	14
Cadmium	<0.3	<0.4	-
Chromium	22	28	24
Copper	22	27	20
Lead Lead	16	18	12
	420	550	27
Manganese			
Mercury Niekol	<0.05	<0.1	-
Nickel Zinc	7.5 33	9	18
	ı 33	35	6

TABLE C4 SPLIT SAMPLES

	Original	Split	RELATIVE PERCENTAGE
ANALYTES	sample	Sample	DIFFERENCES (RPD)
	mg/kg	mg/kg	
	(SGS)	(ENVIROLAB)	%
	D230	Split	
METALS	0-0.1 m	SS6	
Arsenic	110	110	0
Cadmium	0.7	0.6	15
Chromium	38	36	5
Copper	16	17	6
Lead	240	240	0
Manganese	740	800	8
Mercury	<0.05	<0.1	_
Nickel	6	6	0
Zinc	160	120	29
2.110	D226	Split	25
METALS	0-0.1m	SS7	
Arsenic	25	21	17
Cadmium	0.5	<0.4	- 17
Chromium	26	23	- 12
Copper	11	10	10
Lead	80	69	15
Manganese		2200	24
	2800		
Mercury Nickel	<0.05	<0.1	-
	11	9	20
Zinc	120	100	18
MITALC	D286	Split SS8	
METALS Arsenic	0-0.1m 26	19	24
Cadmium	0.4	<0.4	31
Chromium	31	24	25
Copper	9.6	6	46
		52	
Lead	58		11
Manganese	1900 <0.05	1000 <0.1	62
Mercury			
Nickel	5.5	4 27	32
Zinc	D288	-	48
METALC		Split	
METALS	0-0.1m	SS9	20
Arsenic	22	15	38
Cadmium	0.6	<0.4	-
Conner	23	22	4
Copper	16	11	37
Lead	30	25	18
Manganese	440	470	7
Mercury	<0.05	<0.1	-
Nickel	19	17	11
Zinc	190	130	38
MITTAL O	D283	Split	
METALS	0-0.1m	SS10	47
Arsenic	13	11	17
Cadmium	<0.3	<0.4	-
Chromium	14	13	7
Copper	20	16	22
Lead	19	15	24
Manganese	120	88	31
Mercury	<0.05	<0.1	-
Nickel	8.3	7	17
Zinc	50	37	30

TABLE C5 SPLIT SAMPLES (Ref No: 12675/4-AB)

	(Nei No. 1207)	Original	Split	RELATIVE PERCENTAGE
ANALYTES		sample	Sam ple	
ANALTIES		_		DIFFERENCES (RPD)
		mg/kg	mg/kg	
		(SGS)	(ENVIROLAB)	%
		D290	Split	
METALS		0-0.1 m	SS11	
Arsenic		22	16	32
Cadmium		1.6	1	46
Chromium		22	17	26
Copper		20	15	29
Lead		84	61	32
Manganese		2500	1500	50
Mercury		<0.05	<0.1	-
Nickel		11	8	32
Zinc		180	130	32
		D272	Split	
METALS		0-0.1m	SS12	
Arsenic		42	39	7
Cadmium		0.7	0.5	33
Chromium		34	33	3
Copper		22	19	15
Lead		110	94	16
Manganese		1700	1500	13
Mercury		< 0.05	<0.1	-
Nickel		10	10	0
Zinc		110	100	10
		D275	Split	-
METALS		0-0.1m	SS13	
Arsenic		25	24	4
Cadmium		<0.3	<0.4	· -
Chromium		23	27	16
Copper		10	9	11
Lead		47	44	7
Manganese		860	810	6
Mercury		<0.05	<0.1	-
Nickel		4.3	4	7
Zinc		48	36	29
2110		D277	Split	23
METALS		0-0.1m	SS14	
Arsenic		34	51	40
Cadmium		0.4	0.4	
Chromium		30	32	0 6
Copper		12	12	0
Lead		66	77	15
Manganese		2900	2400	19
Mercury		<0.05	<0.1	-
Nickel		9.1	8	13
Zinc		73	69	6
		D279	Split	
METALS		0-0.1m	SS15	
Arsenic		280	240	15
Cadmium		3.4	2	52
Chromium		26	21	21
Copper		47	40	16
Lead		310	250	21
Manganese		4300	3000	36
Mercury		0.08	0.1	22
Nickel		18	15	18
Zinc		570	410	33
		1	1	i

TABLE D1

METALS, CATION EXCHANGE CAPACITY (CEC) & pH TEST RESULTS DISCRETE SAMPLES - TOPSOIL (SILTY CLAY, BROWN)

(Ref No: 12675/4-AB)

				(Re	T NO: 1	2675/4-		ALS (m	n/kn)							
			ê			IVILI	ALO (III	g/Ng/								
Sample Location	Depth (m)	ARSENIC	CADMIUM	CHROMIUM (Total)	COPPER	LEAD	MANGANESE	MERCURY	NICKEL	NICKEL	ZINC	ZINC	ZINC	ZINC	CEC (cmq/kg)	Hd
Topsoil (Silty Clay, Bro	nwn)															
			0.7	00	00	040	0000	0.05				040			4.0	
D101	0-0.1	52	0.7	32	22	240	3200	<0.05	11	-		210	-	-	4.0	5.5
D102	0-0.1	54	0.8	30	29	190	1500	<0.05	12	-	-	230	-	-	7.7	6.2
D103	0-0.1	140	2.9	34	100	300	3700	<0.05	-	19	890	-	-	-	7.6	6.1
D104	0-0.1	230	1.9	34	65	260	1700	<0.05	-	17	830	-	-	-	5.5	5.3
D105	0-0.1	150	0.9	28	100	370	1300	<0.05	13	-	-	-	270	-	6.2	6.0
D106	0-0.1	72	0.5	32	57	110	270	<0.05	20	-	150	-	-	-	-	-
D107	0-0.1	180	2.1	39	150	500	3100	<0.05	25	-	630	-	-	-	-	-
D108	0-0.1	110	2.3	28	67	620	2700	<0.05	16	-	870	-	-	-	-	-
D109	0-0.1	120	2.4	37	51	310	3000	<0.05	17	-	650	-	-	-	-	-
D110	0-0.1	150	1.9	35	58	330	3400	<0.05	16	-	520	-	-	-	-	-
D111	0-0.1	87	0.9	24	41	310	3100	<0.05	9.5	-	280	-	-	-	-	-
D112	0-0.1	97	8.0	31	35	560	3700	< 0.05	9.5	-	280	-	-	-	-	-
D113	0-0.1	110	0.8	35	36	210	1600	<0.05	7.9	-	-	220	-	-	8.3	5.8
D114	0-0.1	60	1.1	31	27	210	2300	< 0.05	14	-		-	-	380	8.0	6.1
D115	0-0.1	86	2.2	36	35	320	3100	<0.05	13	-	610	-	-	-	7.4	5.5
D116	0-0.1	120	4.0	36	66	620	3700	0.11	-	27	1200	-	-	-	7.1	5.9
D117	0-0.1	180	2.3	35	110	960	3100	<0.05	23	-	1100	-	-	-	-	-
D122	0-0.1	120	0.8	22	110	430	2100	<0.05	16	-	250	-	-	-	-	-
D123	0-0.1	80	3.9	34	73	370	2800	<0.05	18	-	1300	-	-	-	-	-
D124	0-0.1	59	0.8	31	30	300	2300	< 0.05	8.5	-	380	-	-	-	3.0	5.5
D125	0-0.1	46	0.5	39	18	190	1900	< 0.05	7.4	-	130	-	-	-	-	-
D126	0-0.1	71	1.1	34	30	270	2600	< 0.05	9.3	-	-	-	-	360	10	6.0
D127	0-0.1	250	3.5	40	310	660	3600	< 0.05	33	-	1500	-	-	-	-	-
D128	0-0.1	8	<0.3	5.5	8.7	30	680	< 0.05	10	-	82	-	-	-	-	-
D131	0-0.1	180	2.1	39	71	310	2500	< 0.05	14	-	630	-	-	-	-	-
D132	0-0.1	290	1.3	34	41	190	4100	< 0.05	13	-	-	-	-	350	7.9	5.9
D133	0-0.1	35	0.5	31	12	150	1600	0.09	5.4	-	140	-	-	-	-	-
D134	0-0.1	46	0.5	40	8.7	180	1300	<0.05	5.4	-	93	-	-	-	-	-
D136	0-0.1	67	0.8	28	32	280	2300	<0.05	12	-	-	-	250	-	5.5	6.3
D137	0-0.1	160	3.4	26	76	380	5900	0.09	-	31	950	-	-	-	6.3	5.7
D138	0-0.1	360	3.6	32	78	230	3300	<0.05	17	-	1700	-	-	-	-	-
D139	0-0.1	850	4.3	30	680	1700	4000	<0.05	-	36	1100	-	-	-	8.2	6.7
D140	0-0.1	330	3.7	29	110	900	4400	0.07	24	-	1000	-	-	-	_	-
D141	0-0.1	48	0.4	26	11	97	760	0.05	4.1	-	200	-	-	-	-	-
D142	0-0.1	100	0.8	32	24	250	1700	<0.05	10	_	-	210	-	-	9.2	6.9
D143	0-0.1	54	0.6	31	19	220	1900	<0.05	7.5	_	140		_	_		-
D144	0-0.1	62	0.7	49	13	190	2100	<0.05	7.3	_	200	_	_	_	_	_
D145	0-0.1	47	0.8	32	48	160	1800	<0.05	15	_	140					_
D147	0-0.1	53	1.5	31	20	140	2600	<0.05	13	-	-	230	-	-	6.0	5.9
D148	0-0.1	36	0.4	28	16	72	570	<0.05	9.5	-	- 71	-	-	-	-	5.9
D149	0-0.1	190	1.5	28	42	310	4200	<0.05	20	-	520	-	-	-		
D150	0-0.1	260	2.3	20	58	380	4500	<0.05	21	-	750	-	-	-		1
D150	0-0.1	250	2.3	34	120	1600	3500	<0.05	23	-	1100	-	-	-		1
D151	0-0.1	250	1.8	39	92	510	2500	0.05	-	- 17	450	-	-	-	8.0	6.5
	0-0.1	140				460					430	-	400	-		5.8
D153			1.5	31	61		3400	<0.05		17	110	-	400	-	5.6	5.6
D154	0-0.1	64	0.6	35 36	20	180	1300 3900	< 0.05	6.4	-	110	-	270	-	7.0	
D155	0-0.1	100	1.6	36	61	160		0.05	-	20		-	270	-	7.9	6.3
Limits of Reporting (LOR)		3	0.3	0.5	0.5	11	11	0.05	0.5	0.5	0.5	0.5	0.5	0.5	0.02	-
NATIONAL ENVIRONME AMENDMENT MEASURE																
Health-based Investigatio	n Levels (HIL) ^a A - Residential A	100	20	100	6000	300	3800	10°	400	400	7400	7400	7400	7400		
Ecological Investigation L	evels (EIL) - Urban residential	100	-	400	110	1200	-	-	15	45	200	230	330	400 k		
	SW SITE AUDITOR SCHEME															
(2006) Provisional Phytotoxity-Ba	ased Investigation Levels (PIL)		3					1								

Notes: a: Residential with garden / accessible soil (home grown produce <10% fruit and vegetable intake (no poultry)), also includes childcare centres, preschools and primary schools.

- b: ElL of aged nickel & zinc were derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the low est CEC=3 cmolc/kg & pH=5.5 w ere selected for derivation of EIL; a conservative approach.
- c: Methyl Mercury d: Generic ElL for aged arsenic
- e: Chromium (III); the assumed clay content=10%, a conservative assumption.
- f: EIL = Ambient Background Concentration (ABC) + Added Contaminant Level (ACL) (Rounding rules applied), ABC = 18mg/kg, 25th percentile of the data for old NSW suburb with low traffic volume. ACL=95mg/kg, the low er ACL used based on the low est CEC=5cmol/kg or pH=5.5.
- g: Generic added contaminant limit for aged lead + ambient background concentration; old NSW suburb with low traffic volume.
- h: EIL of aged nickel was derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the low est CEC=5.5 cmolc/kg was selected for derivation of EIL; a conservative approach.
- i: ElL of aged zinc was derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the lowest CEC=4.0 cmolc/kg & pH=5.5 were selected for derivation of EL; a conservative approach.

 j: ElL of aged zinc was derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the low est CEC=5.5 cmolc/kg
- & pH=5.8 were selected for derivation of EIL; a conservative approach
- k: ElL of aged zinc was derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the low est CEC=5.6 cmolc/kg & pH=5.8 were selected for derivation of EIL; a conservative approach.

TABLE D2 METALS, CATION EXCHANGE CAPACITY (CEC) & pH TEST RESULTS DISCRETE SAMPLES - TOPSOIL (SILTY CLAY, GREY)

(Ref No: 12675/4-AB)

(Ref No: 126/5/4-AB) METALS (mg/kg)													l	I
						MEIA	LS (mg/l	kg)					ł	
Sample Location	Depth (m)	ARSENIC	CADMIUM	CHROMIUM (Total)	COPPER	LEAD	MANGANESE	MERCURY	NICKEL	NICKEL	ZINC	ZINC	CEC (cmq/kg)	Hd
Topsoil (Silty Clay, Gre	∍y)													
D118	0-0.1	15	0.4	22	22	42	550	<0.05	12	-	86	-	-	-
D119	0-0.1	11	0.3	33	16	41	500	<0.05	13	-	50	-	9.2	5.3
D120	0-0.1	9	0.5	20	16	270	240	<0.05	14	-	130	-	-	-
D121	0-0.1	52	0.5	34	28	110	780	< 0.05	11	-	98	-	-	-
D129	0-0.1	7	<0.3	7.6	9.6	31	150	< 0.05	12	-	56	-	-	-
D130	0-0.1	8	<0.3	7.2	8.1	37	620	< 0.05	9.6	-	65	-	5.9	6.0
D135	0-0.1	68	8.0	34	32	200	1200	< 0.05	12	-	-	210	8.6	6.3
D146	0-0.1	31	0.4	26	13	80	1100	<0.05	8.6	-	74	-	-	-
D156	0-0.1	23	0.6	18	21	73	2200	<0.05	-	16	110	-	11	-
D157	0-0.1	33	0.4	26	9.2	75	1200	<0.05	6.8	-	59	-	2.9	5.7
Limits of Reporting (LOR)		3	0.3	0.5	0.5	1	1	0.05	0.5	0.5	0.5	0.5	0.02	-
NATIONAL ENVIRONME AMENDMENT MEASURE														
Health-based Investigatio	n Levels (HIL) ^a A - Residential A	100	20	100	6000	300	3800	10	400	400	7400	7400		
Ecological Investigation Levels (EIL) - Urban residential		100	-	e 400	f 110	g 1200	-	-	ь 15	h 180	190 ^b	430		
GUIDELINES FOR THE NSW SITE AUDITOR SCHEME (2006)														
Provisional Phytotoxity-Ba	ased Investigation Levels (PIL)		3					1						

Notes:

- a: Residential with garden / accessible soil (home grown produce <10% fruit and vegetable intake (no poultry)), also includes childcare centres, preschools and primary schools.
- b: EIL of aged nickel & zinc were derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the lowest CEC=2.9 cmolc/kg & pH=5.3 were selected for derivation of EIL; a conservative approach.
- c: Methyl Mercury
- d: Generic EIL for aged arsenic
- e: Chromium (III); the assumed clay content=10%, a conservative assumption.
- f: ElL = Ambient Background Concentration (ABC) + Added Contaminant Level (ACL) (Rounding rules applied). ABC = 18mg/kg, 25th percentile of the data for old NSW suburb with low traffic volume. ACL=95mg/kg, the lower ACL used based on the lowest CFC=5cmcl/kg or pH=5.5
- CFC-5cmol/kg or nH=5 5
 g: Generic added contaminant limit for aged lead + ambient background concentration; old NSW suburb with low traffic volume.
- h: ElL of aged nickel was derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; CEC=11 cmolc/kg.
- i: ElL of aged zinc was derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; CEC=8.6 cmolc/kg & pH=6.3.

TABLE D3

METALS, CATION EXCHANGE CAPACITY (CEC) & pH TEST RESULTS DISCRETE SAMPLES - NATURAL SOIL (SILTY CLAY)

(Ref No: 12675/4-AB)

page 1 of 2

<u></u>						ALS (mg					page	1 of 2
		ARSENIC	CADMIUM	CHROMIUM (Total)	COPPER	LEAD	MANGANESE	MERCURY	NICKEL	ZINC	CEC (cmą/kg)	
Sample Location	Depth (m)	AR	ర్	ൎ	8	<u>"</u>	ž	ž	ž	ZII	ä	표
Natural Soil (Silty Clay)												
A4	0.25-0.35	300	7.0	29	89	420	7400	0.05	44	2700	-	-
A4	0.5-0.6	380	7.6	29	79	540	6200	0.07	31	3100	-	-
A6	0.25-0.35	300	9.0	32	100	300	8800	<0.05	45	3100	-	-
A6	0.5-0.6	340	12	16	49	39	7400	0.07	17	4100	-	-
A8	0.25-0.35	310	11	30	110	250	9400	0.1	24	3700	-	-
A8	0.5-0.6	270	10	35	94	350	7700	<0.05	28	3300	9.8	6.7
A8	1.0-1.1	260	8.2	34	94	300	8000	0.06	30	3000	-	-
A9	0.25-0.35	180	3.6	38	310	340	3200	<0.05	17	1100	-	-
A9	0.5-0.6	160	2.5	35	53	310	4200	< 0.05	39	870	-	-
A11	0.25-0.35	220	3.9	42	64	220	4600	0.11	29	1400	-	-
A11	0.5-0.6	390	17	27	71	98	12000	0.48	51	6300	-	-
A11	1.0-1.1	300	14	27	49	81	7300	0.53	28	3900	11	6.7
A11	1.9-2.0	540	49	9.2	65	93	7800	0.46	24	7600	-	-
A13	0.25-0.35	230	3.4	41	200	300	3500	< 0.05	17	1000	-	-
Duplicate D7 = A13 (0.25	5-0.35m)	250	3.8	37	62	210	5700	0.08	32	1400	-	-
A13	0.5-0.6	200	2.7	32	160	290	3200	<0.05	15	810	-	-
A15	0.2-0.3	11	<0.3	37	29	15	120	<0.05	17	45	-	-
A16	0.2-0.3	11	<0.3	38	26	31	93	< 0.05	17	77	9.3	7.0
A17	0.2-0.3	520	2.2	28	640	190	660	0.06	17	560	-	-
A17	0.5-0.6	600	4.0	37	870	730	4300	0.12	40	1000	-	-
A18	0.2-0.3	87	0.5	23	110	94	480	<0.05	14	200	-	-
D101	0.2-0.3	61	0.5	35	28	280	2300	<0.05	8.6	180	-	-
D101	1.0-1.1	75	0.6	34	33	490	4000	<0.05	13	230	7.1	6.5
D102	0.2-0.3	59	0.5	37	25	270	1500	<0.05	8.8	170	-	-
D103	0.2-0.3	140	2.1	34	95	310	3500	<0.05	17	800	9.2	6.1
D104	0.2-0.3	210	2.3	32	59	310	3000	<0.05	19	960	-	-
D105	0.2-0.3	240	1.0	40	140	410	1000	<0.05	15	320	-	-
D106	0.2-0.3	74	0.7	35	67	110	290	<0.05	24	160	-	-
D107	0.2-0.3	200	2.2	25	170	430	3000	<0.05	19	640	-	-
D108	0.2-0.3	150	3.1	29	75	710	3000	<0.05	19	1000	-	-
D109	0.2-0.3	120	2.9	35	46	240	3000	<0.05	14	630	-	-
D110	0.2-0.3	270	1.4	38	63	300	1900	<0.05	13	490	-	-
D111	0.2-0.3	100	1.0	32	50	330	3100	<0.05	11	340	5.2	5.3
D112	0.2-0.3	110	0.6	36	40	420	2300	<0.05		230	-	-
D113	0.2-0.3	260	0.7	38	74	190	660	<0.05	12	300	-	-
D114	0.2-0.3	66	0.8	35	28	200 320	1600	<0.05		300	-	-
D115	0.2-0.3	88	1.6	38	43		2400 EEOO	<0.05		550 620	6.7	5.9
SGS Lab Duplicate LBT12	2410-024=D115 (0.2-0.3m)	80	1.9	-	47	410	5500	-	12	630	-	-
Limits of Reporting (LOR)		3	0.3	0.5	0.5	1	1	0.05	0.5	0.5	0.02	-
NATIONAL ENVIRONMEN AMENDMENT MEASURE								С				
	n Levels (HIL) A - Residential A	100 d	20	100 e	6000 f	300 g	3800	10	400 b	7400 b		
	evels (EIL) - Urban residential	100	-	400	110	1200	-	-	40	240		
GUIDELINES FOR THE NSW SITE AUDITOR SCHEME (2006)			•					,				
movisionai mytotoxity-Ba	sed Investigation Levels (PIL)		3					1				

Notes:

- a: Residential with garden / accessible soil (home grown produce <10% fruit and vegetable intake (no poultry)), also includes childcare centres, preschools and primary schools.
- b: EIL of aged nickel & zinc were derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the lowest CEC=5.2 cmolc/kg & pH=5.3 were selected for derivation of EIL; a conservative approach.
- c: Methyl Mercury
- d: Generic ElL for aged arsenic
- e: Chromium (III); the assumed clay content=10%, a conservative assumption.
- f: ElL = Ambient Background Concentration (ABC) + Added Contaminant Level (ACL) (Rounding rules applied). ABC = 18mg/kg, 25th percentile of the data for old NSW suburb with low traffic volume. ACL=95mg/kg, the lower ACL used based on the lowest CEC=5cmol/kg or pH=5.5.
- g: Generic added contaminant limit for aged lead + ambient background concentration; old NSW suburb with low traffic volume.

TABLE D3 METALS, CATION EXCHANGE CAPACITY (CEC) & pH TEST RESULTS DISCRETE SAMPLES - NATURAL SOIL (SILTY CLAY)

(Ref No: 12675/4-AB)

			•		J. 1207									page	2 of 2
							METALS	(mg/kg))						
Sample Location	Depth (m)	ARSENIC	CADMIUM	CHROMIUM (Total)	COPPER	LEAD	MANGANESE	MERCURY	NICKEL	NICKEL	ZINC	ZINC	ZINC	CEC (cmq/kg)	Hd
Natural Soil (Silty Clay)															
D116	0.2-0.3	200	6.7	34	180	760	5200	0.2	_	44	2900	_		8.7	6.9
D117	0.2-0.3	170	2.2	29	110	1000	3300	<0.05	25	-	1100	-	_	0.7	0.9
D122	0.2-0.3	140	0.7	40	120	160	77	<0.05	16	_	190	_	_	[
D123	0.2-0.3	94	2.9	38	89	280	2700	<0.05	27	_	1100	_	_	_	
D124	0.2-0.3	66	0.7	32	33	310	1600	<0.05	8.2	_	310	_	_	_	
D125	0.2-0.3	51	0.5	39	20	230	2100	<0.05	7.6	_	140	_	_		_
D126	0.2-0.3	76	0.7	41	43	230	1300	<0.05	9.1	_	300	_	_	[
D127	0.2-0.3	270	3.3	38	210	630	3700	<0.05	31	_	1800	_	_	_	
D131	0.2-0.3	190	1.7	36	69	280	2400	<0.05	13	_	600	_	_	l <u>-</u>	_
D132	0.2-0.3	530	1.2	42	62	120	1600	<0.05	13	_	-	490	_	12	6.5
D132	1.0-1.1	940	1.2	37	99	79	2300	0.08	18	_	660	-	_		-
D132	1.9-2.0	540	1.2	35	71	55	1400	0.12	14	_	580	_	_	l <u>-</u>	_
Duplicate D1 = D132 (1.9-		390	4.8	27	72	50	6200	0.15	31	_	1200	_	_	l <u>-</u>	_
D133	0.2-0.3	21	<0.3	31	9.8	100	660	<0.05	4.6	_	60	_	_	-	_
D134	0.2-0.03	74	0.8	63	21	200	720	<0.05	8.3	_	110	_	_	l <u>-</u>	_
D135	0.2-0.3	54	0.6	36	24	220	950	<0.05	7.1	_	150	_	_	l <u>-</u>	_
D136	0.2-0.3	69	0.8	31	30	310	2600	<0.05	13	_	290	_	_	-	_
D137	0.2-0.3	180	2.3	32	81	420	3600	0.12	23	_	770	_	_	6.8	6.1
D138	0.2-0.3	360	3.4	26	75	260	3400	<0.05	19	_	1600	-	_	-	-
D139	0.2-0.3	1200	6.6	24	1100	970	16000		110	_	1400	-	_	_	_
D140	0.2-0.3	630	6.1	27	270	2300	8400	0.16	44	_	2800	-	_	_	_
D141	0.2-0.3	320	2.5	28	69	570	3200	< 0.05	20	_	770	-	_	7.1	6.4
D142	0.2-0.3	110	0.8	32	30	260	1900	<0.05	11	_	240	-	_	_	_
D143	0.2-0.3	63	0.7	40	19	220	2500	< 0.05	9.3	_	160	-	_	_	_
D144	0.2-0.3	64	0.7	30	48	75	80	< 0.05	15	_	200	-	_	_	_
D145	0.2-0.3	56	0.8	16	78	120	260	< 0.05	22	_	170	-	_	_	-
D147	0.2-0.3	76	0.8	36	44	150	1200	< 0.05	17	-	240	-	-	-	_
D148	0.2-0.3	47	0.6	31	36	69	760	< 0.05	23	-	140	-	-	-	-
D149	0.2-0.3	120	0.8	34	37	170	1400	< 0.05	11	_	290	-	_	_	_
D150	0.2-0.3	300	1.9	23	53	350	4000	< 0.05	21	-	770	-	-	-	_
D151	0.2-0.3	240	1.3	27	120	870	990	0.08	18	-	920	-	-	-	-
D152	0.2-0.3	270	1.9	47	110	600	2700	0.06	17	-	540	-	-	8.0	6.6
D153	0.2-0.3	170	1.3	40	64	470	3000	<0.05	18	-	430	-	-	5.6	6.1
D154	0.2-0.3	80	0.8	39	33	330	2400	<0.05	11	-	160	-	-	-	-
D155	0.2-0.3	120	1.7	39	83	240	4400	0.05	24	-	-	-	340	8.4	6.4
Limits of Reporting (LOR)		3	0.3	0.5	0.5	1	1	0.05	0.5	0.5	0.5	0.5	0.5	0.02	-
NATIONAL ENVIRONMEN AMENDMENT MEASURE		-	-	-	-				-	-	-	-	-	-	
Health-based Investigation	Levels (HIL) A - Residential A	100	20	100	6000	300	3800	10	400	400	7400	7400	7400		
Ecological Investigation Le	vels (EIL) - Urban residential	100 ^d	-	400	110 ^f	1200	-	-	40 b	130	240	540	430 j		
GUIDELINES FOR THE NS (2006)	W SITE AUDITOR SCHEME														
Provisional Phytotoxity-Based Investigation Levels (PIL)			3					1							

Notes: a: Residential with garden / accessible soil (home grown produce <10% fruit and vegetable intake (no poultry)), also includes childcare centres, preschools and primary schools.

- b: ElL of aged nickel & zinc were derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the low est CEC=5.2 cmolc/kg & pH=5.3 were selected for derivation of ElL; a conservative approach.
- c: Methyl Mercury
- d: Generic ElL for aged arsenic
- e: Chromium (III); the assumed clay content=10%, a conservative assumption.
- f: ElL = Ambient Background Concentration (ABC) + Added Contaminant Level (ACL) (Rounding rules applied). ABC = 18mg/kg, 25th percentile of the data for old NSW suburb with low traffic volume. ACL=95mg/kg, the lower ACL used based on the lowest CEC=5cmol/kg or pH=5.5.
- g: Generic added contaminant limit for aged lead + ambient background concentration; old NSW suburb with low traffic volume.
- h: EIL of aged nickel was derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; CEC=8.7
- i: EIL of aged zinc was derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; CEC=12 cmolc/kg & pH=6.5.
- j: Ell_ of aged zinc was derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; CEC=8.4 cmolc/kg & pH=6.4.

TABLE D4 METALS, CATION EXCHANGE CAPACITY (CEC) & pH TEST RESULTS DISCRETE SAMPLES - NATURAL SOIL (SHALEY CLAY & SHALE)

(Ref No: 12675/4-AB)

		(Ref No: 12675/4-AB)												
		METALS (mg/kg)												
Sample Location	Depth (m)	ARSENIC	САБМІОМ	CHROMIUM (Total)	COPPER	LEAD	MANGANESE	MERCURY	NICKEL	NICKEL	ZINC	ZINC	CEC (cmol/kg)	Hd
Natural Soil (Shaley Clay)														
A15	0.5-0.6	13	<0.3	38	34	15	86	<0.05	20	_	53	_	10	7.1
A15	1.0-1.1	19	0.3	38	33	77	180	< 0.05	19	-	53	_	-	-
A15	1.9-2.0	11	<0.3		14	14	1000	< 0.05	-	26	41	_	22	_
A16	0.5-0.6	11	0.3	2.5	19	21	58	<0.05	_	28	100	_	11	_
A16	1.0-1.1	13	0.4	28	19	23	71	<0.05	_	29	110	_	9.8	_
A16	1.5-1.6	15	<0.3		18	16	170	<0.05	-	30	100	_	17	-
A17	1.0-1.1	420	2.9	68	320	49	630	0.24	20	-	770	_	_	_
A17	1.9-2.0	410	16	18	250	570	12000	0.13	130	_	2500	_	3.9	6.9
A18	0.5-0.6	72	0.4	26	83	56	170	<0.05	15	_	160	_	-	-
A18	1.0-1.1	13	0.3	27	32	17	270	< 0.05	-	28	180	-	10	7.5
D101	1.9-2.0	23	0.9	7.0	36	42	920	< 0.05	-	51	-	430	16	7.7
D116	1.0-1.1	220	7.8	35	210	790	4800	0.2	35	_	3100	-	_	_
Natural Soil (Shale)														
D116	1.4-1.5	530	46	19	720	710	18000	0.64	36	-	2000	-	-	-
Natural Soil (Shaley Clay)														
D118	0.2-0.3	44	0.4	33	58	64	110	<0.05	25	-	130	-	-	-
D119	0.2-0.3	10	0.3	38	18	40	450	<0.05	21	-	65	-	-	-
D120	0.2-0.3	8	0.5	20	17	210	330	<0.05	15	_	130	_	_	_
D121	0.2-0.3	46	0.4	30	39	53	210	< 0.05	-	29	120	-	14	-
D128	0.2-0.3	10	<0.3	11	13	20	100	<0.05	16	-	110	-	-	_
D129	0.2-0.3	13	<0.3	13	15	68	100	< 0.05	12	-	74	-	-	-
D130	0.2-0.3	12	<0.3	11	15	30	130	< 0.05	15	-	70	-	-	-
D130	1.0-1.1	17	0.3	12	11	15	56	<0.05	23	-	73	-	12	7.0
D139	1.0-1.1	860	3.5	44	1700	960	1600	0.11	52	-	630	-	-	_
Natural Soil (Shale)														
D139	1.4-1.5	430	2.6	34	560	170	2400	0.12	44	-	400	-	5.8	6.5
Natural Soil (Shaley Clay)														
D142	1.0-1.1	100	0.6	28	37	72	320	<0.05	11	-	250	-	-	-
D142	1.9-2.0	26	0.3	32	26	28	240	0.06	11	-	160	-	12	8.0
D146	0.2-0.3	43	0.5	35	37	49	480	<0.05	18	-	130	-	-	-
D152	1.0-1.1	390	5.9	30	240	360	4700	0.13	24	-	950	-	-	-
D152	1.9-2.0	390	4.5	37	150	85	1800	0.28	19	-	1100	-	-	-
Split S2 = D152 (1.9-2.0m)		680	17	10	180	85	21000	0.5	52	-	1200	-	-	-
D156	0.2-0.3	26	0.4	26	27	53	700	< 0.05	17	-	94	-	-	-
D157	0.2-0.3	47	0.6	30	23	110	680	<0.05	21	-	73	-	-	-
D157	1.0-1.1	37	0.5	29	41	49	190	<0.05	20	-	120	-	24	8.6
D157	1.9-2.0	12	0.6	28	41	50	980	<0.05	-	59	210	-	19	-
Limits of Reporting (LOR)		3	0.3	0.5	0.5	1	1	0.05	0.5	0.5	0.5	0.5	0.02	-
Limits of Reporting (LOR) NATIONAL ENVIRONMENT PROTECTION AMENDMENT MEASURE (2013)			0.5	0.5	0.0	<u> </u>	<u> </u>		0.0	0.0	0.0	0.0	0.02	
Health-based Investigation Levels (HIL) A - Residential A		100 d	20	100 e	6000 f	300 g	3800	10	400 b	400 h	7400 b	7400 i		
Ecological Investigation Levels (EIL) - Urban residential		100	-	400	110	1200	-	-	25	160	270	660		
GUIDELINES FOR THE NSW SITE AUDITOR SCHEME (2006)														
Provisional Phytotoxity-Based Investigation Levels (PIL)			3					1						

Notes:

- a: Residential with garden / accessible soil (home grown produce <10% fruit and vegetable intake (no poultry)), also includes childcare centres, preschools and primary schools.
- b: EIL of aged nickel & zinc were derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the lowest CEC=3.9 cmolc/kg & pH=6.5 were selected for derivation of EIL; a conservative approach.
- c: Methyl Mercury
- d: Generic ElL for aged arsenic
- e: Chromium (III); the assumed clay content=10%, a conservative assumption.
- f: ElL = Ambient Background Concentration (ABC) + Added Contaminant Level (ACL) (Rounding rules applied). ABC = 18mg/kg, 25th percentile of the data for old NSW suburb with low traffic volume. ACL=95mg/kg, the lower ACL used based on the lowest CEC=5cmol/kg
- g: Generic added contaminant limit for aged lead + ambient background concentration; old NSW suburb with low traffic volume.
- h: EIL of aged nickel was derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the low est CEC=9.8 cmolc/kg was selected for derivation of EIL; a conservative approach.
- i: ElL of aged zinc was derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; CEC=16

(Ref No: 12675/4-AB)

														oage 1	of 4
						Λ	/ETALS	(mg/kg)							
Sample Location	Depth (m)	ARSENIC	CADMIUM	CHROMIUM (Total)	COPPER	LEAD	MANGANESE	MERCURY	NICKEL	NICKEL	NICKEL	ZINC	ZINC	CEC (cmq//kg)	рН
Topsoil (Silty Clay, Bro	own)														
D201	0-0.1	190	0.8	36	35	120	2600	<0.05	-	10	-	-	220	6.7	6.5
D202	0-0.1	200	4.0	31	150	36	1900	< 0.05	-	21	-	460	-	-	-
D203	0-0.1	180	1.9	37	43	280	3100	< 0.05	-	14	-	490	-	-	-
D208	0-0.1	130	3.4	28	79	34	2300	<0.05	-	19	-	370	-	-	-
D209	0-0.1	220	1.9	34	39	150	2900	<0.05	-	12	-	390	-	3.3	5.9
D210	0-0.1	100	0.6	30	28	78	3700	<0.05	-	12	-	130	130	-	-
D211	0-0.1	44	0.5	40	21	160	1100	<0.05	-	6.1	-	-	190	12	5.8
D213	0-0.1	73	0.5	31	20	270	2600	< 0.05	-	7.3	-	-	160	-	-
D214	0-0.1	48	0.6	31	13	250	4200	< 0.05	-	9.3	-	140	-	-	-
D215	0-0.1	38	0.5	31	14	180	3100	< 0.05	-	9.4	-	140	-	-	-
D216	0-0.1	40	0.5	38	16	120	3100	< 0.05	-	11	-	90	-	-	-
D217	0-0.1	66	0.6	45	15	190	590	< 0.05	-	8.0	-	110	-	-	-
D221	0-0.1	55	0.6	27	24	240	570	< 0.05	-	6.2	-	110	-	-	-
D222	0-0.1	41	0.4	31	12	140	300	< 0.05	5.2	-	-	56	-	-	-
D223	0-0.1	35	0.4	29	11	76	180	< 0.05	5.3	-	-	60	-	2.7	5.5
D224	0-0.1	23	0.4	17	14	58	1600	< 0.05	-	9.4	-	89	-	8.8	-
D225	0-0.1	37	0.6	31	17	81	1300	< 0.05	-	12	-	120	-	3.1	-
D226	0.0-0.1	25	0.5	26	11	80	2800	< 0.05	-	11	-	120	-	5.1	-
D226	0.2-0.3	22	0.6	25	13	68	2700	<0.05	-	11	-	120	-	-	-
Limits of Reporting (LOR)		3	0.3	0.5	0.5	1	1	0.05	0.5	0.5	0.5	0.5	0.5	0.02	-
NATIONAL ENVIRONME AMENDMENT MEASURE								c							
Health-based Investigation	n Levels (HIL) A - Residential A	100	20	100	6000	300	3800	10	400	400	400	7400	7400		
Ecological Investigation Le	evels (EIL) - Urban residential	100 ^d	-	e 400	110	1200	-	-	6 6	15	160	150	300 ^j		

Notes:

(2006)

a: Residential with garden / accessible soil (home grown produce <10% fruit and vegetable intake (no poultry)), also includes childcare centres, preschools and primary schools.

1

- b: EIL of aged nickel & zinc were derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the low est CEC=1.3 cmolc/kg & pH=5.5 were selected for derivation of EIL; a conservative approach.
- c: Methyl Mercury

GUIDELINES FOR THE NSW SITE AUDITOR SCHEME

Provisional Phytotoxity-Based Investigation Levels (PIL)

- d: Generic ElL for aged arsenic
- e: Chromium (III); the assumed clay content=10%, a conservative assumption.

3

- f: EIL = Ambient Background Concentration (ABC) + Added Contaminant Level (ACL) (Rounding rules applied). ABC = 18mg/kg, 25th percentile of the data for old NSW suburb with low traffic volume. ACL=95mg/kg, the lower ACL used based on the lowest
- g: Generic added contaminant limit for aged lead + ambient background concentration; old NSW suburb with low traffic volume.
- h: EIL of aged nickel was derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the low est CEC=3.1 cmolc/kg was selected for derivation of EIL; a conservative approach.
- i: ElL of aged nickel was derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; CEC=9.6 cmolc/kg was adopted for derivation of ElL.
- j: Ell. of aged zinc was derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the low est CEC=6.1 cmolc/kg & pH=5.6 were selected for derivation of Ell.; a conservative approach.

														page 2	2 of 4
						N	METALS	(mg/kg)							
ole Location	Depth (m)	ARSENIC	САБМІИМ	CHROMIUM (Total)	COPPER	LEAD	MANGANESE	MERCURY	NICKEL	NICKEL	NICKEL	ZINC	ZINC	CEC (cmaj/kg)	Нd
oil (Silty Clay, B	drown)														
D229	0.0-0.1	41	0.4	29	7.8	76	800	<0.05	_	6.5	_	61	_	_	_
D229	0.2-0.3	54	0.5	35	8.1	100	500	< 0.05	_	6.4	_	59	_	_	_
D230	0.0-0.1	110	0.7	38	16	240	740	<0.05	6.0	-	-	160	_	_	_
D230	0.2-0.3	110	0.7	37	15	320	1100		6.2	_	-	140	_	-	_
D231	0.0-0.1	75	0.5	31	22	150	220	<0.05	7.2	_	-	79	_	-	_
D231	0.2-0.3	7	<0.3	3.9	2.5	28	30	< 0.05	0.7	_	-	8.7	_	-	-
D232	0-0.1	53	0.4	26	23	93	270	<0.05	11		-	51	_	-	-
D233	0-0.1	54	0.3	23	37	75	330	<0.05	7.0		-	36	-	-	-
D234	0-0.1	11	<0.3	21	20	20	940	<0.05	-	8.6	-	46	-	-	-
D234	0.2-0.3	14	<0.3	24	23	22	1100	<0.05	-	8.5	-	39	-	-	-
D235	0-0.1	11	0.3	27	20	16	870	<0.05	-	13	-	50	-	9.5	-
D236	0-0.1	11	< 0.3	22	24	13	650	<0.05	-	7.8	-	33	-	7.3	-
D237	0-0.1	10	<0.3	18	13	16	810	< 0.05	-	6.9	-	35	-	-	-
D237	0.2-0.3	11	< 0.3	20	14	15	550	<0.05	-	7.1	-	33	-	-	-
D238	0-0.1	18	< 0.3	29	15	28	980	<0.05	-	8.8	-	49	-	-	-
D238	0.2-0.3	10	<0.3	23	14	18	700	< 0.05	-	10	-	52	-	8.3	-
D243	0.0-0.1	13	<0.3	22	33	12	420	< 0.05	-	7.9	-	30	-	-	-
D243	0.2-0.3	15	< 0.3	26	34	11	270	< 0.05	-	8.7	-	25	-	-	-
D244	0.0-0.1	9	< 0.3	27	13	12	750	< 0.05	-	11	-	36	-	-	-
D244	0.2-0.3	13	<0.3	38	21	12	160	<0.05	-	13	-	30	-	-	-
of Reporting (LOF	R)	3	0.3	0.5	0.5	1	1	0.05	0.5	0.5	0.5	0.5	0.5	0.02	-
DNAL ENVIRONM DMENT MEASUR	IENT PROTECTION RE (2013)														
-based Investigat	tion Levels (HIL) A - Residential A	100	20	100	6000	300	3800	10	400	400	400	7400	7400		
ical Investigation	Levels (EIL) - Urban residential	100	-	400	110	f ^g 1200	-	-	6 6	15	160	150	300 ^j		
	NSW SITE AUDITOR SCHEME		2					1							
LINES FOR THE		100	3	400	110	1200	-	1	6	15	160	150	300)	

- a: Residential with garden / accessible soil (home grown produce <10% fruit and vegetable intake (no poultry)), also includes childcare centres, preschools and primary schools.
- b: EIL of aged nickel & zinc were derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the low est CEC=1.3 cmolc/kg & pH=5.5 w ere selected for derivation of EIL; a conservative approach.
- c: Methyl Mercury
- d: Generic EIL for aged arsenic
- e: Chromium (III); the assumed clay content=10%, a conservative assumption.
- f: EIL = Ambient Background Concentration (ABC) + Added Contaminant Level (ACL) (Rounding rules applied). ABC = 18mg/kg, 25th percentile of the data for old NSW suburb with low traffic volume. ACL=95mg/kg, the lower ACL used based on the lowest
- g: Generic added contaminant limit for aged lead + ambient background concentration; old NSW suburb with low traffic volume.
- h: ElL of aged nickel was derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the low est CEC=3.1 cmolc/kg was selected for derivation of EIL; a conservative approach.
- i: ElL of aged nickel was derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; CEC=9.6 cmolc/kg w as adopted for derivation of ElL.
- j: ElL of aged zinc was derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the low est CEC=6.1 cmolc/kg & pH=5.6 w ere selected for derivation of ElL; a conservative approach.

-														page 3	3 of 4
			-		-	N	METALS ((mg/kg)							
Sample Location	Depth (m)	ARSENIC	САБМІОМ	CHROMIUM (Total)	COPPER	LEAD	MANGANESE	MERCURY	NICKEL	NICKEL	NICKEL	ZINC	ZINC	CEC (cmq/kg)	Нd
Topsoil (Silty Clay, Bro	nwn)														
D245	0.0-0.1	13	<0.3	22	22	16	420	<0.05	_	7.5	_	33	_		_
D245	0.2-0.3	16	<0.3	27	30	18	340	<0.05	_	8.7	_	29	_	_	_
D246	0.0-0.1	16	0.4	30	7.5	19	110	<0.05	_	8.9	_	35	_	_	_
D246	0.2-0.3	20	0.3	30	16	16	55	<0.05	-	9.4	_	31	_	_	-
D247	0.0-0.1	19	0.3	42	21	18	45	<0.05	-	17	_	50	_		- 1
D248	0.0-0.1	48	0.5	25	15	56	370	<0.05	-	7.4	-	98	_	-	- 1
D248	0.2-0.3	150	0.7	35	33	220	670	0.05	-	12	-		260	6.1	6.4
D249	0.0-0.1	95	0.5	20	38	85	770	<0.05	-	12	-	120	_	-	-
D249	0.2-0.3	65	0.5	19	28	83	1100	<0.05	-	11	-	110	-	9.2	-
D259	0.0-0.1	40	0.7	26	14	50	1400	< 0.05	-	12	-	-	190	8.1	6.2
D259	0.2-0.3	38	0.3	32	34	29	170	<0.05	-	-	19	78	-	9.6	-
D263	0.0-0.1	13	<0.3	28	22	15	710	<0.05	-	11	-	28	-	-	-
D263	0.2-0.3	11	<0.3	35	16	12	310	<0.05	-	11	-	23	-	6.7	-
D264	0.0-0.1	13	0.3	27	15	17	320	< 0.05	-	11	-	42	-	4.2	-
D264	0.2-0.3	14	< 0.3	28	17	18	200	< 0.05	-	9.5	-	37	-	-	-
D265	0.0-0.1	9	< 0.3	25	19	11	420	< 0.05	-	11	-	35	-	-	-
D265	0.2-0.3	10	<0.3	28	17	9	170	< 0.05	-	14	-	32	-	7.6	-
D271	0.0-0.1	30	0.3	26	13	96	1300	< 0.05	-	6.3	-	57	-	-	-
D271	0.2-0.3	40	0.4	33	17	98	1100	<0.05	-	7.5	-	74	-	7.7	-
Limits of Reporting (LOR)		3	0.3	0.5	0.5	1	1	0.05	0.5	0.5	0.5	0.5	0.5	0.02	-
NATIONAL ENVIRONMEN AMENDMENT MEASURE								С							
Health-based Investigation	n Levels (HIL) A - Residential A	100	20	100	6000	300	3800	10	400	400	400	7400	7400		
Ecological Investigation Le	evels (EIL) - Urban residential	100 ^d	-	400 e	110	1200	-	-	6 6	15	160	150 ^b	300 ^j		
GUIDELINES FOR THE NS (2006)	SW SITE AUDITOR SCHEME														
Provisional Phytotoxity-Ba	ased Investigation Levels (PIL)		3					1							

- a: Residential with garden / accessible soil (home grown produce <10% fruit and vegetable intake (no poultry)), also includes childcare centres, preschools and primary schools.
- b: ElL of aged nickel & zinc were derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the low est CEC=1.3 cmolc/kg & pH=5.5 were selected for derivation of ElL; a conservative approach.
- c: Methyl Mercury
- d: Generic EIL for aged arsenic
- e: Chromium (III); the assumed clay content=10%, a conservative assumption.
- f: ElL = Ambient Background Concentration (ABC) + Added Contaminant Level (ACL) (Rounding rules applied). ABC = 18mg/kg, 25th percentile of the data for old NSW suburb with low traffic volume. ACL=95mg/kg, the lower ACL used based on the lowest
- g: Generic added contaminant limit for aged lead + ambient background concentration; old NSW suburb with low traffic volume.
- h: ElL of aged nickel was derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the low est CEC=3.1 cmolc/kg was selected for derivation of ElL; a conservative approach.
- i: EIL of aged nickel was derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; CEC=9.6 cmolc/kg was adopted for derivation of EIL.
- j: ElL of aged zinc was derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the low est CEC=6.1 cmolc/kg & pH=5.6 were selected for derivation of ElL; a conservative approach.

														page 4	1 of 4
						N	METALS	(mg/kg)							
Sample Location	Depth (m)	ARSENIC	САБМІОМ	CHROMIUM (Total)	COPPER	LEAD	MANGANESE	MERCURY	NICKEL	NICKEL	NICKEL	ZINC	ZINC	CEC (cmq/kg)	Нd
Topsoil (Silty Clay, Br	own)														
D272	0.0-0.1	42	0.7	34	22	110	1700	<0.05	_	10	-	110	-	3.6	_
D272	0.2-0.3	47	0.6	40	24	130	2500	<0.05	_	9.8	-	110	_	-	_
D273	0.0-0.1	51	0.5	49	4.6	100	640	< 0.05	3.0	_	-	56	_	1.3	_
D273	0.2-0.3	69	0.6	61	9.4	110	430	< 0.05	4.2	-	-	50	-	-	-
D274	0.0-0.1	25	0.4	34	8.3	73	590	<0.05	3.6	-	-	54	_	_	_
D275	0.0-0.1	25	<0.3	23	10	47	860	< 0.05	4.3	-	-	48	-	-	-
D276	0.0-0.1	37	0.4	26	23	66	1400	< 0.05	5.8	-	-	66	-	-	-
D277	0.0-0.1	34	0.4	30	12	66	2900	< 0.05	-	9.1	-	73	-	-	-
D277	0.2-0.3	33	0.4	26	14	70	3100	< 0.05	-	11	-	65	-	6.2	-
D280	0.0-0.1	25	0.4	18	25	20	320	<0.05	-	15	-	55	-	6.6	-
D281	0.0-0.1	50	0.4	21	330	29	100	<0.05	-	14	-	57	-	4.0	-
D282	0.0-0.1	11	0.4	16	7.3	53	470	<0.05	-	12	-	82	-	6.7	-
D282	0.2-0.3	15	0.3	17	8.5	90	250	<0.05	-	12	-	87	-	-	-
D283	0.0-0.1	13	< 0.3	14	20	19	120	<0.05	-	8.3	-	50	-	-	-
D283	0.2-0.3	9	< 0.3	21.0	18	11	91	<0.05	-	14	-	74	-	7.5	-
D284	0.0-0.1	10	< 0.3	17	2.3	9	110	< 0.05	-	12	-	44	-	-	-
D284	0.2-0.3	10	< 0.3	18	2.5	11	150	< 0.05	-	14	-	53	-	4.0	-
D285	0.0-0.1	43	8.0	27	16	82	910	< 0.05	-	8.6	-	-	170	6.5	5.6
D286	0.0-0.1	26	0.4	31	9.6	58	1900	< 0.05	5.5	-	-	44	-	-	-
D287	0.0-0.1	29	0.5	34	12	73	780	0.05	3.8	-	-	57	-	-	-
D287	0.2-0.3	53	0.5	50	15	95	900	0.05	-	6.2	-	64	-	5.3	-
D288	0.0-0.1	22	0.6	23	16	30	440	< 0.05	-	-	19	-	190	12	6.4
D288	0.2-0.3	16	0.4	28	16	20	190	< 0.05	-	-	25	110	-	-	-
D289	0.0-0.1	16	0.3	23	31	17	210	< 0.05	-	-	16	69	-	6.8	-
D289	0.2-0.3	17	< 0.3	22	30	19	120	< 0.05	-	-	12	51	-	-	-
D290	0.0-0.1	22	1.6	22	20	84	2500	< 0.05	-	11	-	-	180	5.9	5.7
Limits of Reporting (LOR))	3	0.3	0.5	0.5	1	1	0.05	0.5	0.5	0.5	0.5	0.5	0.02	-
NATIONAL ENVIRONME AMENDMENT MEASURE								С							
Health-based Investigation	on Levels (HIL) A - Residential A	100	20	100	6000	300	3800	10	400	400	400	7400	7400		
Ecological Investigation L	evels (EIL) - Urban residential	100 ^d	-	400	110	f g 1200	-	-	ь 6	15	160	150	300 ^j		
GUIDELINES FOR THE N	SW SITE AUDITOR SCHEME														
ll' '	ased Investigation Levels (PIL)		3					1							

- a: Residential with garden / accessible soil (home grown produce <10% fruit and vegetable intake (no poultry)), also includes childcare centres, preschools and primary schools.
- b: ElL of aged nickel & zinc were derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the low est CEC=1.3 cmolc/kg & pH=5.5 were selected for derivation of ElL; a conservative approach.
- c: Methyl Mercury
- d: Generic ElL for aged arsenic
- e: Chromium (III); the assumed clay content=10%, a conservative assumption.
- f: EIL = Ambient Background Concentration (ABC) + Added Contaminant Level (ACL) (Rounding rules applied). ABC = 18mg/kg, 25th percentile of the data for old NSW suburb with low traffic volume. ACL=95mg/kg, the lower ACL used based on the lowest
- g: Generic added contaminant limit for aged lead + ambient background concentration; old NSW suburb with low traffic volume.
- h: EIL of aged nickel was derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the low est CEC=3.1 cmolc/kg was selected for derivation of EIL; a conservative approach.
- i: ElL of aged nickel was derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; CEC=9.6 cmolc/kg was adopted for derivation of ElL.
- j: ElL of aged zinc w as derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the low est CEC=6.1 cmolc/kg & pH=5.6 were selected for derivation of ElL; a conservative approach.

						MET	TALS (mo	n/ka)						
Sample Location	Depth (m)	ARSENIC	САБМІОМ	CHROMIUM (Total)	COPPER	LEAD	MANGANESE	MERCURY (6)	NICKEL	NICKEL	ZINC	ZINC	CEC (cmą/kg)	Hd
Topsoil (Silty Clay, Gre	v)													
D204	0-0.1	14	<0.3	15	7.8	52	880	<0.05	8.3	-	65	-	-	5.7
D205	0-0.1	14	< 0.3	17	13	50	310	< 0.05	-	13	78	-	6.7	-
D206	0-0.1	9	< 0.3	13	2.7	15	300	< 0.05	10	-	63	-	5.6	5.5
D207	0-0.1	27	0.4	20	21	18	350	<0.05	-	13	55	-	8.5	-
D212	0-0.1	56	0.5	41	11	210	1800	<0.05	4.7	-	100	-	-	-
D219	0-0.1	72	0.5	49	8.5	230	1700	<0.05	3.9	-	88	-	2.4	5.4
D220	0-0.1	34	0.5	37	16	120	820	0.07	4.8	-	-	240	10	6.2
Limits of Reporting (LOR)		3	0.3	0.5	0.5	1	1	0.05	0.5	0.5	0.5	0.5	0.02	-
NATIONAL ENVIRONMEN AMENDMENT MEASURE	(2013)							С						
Health-based Investigation	n Levels (HIL) A - Residential A	100	20	100	6000	300	3800	10	400	400	7400	7400		
Ecological Investigation Le	vels (EIL) - Urban residential	100 d	-	400	110 ^f	1200	-	-	10	70	180	480		
GUIDELINES FOR THE NS (2006)	W SITE AUDITOR SCHEME													
Provisional Phytotoxity-Ba	sed Investigation Levels (PIL)		3					1						

- a: Residential with garden / accessible soil (home grown produce <10% fruit and vegetable intake (no poultry)), also includes childcare centres, preschools and primary schools.
- b: EIL of aged nickel & zinc w ere derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb w ith low traffic volume; the low est CEC=2.4 cmolc/kg & pH=5.4; the assumed clay content=10 % w ere selected for derivation of EIL; a conservative
- c: Methyl Mercury
- d: Generic ElL for aged arsenic
- e: Chromium (III); the assumed clay content=10%, a conservative assumption.
- f: EIL = Ambient Background Concentration (ABC) + Added Contaminant Level (ACL) (Rounding rules applied). ABC = 18mg/kg, 25th percentile of the data for old NSW suburb with low traffic volume. ACL=95mg/kg, the lower ACL used based on the lowest
- g: Generic added contaminant limit for aged lead + ambient background concentration; old NSW suburb with low traffic volume.
- h: ElL of aged nickel was derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the lowest CEC=6.7 cmolc/kg was selected for derivation of ElL; a conservative approach.
- i: ElL of aged zinc was derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; CEC=10 cmolc/kg & pH=6.2 were selected for derivation of ElL.

																			page	1 of
									MET	TALS (mg/kg)									
Sample Location	Depth (m)	ARSENIC	CADMIUM	CHROMIUM (Total)	COPPER	LEAD	MANGANESE	MERCURY	NICKEL	NICKEL	NICKEL	NICKEL	NICKEL	ZINC	ZINC	ZINC	ZINC	ZINC	CEC (cmq/kg)	Hd
Natural Soil (Silty Clay	. red brown)																			
D201	0.2-0.3	300	0.8	33	51	100	2900	<0.05	11	_	_	_		_	390			_	_	_
D201	1.0-1.1	450	1.1	34	86	64	2000	0.08	11	_	_	_	_	_	450	_	_	_	_	١.
D201	1.9-2.0	530	1.0	38	82	59	730	<0.05	11	-	-	-	-	-	310	_	_	-	16	7.3
D202	0.2-0.3	500	0.9	38	52	130	1300	<0.05	13	-	-	-	-	-	270	_	_	-	-	-
D202	1.0-1.1	670	2.4	45	91	100	13000	0.15	18	-	-	-	-	1000	-	-	-	-	-	-
D203	0.2-0.3	120	0.6	42	43	110	420	<0.05	11	-	-	-	-	240	-	-	-	-	-	-
D203	0.9-1.0	82	0.5	35	60	98	170	< 0.05	17	-	-	-	-	-	380	-	-	-	15	7.1
Natural Soil (Silty Clay	, yellow-brown)																			
D204	0.2-0.3	37	0.4	11	35	22	280	<0.05	-	-	-	32	-	-	-	-	-	120	-	6.7
D204	1.0-1.1	24	0.3	27	27	17	90	<0.05	-	-	-	21	-	-	-	-	-	85	-	-
D205	0.2-0.3	15	0.5	24	37	43	210	<0.05	-	-	-	31	-	-	-	-	-	130	-	-
D205	0.7-0.8	13	0.3	24	16	27	160	<0.05	-	-	-	31	-	-	-	-	-	110	-	-
D206	0.2-0.3	10	0.3	20	2.7	6	130	< 0.05	-	-	-	15	-	-	-	-	-	73	13	7.1
D206	0.6-0.7	32	0.4	17	6.2	15	170	< 0.05	-	-	-	12	-	-	-	-	-	87	-	-
D207	0.2-0.3	110	0.4	32	56	13	220	< 0.05	-	-	-	23	-	-	-	-	-	50	-	-
D207	1.0-1.1	130	0.4	28	56	14	260	< 0.05	-	-	-	23	-	-	-	-	-	51	-	-
Natural Soil (Silty Clay	, red brown)																			
D208	0.2-0.3	220	2.4	42	170	29	630	< 0.05	26	-	-	-	-	390	-	-	-	-	-	-
D208	1.0-1.1	1200	100	12	100	330	34000		27	-	-	-	-	9600	-	-	-	-	-	-
D209	0.2-0.3	570	9.4	38	230	380	5600	0.06	20	-	-	-	-	1900	-	-	-	-	-	-
D210	0.2-0.3	190	8.0	32	48	69	4300	< 0.05	17	-	-	-	-	170	-	-	-	-	-	-
D210	1.0-1.1	590	1.6	38	82	190	12000	<0.05	27	-	-	-	-	320	-	-	-	-	-	-
Limits of Reporting (LOR)		3	0.3	0.5	0.5	1	1	0.05	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.02	-
NATIONAL ENVIRONME AMENDMENT MEASURE								С												
Health-based Investigatio	n Levels (HIL) A - Residential A	100 d	20	100 e	6000	300 g	3800	10	400 b	400 h	400	400	400 k	7400 b	7400	7400 m	7400 n	7400		
Ecological Investigation Lo	evels (EIL) - Urban residential	100	-	400	110	1200	-	-	30	9	35	75	390	260	630	160	930	380		
GUIDELINES FOR THE NS (2006)	SW SITE AUDITOR SCHEME																			
Provisional Phytotoxity-Ba	ased Investigation Levels (PIL)		3					1												

- b: ElL of aged nickel & zinc were derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the low est CEC=4.5 cmolc/kg & pH=5.6 for red brown natural silty clay were selected for derivation of EIL; a conservative approach.
- c: Methyl Mercury
- d: Generic ElL for aged arsenic
- e: Chromium (III); the assumed clay content=10%, a conservative assumption.
- f: ElL = Ambient Background Concentration (ABC) + Added Contaminant Level (ACL) (Rounding rules applied). ABC = 18mg/kg, 25th percentile of the data for old NSW suburb with low traffic volume. ACL=95mg/kg, the low er ACL used based on the low est CEC=5cmol/kg or pH=5.5.
- g: Generic added contaminant limit for aged lead + ambient background concentration; old NSW suburb with low traffic volume.
- h: EllL of aged nickel was derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the low est CEC=2.0 cmolc/kg for brw on natural silty clay was selected for derivation of EIL; a conservative approach.
- i: ElL of aged nickel was derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the low est CEC=4.8 cmolc/kg for brw on natural silty clay was selected for derivation of EIL: a conservative approach.
- j: Ell. of aged nickel was derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the low est CEC=7.0 cmolc/kg for yellowbrw on natural silty clay was selected for derivation of EIL; a conservative approach
- k: ElL of aged nickel was derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; CEC=34 cmolc/kg for yellow-brw on natural silty clay was adopted for derivation of ElL.
- I: ElL of aged zinc was derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; CEC=15 cmolc/kg & pH=7.1 for red brown natural silty clay were adopted for derivation of ElL.
- $m: EIL \ of aged \ zinc \ w \ as \ derived from \ calculation \ spreadsheet \ developed \ by \ CSIRO for \ NEPC; \ old \ NSW \ suburb \ w \ ith \ low \ traffic \ volume; the \ low \ est \ CEC=2.0 \ cmolc/kg \ \& \ pH=5.2 \ for \ NEPC; \ old \ NSW \ suburb \ w \ ith \ low \ traffic \ volume; the \ low \ est \ CEC=2.0 \ cmolc/kg \ \& \ pH=5.2 \ for \ NEPC; \ old \ NSW \ suburb \ w \ ith \ low \ traffic \ volume; the \ low \ est \ CEC=2.0 \ cmolc/kg \ \& \ pH=5.2 \ for \ new \ pH=5.2 \ for \ pH=5.2 \ for \ new \$ brown natural silty clay were selected for derivation of EIL; a conservative approach.
- n: ElL of aged zinc was derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; CEC=26 cmolc/kg & pH=7.1 for brown natural silty clay was adopted for derivation of ElL.
- o: ElL of aged zinc was derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the lowest CEC=7.0 cmolc/kg & pH=6.2 for yellow-brown natural silty clay were selected for derivation of ElL; a conservative approach.

. . . .

																			page	2 of
									MEI	TALS (mg/kg)									
Sample Location	Depth (m)	ARSENIC	САБМІИМ	CHROMIUM (Total)	COPPER	LEAD	MANGANESE	MERCURY	NICKEL	NICKEL	NICKEL	NICKEL	NICKEL	ZINC	ZINC	ZINC	ZINC	ZINC	CEC (cmql/kg)	Hd
Natural Soil (Silty Clay, ye	ellow-brown)																			
D211	0.2-0.3	38	0.3	33	39	66	74	0.08				9.8	_	_		_	_	86	_	١.
Natural Soil (Silty Clay, re		30	0.5	33	33	00	74	0.00				3.0						00	_	
D211	1.0-1.1	34	0.3	23	31	60	870	<0.05	20		_		_	84		_	_	_	_	١.
D211	1.9-2.0	43	0.4	22	34	110	1100	<0.05	12	_	_		_	90	_	_	_	_	_	Ι.
Natural Soil (Silty Clay, y		.0	0		٠.			10.00												
D212	0.2-0.3	86	0.5	41	40	100	150	<0.05	-	-	-	10	-		-	-		140	-	١.
D212	1.0-1.1	57	0.4	39	18	110	520	<0.05	_	_	_	5.9	-	_	_	_	_	75	7.0	6.
Natural Soil (Silty Clay, re		-	• • • •																	
D213	0.2-0.3	95	0.6	34	25	370	3100	< 0.05	8.7	-	-		-	160	-	-	-	-	4.5	5.
Natural Soil (Silty Clay, b																				
D213	1.0-1.1	120	0.6	36	70	140	61	0.11	-	-	14	-	-	-	-	-	200	-	26	7.
Natural Soil (Silty Clay, re	ed brown)																			
D214	0.2-0.3	49	0.5	34	19	230	3500	< 0.05	8.8	-	-	-	-	130	-	-	-	-	-	١.
D214	1.0-1.1	94	0.6	45	19	240	2800	< 0.05	9.1	-	-	-	-	140	-	-	-	-	-	١.
D215	0.2-0.3	44	0.5	31	25	140	1500	< 0.05	14	-	-	-	-	160	-	-	-	-	12	6.
Natural Soil (Silty Clay, y	ellow-brown)																			
D215	1.0-1.1	62	0.7	17	32	71	950	0.1	-	-	-	16	-	-	-	-	-	320	29	7.
D215	1.9-2.0	29	2.0	11	14	37	1500	0.08	-	-	-	16	-	-	-	-	-	220	-	١.
Natural Soil (Silty Clay, b	rown)																			
D216	0.2-0.3	47	0.5	30	43	54	230	< 0.05	-	-	13	-	-	-	-	100	-	-	18	7.
D217	0.2-0.3	75	0.6	46	25	220	500	< 0.05	-	-	9.9	-	-	-	-	110	-	-	7.2	
Natural Soil (Silty Clay, ye	ellow-brown)																			
D217	1.0-1.1	45	0.4	29	56	56	74	< 0.05	-	-	-	18	-	-	-	-	-	170	23	7.
D217	1.9-2.0	16	0.3	16	34	17	130	<0.05	-	-	-	11	-	-	-	-	-	66	-	١.
Limits of Reporting (LOR)		3	0.3	0.5	0.5	1	1	0.05	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.02	_
NATIONAL ENVIRONMENT AMENDMENT MEASURE (2								С												
Health-based Investigation L	Levels (HIL) ^a A - Residential A		20	100	6000	300	3800	10	400	400	400	400	400	7400	7400	7400	7400	7400		
Ecological Investigation Leve	els (EIL) - Urban residential	100 ^d	-	400 e	110 ^f	1200	-	-	30 b	9 9	35	75	390	260 ^b	630	160	930	380 ⁿ		
GUIDELINES FOR THE NSW (2006)	/ SITE AUDITOR SCHEME																			
Provisional Phytotoxity-Base	ed Investigation Levels (PIL)		3					1												l

- b: ElL of aged nickel & zinc were derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the lowest CEC=4.5 cmolc/kg & pH=5.6 for red brown natural silty clay were selected for derivation of ElL; a conservative approach.
- c: Methyl Mercury d: Generic ElL for aged arsenic
- e: Chromium (III); the assumed clay content=10%, a conservative assumption.
- f: ElL = Ambient Background Concentration (ABC) + Added Contaminant Level (ACL) (Rounding rules applied). ABC = 18mg/kg, 25th percentile of the data for old NSW suburb with low traffic volume. ACL=95mg/kg, the low er ACL used based on the low est CEC=5cmol/kg or pH=5.5.
- g: Generic added contaminant limit for aged lead + ambient background concentration; old NSW suburb with low traffic volume.
- h: EIL of aged nickel was derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the lowest CEC=2.0 cmolc/kg for brwon natural sitty clay was selected for derivation of EIL; a conservative approach.
- i: ElL of aged nickel was derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the lowest CEC=4.8 cmolc/kg for brw on natural silty clay was selected for derivation of ElL; a conservative approach.
- j: Ell. of aged nickel w as derived from calculation spreadsheet developed by CSIRO for NEPC, old NSW suburb w ith low traffic volume; the low est CEC=7.0 cmolc/kg for yellow-brw on natural silty clay w as selected for derivation of Ell.; a conservative approach.
- k: ElL of aged nickel was derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; CEC=34 cmolc/kg for yellow-brwon natural silty clay was adopted for derivation of ElL.

 I: ElL of aged zinc was derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; CEC=15 cmolc/kg & pH=7.1 for red brown
- I: EIL of aged zinc was derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; CEC=15 cmolc/kg & pH=7.1 for red brown natural silty clay were adopted for derivation of EIL.
- mt EllL of aged zinc was derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the lowest CEC=2.0 cmolc/kg & pH=5.2 for brown natural sity clay were selected for derivation of ElL; a conservative approach.
- n: EllL of aged zinc w as derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; CEC=26 cmolc/kg & pH=7.1 for brown natural silty clay w as adopted for derivation of EllL.
- o: EllL of aged zinc was derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the lowest CEC=7.0 cmolc/kg & pH=6.2 for yellow-brown natural silty clay were selected for derivation of ElL; a conservative approach.

METALS (mg/kg) Total) (cmq/kg) IANGANESE ADMIUM **ERCURY** EAD S Depth (m) Natural Soil (Silty Clay, brown) 77 2.0 0.2-0.3 49 0.5 35 140 2000 <0.05 Natural Soil (Silty Clay, yellow-brown) D218 1.0-1.1 73 0.6 30 41 76 1400 0.07 17 170 21 D219 0.2-0.3 90 0.6 50 25 200 1200 < 0.05 7.8 100 D219 1.0-1.1 90 0.5 31 51 170 310 < 0.05 12 130 vatural Soil (Silty Clay, red brown) 1.9-2.0 21 D219 72 0.4 34 34 170 450 8.2 < 0.05 120 ral Soil (Silty Clay, yell D220 100 69 ral Soil (Silty Clay, red bro wn) D220 1.0-1.1 38 0.4 28 40 56 64 <0.05 9.3 72 D221 0.2-0.3 57 0.5 32 14 190 560 <0.05 5.7 83 Natural Soil (Silty Clay, vellow-brown) 250 3.6 420 860 D221 1.0-1.1 28 98 4300 0.17 52 50 10000 D221 1.9-2.0 1600 14 460 320 47000 0.4 140 Vatural Soil (Silty Clay, red brown) D222 0.2-0.3 43 140 0.5 53 130 43 < 0.05 Natural Soil (Silty Clay, yello -brown) D222 <0.3 20 80 84 21 28 230 <0.05 18 Natural Soil (Silty Clay, red brown) D223 0.2-0.3 53 0.6 42 34 120 aa -0.05 150 8.0 5.6 D224 0.2-0.3 32 0.3 23 20 75 1200 < 0.05 12 92 Natural Soil (Silty Clay, yellow-brown) D224 0.5 41 49 71 25 1.0-1.1 53 250 < 0.05 140 9.1 latural Soil (Silty Clay, brown) D225 26 0.2-0.3 32 0.3 11 54 430 <0.05 8.9 62 Limits of Reporting (LOR) 3 0.3 0.5 0.5 0.05 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.02 NATIONAL ENVIRONMENT PROTECTION AMENDMENT MEASURE (2013) th-based Investigation Levels (HIL) A - Residential 100 100 300 10 400 400 7400 7400 7400 7400 30 9 Ecological Investigation Levels (EIL) - Urban residential 100 400 110 1200 35 75 390 260 630 160 930 380

Notes: a: Residential with garden / accessible soil (home grown produce <10% fruit and vegetable intake (no poultry)), also includes childcare centres, preschools and primary schools.

- b: EllL of aged nickel & zinc were derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the low est CEC=4.5 cmolc/kg & pH=5.6 for red brown natural sitly clay were selected for derivation of EllL; a conservative approach.
- c: Methyl Mercury

GUIDELINES FOR THE NSW SITE AUDITOR SCHEME

rovisional Phytotoxity-Based Investigation Levels (PIL)

(2006)

- d: Generic ElL for aged arsenic
- e: Chromium (III); the assumed clay content=10%, a conservative assumption.
- f: ElL = Ambient Background Concentration (ABC) + Added Contaminant Level (ACL) (Rounding rules applied). ABC = 18mg/kg, 25th percentile of the data for old NSW suburb with low traffic volume. ACL=95mg/kg, the low er ACL used based on the low est CEC=5cmol/kg or pH=5.5.
- g: Generic added contaminant limit for aged lead + ambient background concentration; old NSW suburb with low traffic volume.
- h: ElL of aged nickel was derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the lowest CEC=2.0 cmolc/kg for brw on natural sitty clay was selected for derivation of ElL; a conservative approach.
- i: ElL of aged nickel was derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the lowest CEC=4.8 cmolc/kg for brw on natural sity clay was selected for derivation of ElL; a conservative approach.
- j: EIL of aged nickel was derived from calculation spreadsheet developed by CSIRO for NEPC, old NSW suburb with low traffic volume; the lowest CEC=7.0 cmolc/kg for yellow-brwon natural silty clay was selected for derivation of EIL; a conservative approach.
- k: EIL of aged nickel w as derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; CEC=34 cmolc/kg for yellow-brw on natural silty clay w as adopted for derivation of EIL.
- l: ElL of aged zinc was derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; CEC=15 cmolc/kg & pH=7.1 for red brown natural sity clay were adopted for derivation of ElL.
- mt ElL of aged zinc was derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the low est CEC=2.0 cmolc/kg & pH=5.2 for brown natural silty clay were selected for derivation of ElL; a conservative approach.
- n: ElL of aged zinc was derived from calculation spreadsheet developed by CSIRO for NEPC, old NSW suburb with low traffic volume; CEC=26 cmolc/kg & pH=7.1 for brown natural silty clay was adopted for derivation of ElL.
- o: ElL of aged zinc was derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the lowest CEC=7.0 cmolc/kg & pH=6.2 for yellow-brown natural silty clay were selected for derivation of ElL; a conservative approach.

nage 4 of 6

																			page	4 of 6
									ME	ΓALS (mg/kg)									
Sample Location	Depth (m)	ARSENIC	САБМІИМ	CHROMIUM (Total)	COPPER	LEAD	MANGANESE	MERCURY	NICKEL	NICKEL	NICKEL	NICKEL	NICKEL	ZINC	ZINC	ZINC	ZINC	ZINC	CEC (cmol/kg)	Hd
Natural Soil (Silty Clay	y, yellow-brown)																			
D225	1.0-1.1	60	0.6	39	27	79	1400	< 0.05	-	-	-	15	-	-	-	-	-	140	-	-
D225	1.9-2.0	48	13	36	39	54	14000	0.54	-	-	-	-	77	-	-	-	-	2400	34	7.7
D226	1.0-1.1	40	0.4	30	15	91	1400	< 0.05	-	-	-	8.8	-	-	-	-	-	87	10	-
D229	1.0-1.1	29	0.4	28	27	58	140	<0.05	-	-	-	24	-	-	-	-	-	170	11	6.7
D230	1.0-1.1	130	0.7	27	52	240	4200	<0.05	-	-	-	29	-	-	-	-	-	310	16	7.3
D231	1.0-1.1	33	0.4	17	46	440	1000	0.1	-	-	-	35	-	-	-	-	-	230	24	8.0
D232	0.2-0.3	44	0.3	32	60	230	220	< 0.05	-	-	-	19	-	-	-	-	-	130	-	-
D232	1.0-1.1	96	0.6	30	96	550	930	0.06	-	-	-	23	-	-	-	-	-	330	15	8.4
D233	0.2-0.3	68	0.4	32	84	150	260	< 0.05	-	-	-	10	-	-	-	-	-	49	-	-
D233	1.0-1.1	130	0.7	24	220	180	410	0.15	-	-	-	21	-	-	-	-	-	130	-	-
D233	1.9-2.0	140	1.1	19	170	150	460	0.09	-	-	-	41	-	-	-	-	-	300	-	-
D234	1.0-1.1	18	<0.3	35	35	15	120	< 0.05	-	-	-	14	-	-	-	-	-	39	-	-
Natural Soil (Silty Clay	, red brown)																			
D235	0.2-0.3	14	0.4	37	24	14	310	< 0.05	16	-	-	-	-	51	-	-	-	-	18	-
Natural Soil (Silty Clay	y, yellow-brown)																			
D235	1.0-1.1	20	<0.3	20	22	6	300	< 0.05	-	-	-	17	-	-	-	-	-	35	9.1	-
D236	0.2-0.3	14	<0.3	33	41	14	250	< 0.05	-	-	-	10	-	-	-	-	-	29	8.2	-
D237	1.0-1.1	19	0.3	25	35	9	83	< 0.05	-	-	-	19	-	-	-	-	-	56	-	-
D238	1.0-1.1	22	0.3	31	37	31	110	< 0.05	-	-	-	20	-	-	-	-	-	97	17	-
D243	1.0-1.1	9	0.3	58	33	7	510	<0.05	-	-	-	27	-	-	-	-	-	50	-	-
D244	1.0-1.1	11	<0.3	38	17	10	150	<0.05	-	-	-	15	-	-	-	-	-	29	-	-
D245	1.0-1.1	23	0.3	40	40	18	190	<0.05	-	-	-	16	-	-	-	-	-	55	-	-
D245	1.9-2.0	8	0.5	38	53	9	290	<0.05	-	-	-	16	-	-	-	-	-	170	11	7.7
Limits of Reporting (LOR)	3	0.3	0.5	0.5	1	1	0.05	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.02	-
NATIONAL ENVIRONME AMENDMENT MEASURI	E (2013)							С												
Health-based Investigation	on Levels (HIL) A - Residential A		20	100	6000	300	3800	10	400	400	400	400	400	7400	7400	7400	7400	7400		
Ecological Investigation L	Levels (EIL) - Urban residential	100	-	400 ^e	110 ^f	1200	-	-	30 b	9 9	35	75	390	260 ^b	630	160 m	930 ⁿ	380		
GUIDELINES FOR THE N (2006)	ISW SITE AUDITOR SCHEME																			
Provisional Phytotoxity-B	Based Investigation Levels (PIL)		3					1												

- b: EIL of aged nickel & zinc were derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the lowest CEC=4.5 cmolc/kg & pH=5.6 for red brown natural silty clay were selected for derivation of EIL; a conservative approach.
- c: Methyl Mercury
- d: Generic ElL for aged arsenic
- e: Chromium (III); the assumed clay content=10%, a conservative assumption.
- f: ElL = Ambient Background Concentration (ABC) + Added Contaminant Level (ACL) (Rounding rules applied). ABC = 18mg/kg, 25th percentile of the data for old NSW suburb with low traffic volume. ACL=95mg/kg, the low er ACL used based on the low est CEC=5cmol/kg or pH=5.5.
- g: Generic added contaminant limit for aged lead + ambient background concentration; old NSW suburb with low traffic volume.
- h: EIL of aged nickel was derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the lowest CEC=2.0 cmolc/kg for brw on natural silty clay was selected for derivation of EIL; a conservative approach.
- i: Ell. of aged nickel was derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the lowest CEC=4.8 cmolc/kg for brwon natural sitty clay was selected for derivation of Ell.; a conservative approach.
- j: Ell. of aged nickel was derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the lowest CEC=7.0 cmolc/kg for yellow-brw on natural silty clay was selected for derivation of Ell.; a conservative approach.
- k: Ell. of aged nickel was derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; CEC=34 cmolc/kg for yellow-brw on natural sitty clay was adopted for derivation of Ell.
- I: EIL of aged zinc was derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; CEC=15 cmolc/kg & pH=7.1 for red brown natural silty clay were adopted for derivation of EIL.
- m: ElL of aged zinc w as derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the low est CEC=2.0 cmolc/kg & pH=5.2 for brown natural silty clay were selected for derivation of ElL; a conservative approach.

 n: ElL of aged zinc w as derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; CEC=26 cmolc/kg & pH=7.1 for brown natural
- silty clay was adopted for derivation of ElL.
- o: Ell. of aged zinc was derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the lowest CEC=7.0 cmolc/kg & pH=6.2 for yellow-brown natural silty clay were selected for derivation of Ell.; a conservative approach.

page 5 of 6

									ME	TALS (mg/kg)								F = 3 =	3010
Sample Location	Depth (m)	ARSENIC	САБМІОМ	CHROMIUM (Total)	COPPER	LEAD	MANGANESE	MERCURY	NICKEL	NICKEL	NICKEL	NICKEL	NICKEL	ZINC	ZINC	ZINC	ZINC	ZINC	CEC (cmg/kg)	Hd
Natural Soil (Silty Clay,	yellow-brown)																			
D246	1.0-1.1	17	0.3	21	32	11	390	<0.05	-	-	-	27	-	-	-		-	43	19	-
D247	0.2-0.3	19	0.3	38	24	18	62	<0.05	-	-	-	21	-	-	-	-	-	55	22	-
D247	1.0-1.1	16	<0.3	29	21	15	120	<0.05	_	_	_	22	_	_	_	_	_	58	_	_ '
D248	1.0-1.1	290	1.8	37	66	140	1300	0.07	-	-	-	33	-	-	-	-	-	700	-	-
D249	0.0-0.1	95	0.5	20	38	85	770	<0.05	-	-	-	12	-	-	-	-	-	120	-	-
D249	1.0-1.1	45	0.4	35	42	48	380	< 0.05	-	-	-	24	-	-	-	-	-	110	11	-
D259	1.0-1.1	54	0.3	33	50	35	130	<0.05	-	-	-	23	-	-	-	-	-	99	-	-
D271	1.0-1.1	96	0.7	34	54	210	690	0.05	-	-	-	19	-	-	-	-	-	240	21	6.9
D272	0.7-0.8	49	0.5	26	51	65	170	<0.05	-	-	-	14	-	-	-	-	-	110	11	-
Natural Soil (Silty Clay,																				
D273	1.0-1.1	55	0.5	41	30	75	120	<0.05	10	-	-	-	-	74	-	-	-	-	-	-
Natural Soil (Silty Clay,	yellow-brown)																			
D273	1.9-2.0	42	0.4	28	34	95	42	< 0.05	-	-	-	15	-	-	-	-	-	92	21	-
Natural Soil (Silty Clay,	red brown)																			
D274	0.2-0.3	63	0.8	71	15	130	670	< 0.05	7.6	-	-	-	-	82	-	-	-	-	-	-
D274	1.0-1.1	33	0.3	31	28	45	51	< 0.05	9.6	-	-	-	-	61	-	-	-	-	23	-
D275	0.2-0.3	42	0.5	39	12	76	1200	< 0.05	6.1	-	-	-	-	48	-	-	-	-	-	-
D275	1.0-1.1	42	0.4	34	28	45	140	< 0.05	10	-	-	-	-	53	-	-	-	-	-	-
D275	1.9-2.0	130	1.0	31	64	67	6200	0.08	18	-	-	-	-	100	-	-	-	-	31	-
D276	0.2-0.3	76	0.6	45	45	74	800	< 0.05	9.1	-	-	-	-	84	-	-	-	-	-	-
D276	1.0-1.1	85	0.7	40	80	47	510	<0.05	15	-	-	-	-	100	-	-	-	-	-	-
D277	1.0-1.1	43	0.4	31	31	42	590	<0.05	13	-	-	-	-	79	-	-	-	-	-	-
Limits of Reporting (LOR)		3	0.3	0.5	0.5	1	1	0.05	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.02	-
NATIONAL ENVIRONMEN AMENDMENT MEASURE								С												
Health-based Investigation	n Levels (HIL) ^a A - Residential A	100	20	100	6000	300 g	3800	10	400	400	400	400	400	7400	7400	7400	7400	7400		
Ecological Investigation Le	evels (EIL) - Urban residential	100 ^d	-	400 e	110 ^f	1200	-	-	30	9	35	75	390	260	630	160	930 m	380 ⁿ		
GUIDELINES FOR THE NS (2006)	SW SITE AUDITOR SCHEME																			
Provisional Phytotoxity-Ba	ased Investigation Levels (PIL)		3					1												

- b: EIL of aged nickel & zinc were derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the lowest CEC=4.5 cmolc/kg & pH=5.6 for red brown natural silty clay were selected for derivation of EIL; a conservative approach.
- c: Methyl Mercury d: Generic ElL for aged arsenic
- e: Chromium (III); the assumed clay content=10%, a conservative assumption.
- f: ElL = Ambient Background Concentration (ABC) + Added Contaminant Level (ACL) (Rounding rules applied). ABC = 18mg/kg, 25th percentile of the data for old NSW suburb with low traffic volume. ACL=95mg/kg, the lower ACL used based on the lowest CEC=5cmol/kg or pH=5.5.
- g: Generic added contaminant limit for aged lead + ambient background concentration; old NSW suburb with low traffic volume.
- h: ElL of aged nickel was derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the lowest CEC=2.0 cmolc/kg for brw on natural silty clay was selected for derivation of ElL; a conservative approach.
- i: Ell. of aged nickel was derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the lowest CEC=4.8 cmolc/kg for brw on natural sitly clay was selected for derivation of Ell.; a conservative approach.
- j: Ell. of aged nickel was derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the lowest CEC=7.0 cmolc/kg for yellow-brw on natural silty clay was selected for derivation of Ell.; a conservative approach.
- k: EIL of aged nickel was derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; CEC=34 cmolc/kg for yellow-brwon natural sity clay was adopted for derivation of EIL.
- I: Ell. of aged zinc was derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; CEC=15 cmolc/kg & pH=7.1 for red brown natural sitty clay were adopted for derivation of Ell.
- m ElL of aged zinc was derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the lowest CEC=2.0 cmolc/kg & pH=5.2 for brown natural silty clay were selected for derivation of ElL; a conservative approach.
- n: ElL of aged zinc was derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; CEC=26 cmolc/kg & pH=7.1 for brown natural silty clay was adopted for derivation of ElL.
- o: Ell. of aged zinc was derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the lowest CEC=7.0 cmolc/kg & pH=6.2 for yellow-brown natural silty clay were selected for derivation of Ell.; a conservative approach.

(Ref No: 12675/4-AB)

																			page	6 of
									ME	TALS (mg/kg)									
Sample Location	Depth (m)	ARSENIC	CADMIUM	CHROMIUM (Total)	COPPER	LEAD	MANGANESE	MERCURY	NICKEL	NICKEL	NICKEL	NICKEL	NICKEL	ZINC	ZINC	ZINC	ZINC	ZINC	CEC (cmq/kg)	Hd
Natural Soil (Silty Clay,	brown)																			
D278	0.0-0.1	28	1.0	22	35	52	2400	<0.05	_	_	15	_	_	_	_	160		_	10	
D278	0.2-0.3	27	0.9	21	32	53	2500	<0.05			15					150			-	١.
Natural Soil (Silty Clay,			0.5		02	00	2000	40.00								100				
D278	1.0-1.1	70	0.9	70	37	59	510	<0.05	17	_	_	_		200	_	_	_	_	11	
D279	0.0-0.1	280	3.4	26	47	310	4300	0.08	18					570						١.
D279	0.2-0.3	300	3.4	26	47	330	4400	<0.05	19					560						١.
Natural Soil (Silty Clay,		000	J7	20	71	000	1100	40.00	10					000						1
D280	0.2-0.3	32	0.4	30	37	20	130	<0.05	_	_	21	_	_		_	61		_	11	١.
D281	0.2-0.3	66	0.4	20	440	25	66	<0.05	_	_	12	_	_		_	55		_	4.8	
Natural Soil (Silty Clay,		00	0.4	20		20	00	40.00			12					00			4.0	
D285	0.2-0.3	97	1.0	35	40	160	2300	<0.05	17		_			340	_	_	_		_	_
D285	1.0-1.1	200	2.0	30	64	240	3200	<0.05	21		_			670	_		_			_
Natural Soil (Silty Clay,		200	2.0	30	04	240	3200	<0.00	21	_	-	_	-	0,0	_	-	-	-	_	-
D285	1.9-2.0	260	9.8	22	61	64	2600	0.36			_	11			_	_	_	1600	_	_
D286	0.2-0.3	26	0.3	29	13	58	1600	<0.05			-	6.4						45		
D286	1.0-1.1	50	0.3	35	25	67	1000	<0.05	-	-	-	10	-	-	-	-	-	69	15	1 -
Natural Soil (Silty Clay,		30	0.4	33	25	O1	1000	<0.00	-	_	-	10	-	_	_	-	-	03	13	-
D287	1.0-1.1	79	0.6	63	31	80	210	<0.05	E 1					69					_	
Natural Soil (Silty Clay,		19	0.0	03	31	80	210	<0.05	5.4	-	-	-	-	09	-	-	-	-	-	-
D287		85	0.5	35	46	54	50	0.07				11						77	_	
D288	1.9-2.0 0.6-0.7	15			14		240		-	-	-		-	-	-	-	-	180		7.1
Natural Soil (Silty Clay,		15	0.3	21	14	25	240	<0.05	-	-	-	26	-	-	-	-	-	180	16	7.1
D289	0.5-0.6	22	0.3	22	31	45	190	-0.0E			30					150			46	
Natural Soil (Silty Clay,		22	0.3	22	31	45	190	<0.05	-	-	30	-	-	-	-	150	-	-	16	_
D289	1.0-1.1	00		40	47	04	200	0.05				04						400		7.0
Natural Soil (Silty Clay,	-	22	0.4	19	47	21	300	<0.05	-	-	-	31	-	-	-	-	-	160	14	7.6
		07		0.4	00	00	4.400	0.05	40					470						
D290	0.2-0.3	27	0.9	24	26	82	1400	<0.05	12	-	-	-	-	170	-	-	-	-		ļ -
D290	1.0-1.1	28	1.1	27	25	84	1800	<0.05	14	-	-	-	-	180	•	•	•	•	7.7	6.4
Limits of Reporting (LOR)		3	0.3	0.5	0.5	1	1	0.05	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.02	-
NATIONAL ENVIRONMEN AMENDMENT MEASURE																				
Health-based Investigation	n Levels (HIL) ^a A - Residential A	100	20	100	6000	300	3800	10	400	400	400	400	400	7400	7400	7400	7400	7400		
Ecological Investigation Le	evels (EIL) - Urban residential	100 ^d	-	400 ^e	110 ^f	1200	-	-	30	9	35	75	390	260 b	630	160	930 m	380		
GUIDELINES FOR THE NS (2006)	SW SITE AUDITOR SCHEME																			
Provisional Phytotoxity-Ba	ased Investigation Levels (PIL)		3					1												

- b: ElL of aged nickel & zinc were derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the lowest CEC=4.5 cmolc/kg & pH=5.6 for red brown natural silty clay were selected for derivation of ElL; a conservative approach.
- c: Methyl Mercury
- d: Generic ElL for aged arsenic
- e: Chromium (III); the assumed clay content=10%, a conservative assumption.
- f: ElL = Ambient Background Concentration (ABC) + Added Contaminant Level (ACL) (Rounding rules applied). ABC = 18mg/kg, 25th percentile of the data for old NSW suburb with low traffic volume. ACL=95mg/kg, the lower ACL used based on the lowest CEC=5cmol/kg or pH=5.5.
- g: Generic added contaminant limit for aged lead + ambient background concentration; old NSW suburb with low traffic volume.
- h: ElL of aged nickel was derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the lowest CEC=2.0 cmolc/kg for brw on natural silty clay was selected for derivation of ElL; a conservative approach.
- i: EIL of aged nickel w as derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the lowest CEC=4.8 cmolc/kg for brw on natural sitty clay was selected for derivation of EIL; a conservative approach.
- j: Ell. of aged nickel w as derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the lowest CEC=7.0 cmolc/kg for yellow-brw on natural silty clay was selected for derivation of ElL; a conservative approach.
- k: ElL of aged nickel was derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; CEC=34 cmolc/kg for yellow-brw on natural sity clay was adopted for derivation of ElL.
- I: EIL of aged zinc w as derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; CEC=15 cmolc/kg & pH=7.1 for red brown natural sity clay were adopted for derivation of EIL.
- I: EIL of aged zinc w as derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb w ith low traffic volume; the low est CEC=2.0 cmolc/kg & pH=5.2 for brown natural silty clay were selected for derivation of EIL; a conservative approach.

 m: EIL of aged zinc w as derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb w ith low traffic volume; CEC=26 cmolc/kg & pH=7.1 for brown natural
- silty clay w as adopted for derivation of ElL.

 n: ElL of aged zinc w as derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the low est CEC=7.0 cmolc/kg & pH=6.2 for
- n: Ell. of aged zinc was derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the lowest CEC=7.0 cmolc/kg & pH=6.2 for yellow-brown natural silty clay were selected for derivation of Ell.; a conservative approach.

						META	ALS (m	g/kg)						
Sample Location	Depth (m)	ARSENIC	CADMIUM	CHROMIUM (Total)	COPPER	LEAD	MANGANESE	MERCURY (5	NICKEL	NICKEL	ZINC	ZINC	CEC (cmq/kg)	Нd
Natural Soil (Shaley Cla	ıv)													
D209	1.0-1.1	1200	8.6	41	390	320	1900	0.08	20	_	3800	_	_	_
D209	1.9-2.0	1200	4.7	28	250	140	720	0.11	25	_	2500	_	_	l _
Natural Soil (Shale)	2.0						0	0						İ
D213	1.9-2.0	54	0.3	19	28	84	390	<0.05	20	_	260	_	_	l -
Natural Soil (Shaley Cla]		. •			-50							
D216	1.0-1.1	37	0.4	28	49	44	110	<0.05	18	-	120	_	27	7.9
Natural Soil (Shale)														
D223	1.0-1.1	26	1.2	38	25	63	370	<0.05	_	30	_	310	16	8.0
D231	1.9-2.0	32	2.0	49	42	240	860	0.06	-	30	-	570	10	7.7
D235	1.9-2.0	15	0.4	16	16	5	770	<0.05	21	_	61	-	21	-
D236	1.0-1.1	6	<0.3	39	32	10	240	<0.05	21	_	35	-	-	-
D237	1.9-2.0	16	0.3	22	25	21	220	<0.05	20	_	62	-	13	-
D243	1.9-2.0	8	<0.3	56	33	6	280	< 0.05	22	-	47	-	-	-
D247	1.9-2.0	20	0.4	19	30	7	240	< 0.05	_	27	66	-	11	-
D259	1.9-2.0	17	0.5	16	25	17	610	<0.05	36	_	97	-	4.1	8.7
D265	1.0-1.1	6	<0.3	31	14	5	140	< 0.05	15	-	28	-	-	-
D271	1.9-2.0	15	0.5	18	39	19	420	0.06	20	_	220	-	7.5	8.0
D277	1.9-2.0	18	<0.3	14	24	18	540	<0.05	-	35	35	-	15	_
D280	1.0-1.1	32	0.4	24	30	16	160	<0.05	-	29	74	-	14	-
D281	1.0-1.1	69	0.4	15	500	32	110	<0.05	13	_	49	-	-	-
D282	1.0-1.1	8	<0.3	16	8.9	19	45	<0.05	9.1	-	79	-	-	-
Limits of Reporting (LOR)		3	0.3	0.5	0.5	1	1	0.05	0.5	0.5	0.5	0.5	0	-
NATIONAL ENVIRONMEN AMENDMENT MEASURE (100	20	100	6000	300	3800	c 10	400	400	7400	7400		
	vels (EIL) - Urban residential	100 ^d	-	400 ^e	110 ^f	g 1200	-	-	ь 25	h 170	280 b	480 ⁱ		
(2006)	W SITE AUDITOR SCHEME													
Provisional Phytotoxity-Bas	sed Investigation Levels (PIL)		3					1						1

- a: Residential with garden / accessible soil (home grown produce <10% fruit and vegetable intake (no poultry)), also includes childcare centres, preschools and primary schools.
- b: EIL of aged nickel & zinc were derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the low est CEC=4.1 cmolc/kg & pH=7.9 were selected for derivation of EIL; a conservative approach.
- c: Methyl Mercury
- d: Generic ElL for aged arsenic
- e: Chromium (III); the assumed clay content=10%, a conservative assumption.
- f: EIL = Ambient Background Concentration (ABC) + Added Contaminant Level (ACL) (Rounding rules applied). ABC = 18mg/kg, 25th percentile of the data for old NSW suburb with low traffic volume. ACL=95mg/kg, the lower ACL used based on the lowest CEC=5cmol/kg or pH=7.5.
- g: Generic added contaminant limit for aged lead + ambient background concentration; old NSW suburb with low traffic volume.
- h: EIL of aged nickel was derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the low est CEC=10 cmolc/kg was selected for derivation of EIL; a conservative approach.
- i: ElL of aged zinc was derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the low est CEC=10 cmolc/kg & pH=7.7 were selected for derivation of ElL; a conservative approach.

TABLE D9 METALS, CATION EXCHANGE CAPACITY (CEC) & pH TEST RESULTS DISCRETE SAMPLES - NATURAL SOIL (SHALEY CLAY & SHALE/SLATE) IN GW1 (Ref No: 12675/4-AB)

					MET	ALS (m	g/kg)					
Sample Location	Depth (m)	ARSENIC	CADMIUM	CHROMIUM (Total)	COPPER	LEAD	MANGANESE	MERCURY	NICKEL	ZINC	CEC (cmq/kg)	Hd
Natural Soil (Shaley C	lav)											
DW1	2.0-2.1	8	0.5	24	28	20	300	<0.05	29	170	20	9.7
Natural Soil (Shale/Sla		O	0.5	4 4	20	20	300	<0.05	29	170	20	9.1
DW1	3.0-3.1	8	0.4	22	32	25	590	<0.05	30	110	9.9	9.5
DW1	4.0-4.1	13	0.5	23	30	14	480	<0.05	34	140	_	_
DW1	5.0-5.1	12	0.4	22	32	14	630	<0.05	41	140	-	-
DW1	6.0-6.1	39	0.6	23	41	14	440	< 0.05	40	63	-	-
DW1	7.0-7.1	22	0.6	23	36	8	500	<0.05	46	110	14	9.8
DW1	8.0-8.1	28	0.4	23	31	7	370	<0.05	39	140	-	-
DW1	9.0-9.1	40	0.6	20	59	27	1100	<0.05	41	67	-	-
DW1	10.0-10.1	32	0.4	27	18	14	640	< 0.05	52	160	-	-
DW1	11.0-11.1	62	0.6	39	61	13	840	< 0.05	74	320	22	9.5
DW1	12.0-12.1	24	0.4	25	39	9	450	<0.05	52	140	-	-
Limits of Reporting (LOR)		3	0.3	0.5	0.5	1	1	0.05	0.5	0.5	0.02	-
		100 100	20	100 e 400	6000 210	300 g 1200	3800	° 10	400 170	7400 480		
(2006)	SW SITE AUDITOR SCHEME ased Investigation Levels (PIL)		3					1				

- a: Residential with garden / accessible soil (home grown produce <10% fruit and vegetable intake (no poultry)), also includes childcare centres, preschools and primary schools.
- b: ElL of aged nickel & zinc were derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the lowest CEC=9.9 cmolc/kg & pH=9.5 were selected for derivation of ElL; a
- c: Methyl Mercury
- d: Generic EIL for aged arsenic
- e: Chromium (III); the assumed clay content=10%, a conservative assumption.
- f: EIL = Ambient Background Concentration (ABC) + Added Contaminant Level (ACL) (Rounding rules applied). ABC = 18mg/kg, 25th percentile of the data for old NSW suburb with low traffic volume. ACL=190mg/kg, the low er ACL used based on the low est CEC=10cmol/kg or pH=8.0.
- g: Generic added contaminant limit for aged lead + ambient background concentration; old NSW suburb with low traffic volume.

TABLE D1A

METALS, CATION EXCHANGE CAPACITY (CEC) & pH TEST RESULTS DISCRETE SAMPLES - TOPSOIL (SILTY CLAY, BROWN)

(Ref No: 12675/4-AB)

					6/5/4-At		METALS (mg/kg)							
Sample Location	Depth (m)	ARSENIC	CADMIUM	CHROMIUM (Total)	COPPER	LEAD	MANGANESE	MERCURY	NICKEL	NICKEL	ZINC	ZINC	ZINC	CEC (cmq/kg)	Hd
Topsoil (Silty Clay, Brown	1)														
D101	0-0.1	52	0.7	32	22	240	3200	<0.05	11	_	210	_	_	4.0	5.5
D102	0-0.1	54	0.8	30	29	190	1500	<0.05	12		230	-	-	7.7	6.2
D103	0-0.1	140	2.9	34	100	300	3700	<0.05	19	-	890	-	-	7.6	6.1
D104	0-0.1	230	1.9	34	65	260	1700	<0.05	17	-	830	-	-	5.5	5.3
D105	0-0.1	150	0.9	28	100	370	1300	< 0.05	13	-	270	-	-	6.2	6.0
D106	0-0.1	72	0.5	32	57	110	270	<0.05	20	-	150	-	-	-	-
D107	0-0.1	180	2.1	39	150	500	3100	<0.05	25	-	630	-	-	-	-
D108	0-0.1	110	2.3	28	67	620	2700	<0.05	16	-	870	-	-	-	-
D109	0-0.1	120	2.4	37	51	310	3000	<0.05	17	-	650	-	-	-	-
D110	0-0.1	150	1.9	35	58	330	3400	<0.05	16	-	520	-	-	-	-
D111	0-0.1	87	0.9	24	41	310	3100	<0.05	9.5	-	280	-	-	-	-
D112	0-0.1	97	8.0	31	35	560	3700	<0.05	9.5	-	280	-	-	-	-
D113	0-0.1	110	8.0	35	36	210	1600	<0.05	7.9	-	220	-	-	8.3	5.8
D114	0-0.1	60	1.1	31	27	210	2300	<0.05	14	-	-	380	-	8.0	6.1
D115	0-0.1	86	2.2	36	35	320	3100	<0.05	13	-	610	-	-	7.4	5.5
D116	0-0.1	120	4.0	36	66	620	3700	0.11	-	27	1200	-	-	7.1	5.9
D117	0-0.1	180	2.3	35	110	960	3100	< 0.05	23	-	1100	-	-	-	-
D122	0-0.1	120	8.0	22	110	430	2100	< 0.05	16	-	250	-	-	-	-
D123	0-0.1	80	3.9	34	73	370	2800	< 0.05	18	-	1300	-	-	-	-
D124	0-0.1	59	8.0	31	30	300	2300	< 0.05	8.5	-	380	-	-	3.0	5.5
D125	0-0.1	46	0.5	39	18	190	1900	< 0.05	7.4	-	130	-	-	-	-
D126	0-0.1	71	1.1	34	30	270	2600	< 0.05	9.3	-	-	360	-	10	6.0
D127	0-0.1	250	3.5	40	310	660	3600	< 0.05	33	-	1500	-	-	-	-
D128	0-0.1	8	<0.3	5.5	8.7	30	680	< 0.05	10	-	82	-	-	-	-
D131	0-0.1	180	2.1	39	71	310	2500	< 0.05	14	-	630	-	-	-	-
D132	0-0.1	290	1.3	34	41	190	4100	< 0.05	13	-	-	350	-	7.9	5.9
D133	0-0.1	35	0.5	31	12	150	1600	0.09	5.4	-	140	-	-	-	-
D134	0-0.1	46	0.5	40	8.7	180	1300	<0.05	5.4	-	93	-	-	-	-
D136	0-0.1	67	8.0	28	32	280	2300	<0.05	12	-	250	-	-	5.5	6.3
D137	0-0.1	160	3.4	26	76	380	5900	0.09	-	31	950	-	-	6.3	5.7
D138	0-0.1	360	3.6	32	78	230	3300	<0.05	17	-	1700	-	-	-	-
D139	0-0.1	850	4.3	30	680	1700	4000	<0.05	-	36	1100	-	-	8.2	6.7
D140	0-0.1	330	3.7	29	110	900	4400	0.07	24	-	1000	-	-	-	-
D141	0-0.1	48	0.4	26	11	97	760	0.05	4.1	-	200	-	-	-	-
D142	0-0.1	100	8.0	32	24	250	1700	<0.05	10	-	210	-	-	9.2	6.9
D143	0-0.1	54	0.6	31	19	220	1900	<0.05		-	140	-	-	-	-
D144	0-0.1	62	0.7	49	13	190	2100	<0.05		-	200	-	-	-	-
D145	0-0.1	47	8.0	32	48	160	1800	<0.05		-	140	-	-	-	-
D147	0-0.1	53	1.5	31	20	140	2600	<0.05	13	-	230	-	-	6.0	5.9
D148	0-0.1	36	0.4	28	16	72	570	<0.05	9.5	-	71	-	-	-	-
D149	0-0.1	190	1.5	28	42	310	4200	<0.05	20	-	520	-	-	-	-
D150	0-0.1	260	2.3	20	58	380	4500	<0.05	21	-	750	-	-	-	-
D151	0-0.1	250	2.7	34	120	1600	3500	<0.05		-	1100	-	-	-	-
D152	0-0.1	250	1.8	39	92	510	2500	0.05	17	-	-	-	450	8.0	6.5
D153	0-0.1	140	1.5	31	61	460	3400	<0.05		-	-	400	-	5.6	5.8
D154	0-0.1	64	0.6	35	20	180	1300			-	110	-	-	-	-
D155	0-0.1	100	1.6	36	61	160	3900	0.05	20	-	270	-	-	7.9	6.3
Limits of Reporting (LOR)		3	0.3	0.5	0.5	1	1	0.05	0.5	0.5	0.5	0.5	0.5	0.02	-
NATIONAL ENVIRONMENT MEASURE (2013)	PROTECTION AMENDMENT														
Health-based Investigation Lo	evels (HIL) D - Commercial / Industrial D	3000	900	3600	240000	1500	60000	180°				400000	400000		
Ecological Investigation Leve	ls (EIL) - Commercial and industrial	160	-	660	160	1900	-	-	20 ^b	100	270	440	600		
GUIDELINES FOR THE NSW Provisional Phytotoxity-Base	SITE AUDITOR SCHEME (2006) d Investigation Levels (PIL)		3					1							

- b: ElL of aged nickel & zinc were derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the low est CEC=3 cmolc/kg & pH=5.5 w ere selected for derivation of EIL; a conservative approach.
- c: Methyl Mercury d: Generic ElL for aged arsenic
- e: Chromium (III); the assumed clay content=10%, a conservative assumption.
- f: ElL = Ambient Background Concentration (ABC) + Added Contaminant Level (ACL) (Rounding rules applied). ABC = 18mg/kg, 25th percentile of the data for old NSW suburb with low traffic volume. ACL=140mg/kg, the lower ACL used based on the lowest CEC=5cmol/kg or pH=5.5.
- q: Generic added contaminant limit for aged lead + ambient background concentration; old NSW suburb with low traffic volume.
- h: ElL of aged nickel was derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the low est CEC=6.3 cmolc/kg was selected for derivation of EIL; a conservative approach.
- i: ElL of aged zinc was derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the lowest CEC=5.6 cmolc/kg & pH=5.8 were selected for derivation of EIL; a conservative approach.
- j: ElL of aged zinc was derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; CEC=8.0 cmolc/kg & pH=6.5.

TABLE D2A METALS, CATION EXCHANGE CAPACITY (CEC) & pH TEST RESULTS DISCRETE SAMPLES - TOPSOIL (SILTY CLAY, GREY)

(Ref No: 12675/4-AB)

	,	71 NO.				ALS (mo	n/ka)					
	ľ			_	IVIL I		<i>g</i> / 119/					
Sample Location	Depth (m)	ARSENIC	CADMIUM	CHROMIUM (Total)	COPPER	LEAD	MANGANESE	MERCURY	NICKEL	ZINC	CEC (cmaj/kg)	Hd
Topsoil (Silty Clay, Grey	, , ,											
D118	0-0.1	15	0.4	22	22	42	550	<0.05	12	86	-	-
D119	0-0.1	11	0.3	33	16	41	500	< 0.05	13	50	9.2	5.3
D120	0-0.1	9	0.5	20	16	270	240	<0.05	14	130	-	-
D121	0-0.1	52	0.5	34	28	110	780	<0.05	11	98	-	-
D129	0-0.1	7	<0.3	7.6	9.6	31	150	< 0.05	12	56	-	-
D130	0-0.1	8	<0.3	7.2	8.1	37	620	<0.05	9.6	65	5.9	6.0
D135	0-0.1	68	8.0	34	32	200	1200	< 0.05	12	210	8.6	6.3
D146	0-0.1	31	0.4	26	13	80	1100	<0.05	8.6	74	-	-
D156	0-0.1	23	0.6	18	21	73	2200	<0.05	16	110	11	-
D157	0-0.1	33	0.4	26	9.2	75	1200	<0.05	6.8	59	2.9	5.7
Limits of Reporting (LOR)		3	0.3	0.5	0.5	1	1	0.05	0.5	0.5	0.02	-
NATIONAL ENVIRONMENT MEASURE (2013)	PROTECTION AMENDMENT							С				
Health-based Investigation I	Levels (HIL) ^a D - Commercial / Industrial D	3000	900	3600	240000	1500	60000	180	6000	400000		
Ecological Investigation Lev	rels (EIL) - Commercial and industrial	160	-	e 660	f 160	1900	-	-	20 b	250		
	V SITE AUDITOR SCHEME (2006)		3					1				
	V SITE AUDITOR SCHEME (2006) ed Investigation Levels (PIL)		3					1				

- b: ElL of aged nickel & zinc were derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the lowest CEC=2.9 cmolc/kg & pH=5.3 were selected for derivation of ElL; a conservative approach.
- c: Methyl Mercury
- d: Generic ElL for aged arsenic
- e: Chromium (III); the assumed clay content=10%, a conservative assumption.
- f: EIL = Ambient Background Concentration (ABC) + Added Contaminant Level (ACL) (Rounding rules applied). ABC = 18mg/kg, 25th percentile of the data for old NSW suburb with low traffic volume. ACL=140mg/kg, the lower ACL used based on the lowest CEC=5cmol/kg or pH=5.5.
- g: Generic added contaminant limit for aged lead + ambient background concentration; old NSW suburb with low traffic volume.

TABLE D3A

METALS, CATION EXCHANGE CAPACITY (CEC) & pH TEST RESULTS **DISCRETE SAMPLES - NATURAL SOIL (SILTY CLAY)**

(Ref No: 12675/4-AB)

nage 1 of 2

											page	1 of 2
					META	ALS (mg	J/kg)					
Sample Location	Depth (m)	ARSENIC	CADMIUM	CHROMIUM (Total)	COPPER	LEAD	MANGANESE	MERCURY	NICKEL	ZINC	CEC (cmq/kg)	Hd
Natural Soil (Silty Clay)												
A4	0.25-0.35	300	7.0	29	89	420	7400	0.05	44	2700	_	_
A4 A4	0.5-0.6	380	7.6	29	79	540	6200	0.03	31	3100	_	-
A6	0.25-0.35	300	9.0	32	100	300	8800	<0.05		3100	_	l _
A6	0.5-0.6	340	12	16	49	39	7400	0.07	17	4100	-	_
A8	0.25-0.35	310	11	30	110	250	9400	0.1	24	3700	-	-
A8	0.5-0.6	270	10	35	94	350	7700	<0.05	28	3300	9.8	6.7
A8	1.0-1.1	260	8.2	34	94	300	8000	0.06	30	3000	-	-
A9	0.25-0.35	180	3.6	38	310	340	3200	< 0.05	17	1100	-	-
A9	0.5-0.6	160	2.5	35	53	310	4200	< 0.05	39	870	-	-
A11	0.25-0.35	220	3.9	42	64	220	4600	0.11	29	1400	-	-
A11	0.5-0.6	390	17	27	71	98	12000	0.48	51	6300	-	-
A11	1.0-1.1	300	14	27	49	81	7300	0.53	28	3900	11	6.7
A11	1.9-2.0	540	49	9.2	65	93	7800	0.46	24	7600	-	-
A13	0.25-0.35	230	3.4	41	200	300	3500	<0.05		1000	-	-
Duplicate D7 = A13 (0.25-0.	,	250	3.8	37	62	210	5700	0.08	32	1400	-	-
A13	0.5-0.6	200	2.7	32 37	160	290	3200	<0.05		810	-	-
A15 A16	0.2-0.3 0.2-0.3	11 11	<0.3	38	29 26	15 31	120 93	<0.05 <0.05		45 77	- 9.3	7.0
A17	0.2-0.3	520	2.2	28	6 40	190	660	0.06	17	560	9.3 -	1 .0
A17	0.5-0.6	600	4.0	37	870	730	4300	0.00	40	1000	_	[
A18	0.2-0.3	87	0.5	23	110	94	480	<0.05		200	_	l _
D101	0.2-0.3	61	0.5	35	28	280	2300	< 0.05		180	-	-
D101	1.0-1.1	75	0.6	34	33	490	4000	< 0.05		230	7.1	6.5
D102	0.2-0.3	59	0.5	37	25	270	1500	<0.05		170	-	-
D103	0.2-0.3	140	2.1	34	95	310	3500	<0.05	17	800	9.2	6.1
D104	0.2-0.3	210	2.3	32	59	310	3000	<0.05	19	960	-	-
D105	0.2-0.3	240	1.0	40	140	410	1000	< 0.05	15	320	-	-
D106	0.2-0.3	74	0.7	35	67	110	290	<0.05	24	160	-	-
D107	0.2-0.3	200	2.2	25	170	430	3000	<0.05		640	-	-
D108	0.2-0.3	150	3.1	29	75	710	3000	<0.05		1000	-	-
D109	0.2-0.3	120	2.9	35	46	240	3000	< 0.05		630	-	-
D110	0.2-0.3	270	1.4	38	63	300	1900	<0.05		490	-	-
D111	0.2-0.3	100	1.0	32	50	330	3100	<0.05		340	5.2	5.3
D112	0.2-0.3	110 260	0.6	36	40	420	2300	<0.05		230	-	-
D113 D114	0.2-0.3 0.2-0.3	260 66	0.7	38 35	74 28	190 200	660 1600	<0.05 <0.05		300 300	-	-
D114 D115	0.2-0.3	88	1.6	38	43	320	2400	<0.05		550	6.7	5.9
SGS Lab Duplicate LB11241		80	1.9	-	47	410	5500	-	12	630	-	- 0.5
'	- (0.05			0.02	<u> </u>
	PROTECTION AMENDMENT	3	0.3	0.5	0.5	1	1	0.05	0.5	0.5	0.02	-
MEASURE (2013)	a							С				
-	evels (HIL) D - Commercial / Industrial D	3000 d	900	3600 e	240000 f	1500 g	60000	180	b	400000 b		
Ecological Investigation Leve	els (EIL) - Commercial and industrial	160	-	660	160	1900	-	-	65	330		
GUIDELINES FOR THE NSW Provisional Phytotoxity-Base	SITE AUDITOR SCHEME (2006) d Investigation Levels (PIL)		3					1				

- a: Commercial / industrial includes premises such as shops, offices, factories and industrial sites.
- b: ElL of aged nickel & zinc were derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume: the low est CEC=5.2 cmolc/kq & pH=5.3 were selected for derivation of EIL; a conservative approach. c: Methyl Mercury
- d: Generic ElL for aged arsenic
- e: Chromium (III); the assumed clay content=10%, a conservative assumption.
- f: EIL = Ambient Background Concentration (ABC) + Added Contaminant Level (ACL) (Rounding rules applied). ABC = 18mg/kg, 25th percentile of the data for old NSW suburb with low traffic volume. ACL=140mg/kg, the lower ACL used based on the lowest CEC=5cmol/kg or pH=5.5.
- g: Generic added contaminant limit for aged lead + ambient background concentration; old NSW suburb with low traffic volume.

(Ref No: 12675/4-AB)

												page	2 of 2
						METALS	6 (mg/kg)						
Sample Location	Depth (m)	ARSENIC	САБМІОМ	CHROMIUM (Total)	COPPER	LEAD	MANGANESE	MERCURY	NICKEL	ZINC	ZINC	CEC (cmq/kg)	된
Natural Soil (Silty Clay)													
D116	0.2-0.3	200	6.7	34	180	760	5200	0.2	44	2900	_	8.7	6.9
D117	0.2-0.3	170	2.2	29	110	1000	3300	<0.05	25	1100	_	-	0.5
D122	0.2-0.3	140	0.7	40	120	160	77	<0.05	16	190	_	_	_
D123	0.2-0.3	94	2.9	38	89	280	2700	<0.05		1100	_	_	_
D124	0.2-0.3	66	0.7	32	33	310	1600	<0.05		310	_	_	_
D125	0.2-0.3	51	0.5	39	20	230	2100	<0.05		140	_	_	_
D126	0.2-0.3	76	0.7	41	43	230	1300	<0.05		300	_	_	_
D127	0.2-0.3	270	3.3	38	210	630	3700	<0.05	31	1800	_	_	_
D131	0.2-0.3	190	1.7	36	69	280	2400	<0.05	13	600	_	_	_
D132	0.2-0.3	530	1.2	42	62	120	1600	<0.05	13	-	490	12	6.5
D132	1.0-1.1	940	1.2	37	99	79	2300	0.08	18	660	-	-	-
D132	1.9-2.0	540	1.2	35	71	55	1400	0.12	14	580	_	_	_
Duplicate D1 = D132 (1.9-2.		390	4.8	27	72	50	6200	0.15	31	1200	_	_	_
D133	0.2-0.3	21	<0.3		9.8	100	660	<0.05		60	_	_	_
D134	0.2-0.03	74	0.8	63	21	200	720	<0.05		110	_	-	_
D135	0.2-0.3	54	0.6	36	24	220	950	<0.05		150	_	-	_
D136	0.2-0.3	69	0.8	31	30	310	2600	<0.05	13	290	-	-	_
D137	0.2-0.3	180	2.3	32	81	420	3600	0.12	23	770	-	6.8	6.1
D138	0.2-0.3	360	3.4	26	75	260	3400	<0.05	19	1600	-	-	-
D139	0.2-0.3	1200	6.6	24	1100	970	16000	<0.05	110	1400	-	-	-
D140	0.2-0.3	630	6.1	27	270	2300	8400	0.16	44	2800	-	-	-
D141	0.2-0.3	320	2.5	28	69	570	3200	<0.05	20	770	-	7.1	6.4
D142	0.2-0.3	110	0.8	32	30	260	1900	<0.05	11	240	-	-	-
D143	0.2-0.3	63	0.7	40	19	220	2500	<0.05	9.3	160	-	-	-
D144	0.2-0.3	64	0.7	30	48	75	80	<0.05	15	200	-	-	-
D145	0.2-0.3	56	0.8	16	78	120	260	<0.05	22	170	-	-	-
D147	0.2-0.3	76	0.8	36	44	150	1200	<0.05	17	240	-	-	-
D148	0.2-0.3	47	0.6	31	36	69	760	< 0.05	23	140	-	-	-
D149	0.2-0.3	120	8.0	34	37	170	1400	< 0.05	11	290	-	-	-
D150	0.2-0.3	300	1.9	23	53	350	4000	< 0.05	21	770	-	-	-
D151	0.2-0.3	240	1.3	27	120	870	990	0.08	18	920	-	-	-
D152	0.2-0.3	270	1.9	47	110	600	2700	0.06	17	540	-	8.0	6.6
D153	0.2-0.3	170	1.3	40	64	470	3000	< 0.05	18	430	-	5.6	6.1
D154	0.2-0.3	80	8.0	39	33	330	2400	< 0.05	11	160	-	-	-
D155	0.2-0.3	120	1.7	39	83	240	4400	0.05	24	-	340	8.4	6.4
Limits of Reporting (LOR)		3	0.3	0.5	0.5	1	1	0.05	0.5	0.5	0.5	0.02	-
NATIONAL ENVIRONMENT MEASURE (2013)	PROTECTION AMENDMENT							С					
Health-based Investigation L	Levels (HIL) D - Commercial / Industrial D	3000	900	3600 e		1500 g	60000	180		400000			
Ecological Investigation Leve	els (EIL) - Commercial and industrial	160	-	660	160 ^f	1900	-	-	65	330	620		
GUIDELINES FOR THE NSW Provisional Phytotoxity-Base	/ SITE AUDITOR SCHEME (2006) ed Investigation Levels (PIL)		3					1					

- b: ElL of aged nickel & zinc were derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the lowest CEC=5.2 cmolc/kg & pH=5.3 were selected for derivation of ElL; a conservative approach.
- c: Methyl Mercury
- d: Generic ElL for aged arsenic
- e: Chromium (III); the assumed clay content=10%, a conservative assumption.
- f: ElL = Ambient Background Concentration (ABC) + Added Contaminant Level (ACL) (Rounding rules applied). ABC = 18mg/kg, 25th percentile of the data for old NSW suburb with low traffic volume. ACL=95mg/kg, the lower ACL used based on the lowest CEC=5cmol/kg or pH=5.5.
- g: Generic added contaminant limit for aged lead + ambient background concentration; old NSW suburb with low traffic volume.
- h: EIL of aged zinc was derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the low est CEC=8.4 cmolc/kg & pH=6.4 were selected for derivation of EIL; a conservative approach.

TABLE D4A METALS, CATION EXCHANGE CAPACITY (CEC) & pH TEST RESULTS DISCRETE SAMPLES - NATURAL SOIL (SHALEY CLAY & SHALE)

(Ref No: 12675/4-AB)

		(Rei	NO:	12675	(4-AB)							1		1
						META	ALS (mg/	kg)						
Sample Location	Depth (m)	ARSENIC	CADMIUM	CHROMIUM (Total)	COPPER	LEAD	MANGANESE	MERCURY	NICKEL	NICKEL	ZINC	ZINC	CEC (cmql/kg)	Hd
Natural Soil (Shaley Clay)														
A15	0.5-0.6	13	<0.3	38	34	15	86	<0.05	20	_	53	_	10	7.1
A15	1.0-1.1	19	0.3	38	33	77	180	<0.05	19	-	53	-	-	7.1
A15	1.9-2.0	11	<0.3	33	33 14	14	1000	<0.05	26	-	41	-	22	_
A16	0.5-0.6	11	0.3	2.5	19	21	58	<0.05	28	-	100	-	11	
A16	1.0-1.1	13	0.4	28	19	23	71	<0.05	29	_	110	_	9.8	_
A16	1.5-1.6	15	<0.3	17	18	16	170	<0.05	30	_	100	_	17	_
A17	1.0-1.1	420	2.9	68	320	49	630	0.24	20	_	770	_	-	
A17	1.9-2.0	410	16	18	250	570	12000	0.13	130	_	2500	_	3.9	6.9
A18	0.5-0.6	72	0.4	26	83	56	170	<0.05	15	_	160	_	-	-
A18	1.0-1.1	13	0.3	27	32	17	270	<0.05	28	_	180	_	10	7.5
D101	1.9-2.0	23	0.9	7.0	36	42	920	<0.05	-	51	-	430	16	7.7
D116	1.0-1.1	220	7.8	35	210	790	4800	0.2	35	-	3100	-	-	-
Natural Soil (Shale)														
D116	1.4-1.5	530	46	19	720	710	18000	0.64	36	_	2000	_	-	_
Natural Soil (Shaley Clay)	-													
D118	0.2-0.3	44	0.4	33	58	64	110	<0.05	25	-	130	-	-	-
D119	0.2-0.3	10	0.3	38	18	40	450	<0.05	21	-	65	-	-	-
D120	0.2-0.3	8	0.5	20	17	210	330	<0.05	15	-	130	-	-	-
D121	0.2-0.3	46	0.4	30	39	53	210	<0.05	29	-	120	-	14	-
D128	0.2-0.3	10	<0.3	11	13	20	100	<0.05	16	-	110	-	-	-
D129	0.2-0.3	13	<0.3	13	15	68	100	<0.05	12	-	74	-	-	-
D130	0.2-0.3	12	<0.3	11	15	30	130	<0.05	15	-	70	-	-	-
D130	1.0-1.1	17	0.3	12	11	15	56	<0.05	23	-	73	-	12	7.0
D139	1.0-1.1	860	3.5	44	1700	960	1600	0.11	52	-	630	-	-	-
Natural Soil (Shale)														
D139	1.4-1.5	430	2.6	34	560	170	2400	0.12	-	44	400	-	5.8	6.5
Natural Soil (Shaley Clay)														
D142	1.0-1.1	100	0.6	28	37	72	320	<0.05	11	-	250	-	-	-
D142	1.9-2.0	26	0.3	32	26	28	240	0.06	11	-	160	-	12	8.0
D146	0.2-0.3	43	0.5	35	37	49	480	<0.05	18	-	130	-	-	-
D152	1.0-1.1	390	5.9	30	240	360	4700	0.13	24	-	950	-	-	-
D152	1.9-2.0	390	4.5	37	150	85	1800	0.28	19	-	1100	-	-	-
Split S2 = D152 (1.9-2.0m)		680	17	10	180	85	21000	0.5	52	-	1200	-	-	-
D156	0.2-0.3	26	0.4	26	27	53	700	<0.05	17	-	94	-	-	-
D157	0.2-0.3	47	0.6	30	23	110	680	<0.05	21	-	73	-	-	-
D157	1.0-1.1	37	0.5	29	41	49	190	<0.05	20	-	120	-	24	8.6
D157	1.9-2.0	12	0.6	28	41	50	980	<0.05	-	59	210	-	19	-
Limits of Reporting (LOR)		3	0.3	0.5	0.5	1	1	0.05	0.5	0.5	0.5	0.5	0.02	-
NATIONAL ENVIRONMENT P MEASURE (2013)	_							c						
Health-based Investigation Le	vels (HIL) D - Commercial / Industrial D	3000	900	3600 e	240000 f	1500 g	60000	180	6000 b	6000 h	400000 b	400000 i		
Ecological Investigation Levels	s (EIL) - Commercial and industrial	160	-	660	160	1900	-	-	35	85	370	980		
GUIDELINES FOR THE NSW S Provisional Phytotoxity-Based	SITE AUDITOR SCHEME (2006) Investigation Levels (PIL)		3					1						

- a: Commercial / industrial includes premises such as shops, offices, factories and industrial sites.
- b: EIL of aged nickel & zinc were derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the low est CEC=3.9 cmolc/kg & pH=6.5 were selected for derivation of EIL; a conservative approach.
- c: Methyl Mercury
- d: Generic ElL for aged arsenic
- e: Chromium (III); the assumed clay content=10%, a conservative assumption.
- f: ElL = Ambient Background Concentration (ABC) + Added Contaminant Level (ACL) (Rounding rules applied). ABC = 18mg/kg, 25th percentile of the data for old NSW suburb with low traffic volume. ACL=140mg/kg, the lower ACL used based on the lowest CEC=5cmol/kg or pH=6.5.
- g: Generic added contaminant limit for aged lead + ambient background concentration; old NSW suburb with low traffic volume.
- h: EIL of aged nickel was derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the lowest
- CEC=5.8 cmolc/kg w as selected for derivation of ElL; a conservative approach.

 i: ElL of aged zinc w as derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; CEC=16 cmolc/kg & pH=7.7.

													page 1	l of 4
						MET	ALS (mg	/kg)						
Sample Location	Depth (m)	ARSENIC	САБМІОМ	CHROMIUM (Total)	COPPER	LEAD	MANGANESE	MERCURY	NICKEL	NICKEL	ZINC	ZINC	CEC (cmq//kg)	Hd
Topsoil (Silty Clay, Brow	n)													
D201	0-0.1	190	0.8	36	35	120	2600	<0.05	_	10	_	220	6.7	6.5
D202	0-0.1	200	4.0	31	150	36	1900	<0.05		21	460	-	-	0.5
D203	0-0.1	180	1.9	37	43	280	3100	<0.05	_	14	490	_	_	_
D208	0-0.1	130	3.4	28	79	34	2300	<0.05	_	19	370	_	_	-
D209	0-0.1	220	1.9	34	39	150	2900	<0.05	_	12	390	_	3.3	5.9
D210	0-0.1	100	0.6	30	28	78	3700	<0.05	-	12	130	-	-	-
D211	0-0.1	44	0.5	40	21	160	1100	<0.05	-	6.1	190	-	12	5.8
D213	0-0.1	73	0.5	31	20	270	2600	< 0.05	_	7.3	160	-	-	-
D214	0-0.1	48	0.6	31	13	250	4200	<0.05	-	9.3	140	-	-	-
D215	0-0.1	38	0.5	31	14	180	3100	<0.05	-	9.4	140	-	-	-
D216	0-0.1	40	0.5	38	16	120	3100	<0.05	-	11	90	-	-	-
D217	0-0.1	66	0.6	45	15	190	590	<0.05	-	8.0	110	-	-	-
D221	0-0.1	55	0.6	27	24	240	570	<0.05	-	6.2	110	-	-	-
D222	0-0.1	41	0.4	31	12	140	300	<0.05	5.2	-	56	-	-	-
D223	0-0.1	35	0.4	29	11	76	180	<0.05	5.3	-	60	-	2.7	5.5
D224	0-0.1	23	0.4	17	14	58	1600	< 0.05	-	9.4	89	-	8.8	-
D225	0-0.1	37	0.6	31	17	81	1300	< 0.05	-	12	120	-	3.1	-
D226	0.0-0.1	25	0.5	26	11	80	2800	< 0.05	-	11	120	-	5.1	-
D226	0.2-0.3	22	0.6	25	13	68	2700	< 0.05	-	11	120	-	-	-
Limits of Reporting (LOR)		3	0.3	0.5	0.5	1	1	0.05	0.5	0.5	0.5	0.5	0.02	-
NATIONAL ENVIRONMENT MEASURE (2013)	PROTECTION AMENDMENT							С						
Health-based Investigation L	.evels (HIL) D - Commercial / Industrial D	3000	900	3600	240000	1500	60000	180	6000	6000	400000	400000		ĺ
Ecological Investigation Leve	els (EIL) - Commercial and industrial	160 ^d	-	660	160 f	9 1900	-	-	^b 7	h 25	190	500 ⁱ		
	SITE AUDITOR SCHEME (2006)													
Provisional Phytotoxity-Base	ed Investigation Levels (PIL)		3					1						l

- b: EIL of aged nickel & zinc were derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the low est CEC=1.3 cmolc/kg & pH=5.5 were selected for derivation of EIL; a conservative approach.
- c: Methyl Mercury
- d: Generic ElL for aged arsenic
- e: Chromium (III); the assumed clay content=10%, a conservative assumption.
- f: EIL = Ambient Background Concentration (ABC) + Added Contaminant Level (ACL) (Rounding rules applied). ABC = 18mg/kg, 25th percentile of the data for old NSW suburb with low traffic volume. ACL=140mg/kg, the lower ACL used based on the lowest CEC=5cmol/kg or pH=5.5.
- $g: \ Generic \ added \ contaminant \ limit \ for \ aged \ lead \ + \ ambient \ background \ concentration; \ old \ NSW \ suburb \ w \ ith \ low \ traffic \ volume.$
- h: EIL of aged nickel was derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the lowest CEC=3.1 cmolc/kg was selected for derivation of EIL; a conservative approach.
- i: ElL of aged zinc was derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the lowest CEC=6.1 cmolc/kg & pH=5.6 were selected for derivation of ElL; a conservative approach.

age 2 of 4

													page 2	2 of 4
						MET	TALS (mg	J/kg)						
Sample Location	Depth (m)	ARSENIC	CADMIUM	CHROMIUM (Total)	COPPER	LEAD	MANGANESE	MERCURY	NICKEL	NICKEL	ZINC	ZINC	CEC (cmq//kg)	Hd
Topsoil (Silty Clay, Brow	n)	l												
D229	0.0-0.1	41	0.4	29	7.8	76	800	<0.05	_	6.5	61	_	_	_
D229	0.2-0.3	54	0.5	35	8.1	100	500	<0.05	-	6.4	59	_	_	_
D230	0.0-0.1	110	0.7	38	16	240	740	<0.05		-	160	_	_	_
D230	0.2-0.3	110	0.7	37	15	320	1100	<0.05	6.2	-	140	-	-	-
D231	0.0-0.1	75	0.5	31	22	150	220	<0.05	7.2	-	79	-	-	-
D231	0.2-0.3	7	<0.3	3.9	2.5	28	30	<0.05	0.7	-	8.7	-	-	-
D232	0-0.1	53	0.4	26	23	93	270	<0.05	11		51	-	-	-
D233	0-0.1	54	0.3	23	37	75	330	<0.05	7.0		36	-	-	-
D234	0-0.1	11	<0.3	21	20	20	940	<0.05	-	8.6	46	-	-	-
D234	0.2-0.3	14	<0.3	24	23	22	1100	<0.05	-	8.5	39	-	-	-
D235	0-0.1	11	0.3	27	20	16	870	<0.05	-	13	50	-	9.5	-
D236	0-0.1	11	<0.3	22	24	13	650	<0.05	-	7.8	33	-	7.3	-
D237	0-0.1	10	<0.3	18	13	16	810	<0.05	-	6.9	35	-	-	-
D237	0.2-0.3	11	<0.3	20	14	15	550	<0.05	-	7.1	33	-	-	-
D238	0-0.1	18	<0.3	29	15	28	980	<0.05	-	8.8	49	-	-	-
D238	0.2-0.3	10	< 0.3	23	14	18	700	< 0.05	-	10	52	-	8.3	-
D243	0.0-0.1	13	<0.3	22	33	12	420	< 0.05	-	7.9	30	-	-	-
D243	0.2-0.3	15	<0.3	26	34	11	270	<0.05	-	8.7	25	-	-	-
D244	0.0-0.1	9	<0.3	27	13	12	750	< 0.05	-	11	36	-	-	-
D244	0.2-0.3	13	<0.3	38	21	12	160	<0.05	-	13	30	-	-	-
Limits of Reporting (LOR)		3	0.3	0.5	0.5	1	1	0.05	0.5	0.5	0.5	0.5	0.02	-
MEASURE (2013)	PROTECTION AMENDMENT							c			10005-	10005-		
-	evels (HIL) D - Commercial / Industrial D	d	900	3600 e	240000	1500 g	60000	180	6000 7	h	400000 b	400000 i		
	els (EIL) - Commercial and industrial	160	-	660	160	1900	-	-	1	25	190	500		
GUIDELINES FOR THE NSW Provisional Phytotoxity-Base	ed Investigation Levels (PIL)		3					1						

- b: EIL of aged nickel & zinc were derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the low est CEC=1.3 cmolc/kg & pH=5.5 were selected for derivation of EIL; a conservative approach.
- c: Methyl Mercury
- d: Generic ElL for aged arsenic
- e: Chromium (III); the assumed clay content=10%, a conservative assumption.
- f: EIL = Ambient Background Concentration (ABC) + Added Contaminant Level (ACL) (Rounding rules applied). ABC = 18mg/kg, 25th percentile of the data for old NSW suburb with low traffic volume. ACL=140mg/kg, the lower ACL used based on the lowest CEC=5cmol/kg or pH=5.5.
- g: Generic added contaminant limit for aged lead + ambient background concentration; old NSW suburb with low traffic volume.
- h: EIL of aged nickel was derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the low est CEC=3.1 cmolc/kg was selected for derivation of EIL; a conservative approach.
- i: EIL of aged zinc was derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the low est CEC=6.1 cmolc/kg & pH=5.6 were selected for derivation of EIL; a conservative approach.

nage 3 of 4

													page 3	3 of 4
					•	ME	ΓALS (m	g/kg)						
Sample Location	Depth (m)	ARSENIC	CADMIUM	CHROMIUM (Total)	COPPER	LEAD	MANGANESE	MERCURY	NICKEL	NICKEL	ZINC	ZINC	CEC (cmql/kg)	Нd
Topsoil (Silty Clay, Brow	n)													
D245	0.0-0.1	13	<0.3	22	22	16	420	<0.05	_	7.5	33	_	_	_
D245	0.2-0.3	16	<0.3	27	30	18	340	<0.05	_	8.7	29	-	_	_
D246	0.0-0.1	16	0.4	30	7.5	19	110	<0.05	-	8.9	35	-	_	_
D246	0.2-0.3	20	0.3	30	16	16	55	<0.05	-	9.4	31	-	_	_
D247	0.0-0.1	19	0.3	42	21	18	45	<0.05	_	17	50	-		_
D248	0.0-0.1	48	0.5	25	15	56	370	<0.05	-	7.4	98	-	_	_
D248	0.2-0.3	150	0.7	35	33	220	670	0.05	-	12	-	260	6.1	6.4
D249	0.0-0.1	95	0.5	20	38	85	770	<0.05	-	12	120	-	-	-
D249	0.2-0.3	65	0.5	19	28	83	1100	<0.05	-	11	110	-	9.2	-
D259	0.0-0.1	40	0.7	26	14	50	1400	<0.05	-	12	190	-	8.1	6.2
D259	0.2-0.3	38	0.3	32	34	29	170	<0.05	-	19	78	-	9.6	-
D263	0.0-0.1	13	< 0.3	28	22	15	710	<0.05	-	11	28	-	-	-
D263	0.2-0.3	11	< 0.3	35	16	12	310	<0.05	-	11	23	-	6.7	-
D264	0.0-0.1	13	0.3	27	15	17	320	<0.05	-	11	42	-	4.2	-
D264	0.2-0.3	14	<0.3	28	17	18	200	<0.05	-	9.5	37	-	-	-
D265	0.0-0.1	9	<0.3	25	19	11	420	<0.05	-	11	35	-	-	-
D265	0.2-0.3	10	<0.3	28	17	9	170	< 0.05	-	14	32	-	7.6	-
D271	0.0-0.1	30	0.3	26	13	96	1300	< 0.05	-	6.3	57	-	-	-
D271	0.2-0.3	40	0.4	33	17	98	1100	<0.05	-	7.5	74	-	7.7	-
Limits of Reporting (LOR)		3	0.3	0.5	0.5	1	1	0.05	0.5	0.5	0.5	0.5	0.02	
MEASURE (2013)	PROTECTION AMENDMENT							С						
Health-based Investigation L	evels (HIL) D - Commercial / Industrial D	3000	900	3600	240000	1500	60000	180	6000	6000	400000	400000		
Ecological Investigation Leve	els (EIL) - Commercial and industrial	160 d	-	660	160 ^f	1900	-	-	^b 7	25	190	500		
GUIDELINES FOR THE NSW Provisional Phytotoxity-Base	SITE AUDITOR SCHEME (2006) and Investigation Levels (PIL)		3					1						

- b: ElL of aged nickel & zinc were derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the low est CEC=1.3 cmolc/kg & pH=5.5 were selected for derivation of ElL; a conservative approach.
- c: Methyl Mercury
- d: Generic EIL for aged arsenic
- e: Chromium (III); the assumed clay content=10%, a conservative assumption.
- f: EIL = Ambient Background Concentration (ABC) + Added Contaminant Level (ACL) (Rounding rules applied). ABC = 18mg/kg, 25th percentile of the data for old NSW suburb with low traffic volume. ACL=140mg/kg, the lower ACL used based on the lowest CEC=5cmol/kg or pH=5.5.
- g: Generic added contaminant limit for aged lead + ambient background concentration; old NSW suburb with low traffic volume.
- h: EIL of aged nickel w as derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the lowest CEC=3.1 cmolc/kg w as selected for derivation of EIL; a conservative approach.
- i: EIL of aged zinc was derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the lowest CEC=6.1 cmolc/kg & pH=6.4 were selected for derivation of EIL; a conservative approach.

1013/4-AB)

													page 4	4 of
						MET	ΓALS (mo	g/kg)						
Sample Location	Depth (m)	ARSENIC	CADMIUM	CHROMIUM (Total)	COPPER	LEAD	MANGANESE	MERCURY	NICKEL	NICKEL	ZINC	ZINC	CEC (cmq/kg)	Hd
Topsoil (Silty Clay, Brown														
D272	0.0-0.1	42	0.7	34	22	110	1700	<0.05	_	10	110	_	2.6	
D272 D272	0.2-0.3	42	0.7	34 40	24	130	2500	<0.05	-	9.8	110		3.6	-
D272 D273	0.0-0.1	51	0.5	49	4.6	100	640	<0.05		9.0	56		1.3	_
D273	0.2-0.3	69	0.6	61	9.4	110	430	<0.05		-	50		1.5	
D273	0.0-0.1	25	0.4	34	8.3	73	590	<0.05	3.6	_	54			-
D275	0.0-0.1	25	<0.3	23	10	47	860	<0.05		-	48			
D276	0.0-0.1	37	0.4	26	23	66	1400	<0.05		_	66	-		
D277	0.0-0.1	34	0.4	30	12	66	2900	<0.05	-	9.1	73	_	_	_
D277	0.2-0.3	33	0.4	26	14	70	3100	<0.05	_	11	65	_	6.2	_
D280	0.0-0.1	25	0.4	18	25	20	320	<0.05	-	15	55		6.6	_
D281	0.0-0.1	50	0.4	21	330	29	100	<0.05	_	14	57	_	4.0	_
D282	0.0-0.1	11	0.4	16	7.3	53	470	< 0.05	_	12	82	_	6.7	_
D282	0.2-0.3	15	0.3	17	8.5	90	250	< 0.05	_	12	87	_	-	_
D283	0.0-0.1	13	<0.3	14	20	19	120	<0.05	_	8.3	50	_	_	_
D283	0.2-0.3	9	<0.3	21.0	18	11	91	<0.05	_	14	74	_	7.5	_
D284	0.0-0.1	10	<0.3	17	2.3	9	110	< 0.05	-	12	44	_	_	_
D284	0.2-0.3	10	<0.3	18	2.5	11	150	< 0.05	-	14	53	_	4.0	_
D285	0.0-0.1	43	0.8	27	16	82	910	<0.05	_	8.6	170	-	6.5	5.6
D286	0.0-0.1	26	0.4	31	9.6	58	1900	<0.05	5.5	-	44	-	-	-
D287	0.0-0.1	29	0.5	34	12	73	780	0.05	3.8	-	57	-	-	-
D287	0.2-0.3	53	0.5	50	15	95	900	0.05	-	6.2	64	-	5.3	-
D288	0.0-0.1	22	0.6	23	16	30	440	< 0.05	-	19	190	-	12	6.4
D288	0.2-0.3	16	0.4	28	16	20	190	<0.05	-	25	110	-	-	-
D289	0.0-0.1	16	0.3	23	31	17	210	<0.05	-	16	69	-	6.8	-
D289	0.2-0.3	17	<0.3	22	30	19	120	<0.05	-	12	51	-	-	-
D290	0.0-0.1	22	1.6	22	20	84	2500	<0.05	-	11	180	-	5.9	5.7
Limits of Reporting (LOR)		3	0.3	0.5	0.5	1	1	0.05	0.5	0.5	0.5	0.5	0.02	-
NATIONAL ENVIRONMENT I MEASURE (2013)	PROTECTION AMENDMENT													
Health-based Investigation Le	evels (HIL) D - Commercial / Industrial D	3000	900	3600	240000	1500	60000	180	6000	6000	400000	400000		
Ecological Investigation Level	ls (EIL) - Commercial and industrial	160	-	660 660	160 ^f	1900	-	-	^b 7	25	190	500		
GUIDELINES FOR THE NSW Provisional Phytotoxity-Based	SITE AUDITOR SCHEME (2006) d Investigation Levels (PIL)		3					1						

- b: ElL of aged nickel & zinc were derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the low est CEC=1.3 cmolc/kg & pH=5.5 were selected for derivation of ElL; a conservative approach.
- c: Methyl Mercury
- d: Generic EIL for aged arsenic
- e: Chromium (III); the assumed clay content=10%, a conservative assumption.
- f: EIL = Ambient Background Concentration (ABC) + Added Contaminant Level (ACL) (Rounding rules applied). ABC = 18mg/kg, 25th percentile of the data for old NSW suburb with low traffic volume. ACL=140mg/kg, the lower ACL used based on the lowest CEC=5cmol/kg or pH=5.5.
- g: Generic added contaminant limit for aged lead + ambient background concentration; old NSW suburb with low traffic volume.
- h: EIL of aged nickel was derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the low est CEC=3.1 cmolc/kg was selected for derivation of EIL; a conservative approach.
- i: ElL of aged zinc was derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the low est CEC=6.1 cmolc/kg & pH=5.6 were selected for derivation of ElL; a conservative approach.

						METAL	S (mg/kg)	1					
Sample Location	Depth (m)	ARSENIC	CADMIUM	CHROMIUM (Total)	COPPER	LEAD	MANGANESE	MERCURY	NICKEL	ZINC	ZINC	CEC (cmq/kg)	Hd
Topsoil (Silty Clay, Grey)													
D204	0-0.1	14	<0.3	15	7.8	52	880	<0.05	8.3	65	-	_	5.7
D205	0-0.1	14	<0.3	17	13	50	310	<0.05	13	78	-	6.7	-
D206	0-0.1	9	<0.3	13	2.7	15	300	<0.05	10	63	-	5.6	5.5
D207	0-0.1	27	0.4	20	21	18	350	<0.05	13	55	-	8.5	-
D212	0-0.1	56	0.5	41	11	210	1800	<0.05	4.7	100	-	-	-
D219	0-0.1	72	0.5	49	8.5	230	1700	< 0.05	3.9	88	-	2.4	5.4
D220	0-0.1	34	0.5	37	16	120	820	0.07	4.8	-	240	10	6.2
Limits of Reporting (LOR)		3	0.3	0.5	0.5	1	1	0.05	0.5	0.5	0.5	0.02	-
NATIONAL ENVIRONMENT MEASURE (2013)	PROTECTION AMENDMENT							С					
Health-based Investigation L	evels (HIL) ^a D - Commercial / Industrial D	3000	900	3600	240000	1500	60000	180	6000	400000	400000		
Ecological Investigation Leve	els (EIL) - Commercial and industrial	160 d	-	660	160 ^f	g 1900	-	-	15	230	700 h		
GUIDELINES FOR THE NSW	SITE AUDITOR SCHEME (2006)												
Provisional Phytotoxity-Base	d Investigation Levels (PIL)		3					1					

- b: EIL of aged nickel & zinc were derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the lowest CEC=2.4 cmolc/kg & pH=5.4; the assumed clay content=10 % were selected for derivation of EIL; a conservative
- c: Methyl Mercury
- d: Generic ElL for aged arsenic
- e: Chromium (III); the assumed clay content=10%, a conservative assumption.
- f: EIL = Ambient Background Concentration (ABC) + Added Contaminant Level (ACL) (Rounding rules applied). ABC = 18mg/kg, 25th percentile of the data for old NSW suburb with low traffic volume. ACL=140mg/kg, the low er ACL used based on the low est
- g: Generic added contaminant limit for aged lead + ambient background concentration; old NSW suburb with low traffic volume.
- h: ElL of aged zinc was derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; CEC=10 cmolc/kg & pH=6.2.

																	page	1 of (
								META	LS (m	ng/kg)								
Sample Location	Depth (m)	ARSENIC	CADMIUM	CHROMIUM (Total)	COPPER	LEAD	MANGANESE	MERCURY	NICKEL	NICKEL	NICKEL	NICKEL	ZINC	ZINC	ZINC	ZINC	CEC (cmą/kg)	Hd
Natural Soil (Silty Clay, re	nd brown)																	
D201	0.2-0.3	300	0.8	33	51	100	2900	<0.05	11					390			_	_
D201	1.0-1.1	450	1.1	34	86	64	2000	0.08	11	-	-	-	-	450	-	-		_
D201	1.9-2.0	530	1.0	38	82	59	730	<0.05	11	-	-	-	-	310	-		16	7.3
D201	0.2-0.3	500	0.9	38	52	130	1300	<0.05	13	-	-	-	-	270	-		10	1.3
D202 D202	1.0-1.1	670	2.4	36 45	91	100	13000	0.15	18	-	-	-	1000	210	-			_
D202 D203	0.2-0.3	120	0.6	43	43	110	420	<0.05	11	-		-	240			-		
D203	0.9-1.0	82	0.5	35	60	98	170	<0.05		_	_	_	240	380	_	_	15	7.1
Natural Soil (Silty Clay, ye		02	0.5	33	00	90	170	<0.03	17	-	-	-	-	300	-	-	13	7.1
D204	0.2-0.3	37	0.4	11	35	22	280	<0.05			_	32	_		_	120	_	6.7
D204	1.0-1.1	24	0.3	27	27	17	90	<0.05	_	_	_	21	_	_	_	85	_	-
D205	0.2-0.3	15	0.5	24	37	43	210	<0.05			-	31	-	-		130	_	
D205	0.7-0.8	13	0.3	24	16	27	160	<0.05	_	_	_	31	_	_	_	110	_	_
D206	0.2-0.3	10	0.3	20	2.7	6	130	<0.05			-	15	-	-		73	13	7.1
D206	0.6-0.7	32	0.4	17	6.2	15	170	<0.05	_		_	12	_			87	-	
D207	0.2-0.3	110	0.4	32	56	13	220	<0.05	_	_	_	23	_	_	_	50	_	_
D207	1.0-1.1	130	0.4	28	56	14	260	<0.05			-	23	-	-		51		
Natural Soil (Silty Clay, re		100	0.4	20	00		200	٦٥.00				20				01		
D208	0.2-0.3	220	2.4	42	170	29	630	< 0.05	26	_	_	_	390	_	_	_	_	_
D208	1.0-1.1	1200	100	12	100	330	34000	0.11	27	_	_	_	9600	_	_	_	_	_
D209	0.2-0.3	570	9.4	38	230	380	5600	0.06	20	_	_	_	1900	_	_	_	-	_
D210	0.2-0.3	190	0.8	32	48	69	4300	<0.05	17	_	_	_	170	_	_	_	-	_
D210	1.0-1.1	590	1.6	38	82	190	12000	<0.05		-	-	-	320	-	-	-	-	-
Limits of Reporting (LOR)		3	0.3	0.5	0.5	1	1	0.05	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.02	-
NATIONAL ENVIRONMENT MEASURE (2013)	PROTECTION AMENDMENT																	
Health-based Investigation L	evels (HIL) ^a D - Commercial / Industria	D 3000	900	3600	240000	1500	60000	180	6000	6000	6000	6000	400000	400000	400000	400000		
Ecological Investigation Leve	els (EIL) - Commercial and industrial	160 d	-	660 660	160 ^f	1900	-	-	50 50	10	55	130	350 b	940	200	550		
GUIDELINES FOR THE NSW Provisional Phytotoxity-Base	SITE AUDITOR SCHEME (2006) and Investigation Levels (PIL)		3					1										

- a: Commercial / industrial includes premises such as shops, offices, factories and industrial sites
- b: ElL of aged nickel & zinc were derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the lowest CEC=4.5 cmolc/kg & pH=5.6 for red brown natural silty clay were selected for derivation of ElL; a conservative approach.
- c: Methyl Mercury
- d: Generic ElL for aged arsenic
- e: Chromium (III); the assumed clay content=10%, a conservative assumption.
- f: ElL = Ambient Background Concentration (ABC) + Added Contaminant Level (ACL) (Rounding rules applied). ABC = 18mg/kg, 25th percentile of the data for old NSW suburb with low traffic volume. ACL=140mg/kg, the low er ACL used based on the low est CEC=5cmol/kg or pH=5.5.
- g: Generic added contaminant limit for aged lead + ambient background concentration; old NSW suburb with low traffic volume.
- h: EIL of aged nickel w as derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the low est CEC=2.0 cmolc/kg for brw on natural silty clay w as selected for derivation of EIL; a conservative approach.
- i: ElL of aged nickel was derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the lowest CEC=4.8 cmolc/kg for brw on natural silty clay was selected for derivation of ElL; a conservative approach.
- j: ElL of aged nickel was derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the lowest CEC=7.0 cmolc/kg for yellow-brw on natural silty clay was selected for derivation of ElL; a conservative approach.
- k: ElL of aged zinc w as derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; CEC=15 cmolc/kg & pH=7.1 for red brown natural silty clay were adopted for derivation of ElL.
- I: EIL of aged zinc w as derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the low est CEC=2.0 cmolc/kg & pH=5.2 for brown natural silty clay were selected for derivation of EIL; a conservative approach.
- m: ElL of aged zinc w as derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the lowest CEC=7.0 cmolc/kg & pH=6.2 for yellow -brown natural sitty clay were selected for derivation of ElL; a conservative approach.

0.0.1.1.<u>-</u>)

																	page	2 of
								META	LS (n	ng/kg)								
Sample Location	Depth (m)	ARSENIC	CADMIUM	CHROMIUM (Total)	COPPER	LEAD	MANGANESE	MERCURY	NICKEL	NICKEL	NICKEL	NICKEL	ZINC	ZINC	ZINC	ZINC	CEC (cmol/kg)	Hd
Natural Soil (Silty Clay, ye	allow-brown)																	
D211	0.2-0.3	20	0.3	33	39	66	74	0.08				9.8				86	_	
Natural Soil (Silty Clay, re		38	0.3	33	39	00	74	0.06	-	-	-	9.0	-	-	-	00	-	-
D211	1.0-1.1	34	0.3	23	31	60	870	<0.05	20				84				_	
D211	1.9-2.0	43	0.4	22	34	110	1100	<0.05	12				90				_	_
Natural Soil (Silty Clay, ye		40	0.4		04	110	1100	~0.00	12				50					
D212	0.2-0.3	86	0.5	41	40	100	150	<0.05	_	_		10	_			140	_	١.
D212	1.0-1.1	57	0.4	39	18	110	520	<0.05				5.9	_	_	_	75	7.0	6.2
Natural Soil (Silty Clay, re		1	0.1	00			020	-0.00				0.0						0.2
D213	0.2-0.3	95	0.6	34	25	370	3100	<0.05	8.7	-	-	-	160	-	_	-	4.5	5.8
Natural Soil (Silty Clay, br																		
D213	1.0-1.1	120	0.6	36	70	140	61	0.11	-	-	14	-	-	-	200	-	26	7.1
Natural Soil (Silty Clay, re	ed brown)																	
D214	0.2-0.3	49	0.5	34	19	230	3500	< 0.05	8.8	-	-	-	130	-	-	-	-	-
D214	1.0-1.1	94	0.6	45	19	240	2800	< 0.05	9.1	-	-	-	140	-	-	-	-	-
D215	0.2-0.3	44	0.5	31	25	140	1500	< 0.05	14	-	-	-	160	-	-	-	12	6.8
Natural Soil (Silty Clay, ye	ellow-brown)																	
D215	1.0-1.1	62	0.7	17	32	71	950	0.1	-	-	-	16	-	-	-	320	29	7.6
D215	1.9-2.0	29	2.0	11	14	37	1500	0.08	-	-	-	16	-	-	-	220	-	-
Natural Soil (Silty Clay, br	rown)																	
D216	0.2-0.3	47	0.5	30	43	54	230	< 0.05	-	-	13	-	-	-	100	-	18	7.3
D217	0.2-0.3	75	0.6	46	25	220	500	< 0.05	-	-	9.9	-	-	-	110	-	7.2	-
Natural Soil (Silty Clay, ye	ellow-brown)																	
D217	1.0-1.1	45	0.4	29	56	56	74	< 0.05	-	-	-	18	-	-	-	170	23	7.1
D217	1.9-2.0	16	0.3	16	34	17	130	< 0.05	-	-	-	11	-	-	-	66	-	-
Limits of Reporting (LOR)		3	0.3	0.5	0.5	1	1	0.05	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.02	-
NATIONAL ENVIRONMENT MEASURE (2013)	PROTECTION AMENDMENT																	
Health-based Investigation L	evels (HIL) ^a D - Commercial / Industrial	D 3000	900	3600	240000	1500	60000	180	6000	6000	6000	6000	400000	400000	400000	400000		
Ecological Investigation Leve	els (EIL) - Commercial and industrial	160	-	660	160 ^f	g 1900	-	-	50	10	55	j 130	350	940	200	550		
GUIDELINES FOR THE NSW Provisional Phytotoxity-Base	SITE AUDITOR SCHEME (2006) and Investigation Levels (PIL)		3					1										

- b: EIL of aged nickel & zinc were derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the lowest CEC=4.5 cmolc/kg & pH=5.6 for red brown natural silty clay were selected for derivation of EIL; a conservative approach.
- c: Methyl Mercury
- d: Generic ElL for aged arsenic
- e: Chromium (III); the assumed clay content=10%, a conservative assumption.
- f: EIL = Ambient Background Concentration (ABC) + Added Contaminant Level (ACL) (Rounding rules applied). ABC = 18mg/kg, 25th percentile of the data for old NSW suburb with low traffic volume. ACL=140mg/kg, the lower ACL used based on the lowest CEC=5cmol/kg or pH=5.5.
- g: Generic added contaminant limit for aged lead + ambient background concentration; old NSW suburb with low traffic volume.
- h: ElL of aged nickel was derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the lowest CEC=2.0 cmolc/kg for brw on natural silty clay was selected for derivation of ElL; a conservative approach.
- i: EIL of aged nickel was derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the lowest CEC=4.8 cmolc/kg for brw on natural sitty clay was selected for derivation of EIL; a conservative approach.
- j: ElL of aged nickel was derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the lowest CEC=7.0 cmolc/kg for yellow-brw on natural silty clay was selected for derivation of ElL; a conservative approach.
- k: Ell. of aged zinc was derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; CEC=15 cmolc/kg & pH=7.1 for red brown natural silty clay were adopted for derivation of Ell.
- I: EIL of aged zinc was derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the lowest CEC=2.0 cmoic/kg & pH=5.2 for brown natural silty clay were selected for derivation of EIL; a conservative approach.
- mt ElL of aged zinc was derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the lowest CEC=7.0 cmolc/kg & pH=6.2 for yellow-brown natural silty clay were selected for derivation of ElL; a conservative approach.

(Ref No: 12675/4-AB)

																	page	3 of
								META	LS (m	g/kg)								
Sample Location	Depth (m)	ARSENIC	CADMIUM	CHROMIUM (Total)	COPPER	LEAD	MANGANESE	MERCURY	NICKEL	NICKEL	NICKEL	NICKEL	ZINC	ZINC	ZINC	ZINC	CEC (cmq/kg)	7
Natural Soil (Silty Clay, bro	own)																	
D218	0.2-0.3	49	0.5	35	9.3	140	2000	<0.05		4.4		_	_	_	77		2.0	5
Natural Soil (Silty Clay, yel		49	0.5	33	9.3	140	2000	<0.03	•	4.4	-	-		-	"	-	2.0	"
D218	1.0-1.1	73	0.6	30	41	76	1400	0.07				17				170	21	
D219	0.2-0.3	90	0.6	50	25	200	1200	<0.05				7.8				100	-	
D219	1.0-1.1	90	0.5	31	51	170	310	<0.05				12				130	_	
Natural Soil (Silty Clay, red		30	0.5	31	31	170	310	~U.UU	-	-	-	12	-	-	-	130	-	1
D219	1.9-2.0	72	0.4	34	34	170	450	<0.05	12			_	120	_			21	8
Natural Soil (Silty Clay, yel		12	0.4	34	34	170	450	<0.00	12				120				21	
D220	0.2-0.3	36	0.4	30	35	56	100	0.06				10	_	_		69	_	
Natural Soil (Silty Clay, red		30	0.4	30	55	30	100	0.00				10				03	_	
D220	1.0-1.1	38	0.4	28	40	56	64	<0.05	9.3			_	72				_	
D221	0.2-0.3	57	0.5	32	14	190	560	<0.05	5.7			_	83		_		_	
Natural Soil (Silty Clay, yel		37	0.5	32	14	130	300	<0.00	5.7				03				_	
D221	1.0-1.1	250	3.6	28	98	420	4300	0.17				52	_	_		860	_	
D221	1.9-2.0	1600	50	14	460	320	47000	0.17				140				10000	_	
Natural Soil (Silty Clay, red		1000	30	1-4	400	320	47000	0.4	-	-	-	140	-	_	-	10000	_	
D222	0.2-0.3	48	0.5	43	53	130	43	<0.05	17				140				_	
Natural Soil (Silty Clay, yel		40	0.5	40	55	130	45	<0.00	17	-	-	-	140	_	-	-	_	
D222	1.0-1.1	21	<0.3	20	28	80	230	<0.05				18	_		_	84	_	
Natural Soil (Silty Clay, red			40.0	20	20	00	200	٦٥.00				10				04		
D223	0.2-0.3	53	0.6	42	34	120	99	<0.05	15			_	150		_		8.0	
D224	0.2-0.3	32	0.3	23	20	75	1200	<0.05	12			_	92		_		0.0	ľ
Natural Soil (Silty Clay, yel		32	0.5	23	20	73	1200	<0.00	12				32				_	
D224	1.0-1.1	53	0.5	41	49	71	250	<0.05				25	_	_		140	9.1	
Natural Soil (Silty Clay, bro		33	0.5	41	43	/ 1	230	<0.00	-	-	-	23	-	_	-	140	3.1	
D225	0.2-0.3	32	0.3	26	11	54	430	<0.05	-	8.9	-	-	-	-		62	_	
Limits of Reporting (LOR)		3	0.3	0.5	0.5	1	1	0.05	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.02	╁
NATIONAL ENVIRONMENT P MEASURE (2013)	PROTECTION AMENDMENT	3	0.3	0.0	0.0		- 1		0.0	0.3	0.3	0.0	0.0	0.0	0.0	0.5	0.02	
Health-based Investigation Le	vels (HIL) D - Commercial / Industrial D	3000	900	3600	240000	1500	60000	180	6000	6000	6000	6000	400000	400000	400000	400000		
Ecological Investigation Levels	s (EIL) - Commercial and industrial	160 ^d	-	660	140 ^f	9 1900	-	-	50	10	55	j 130	350 ^b	940	200	550		
GUIDELINES FOR THE NSW : Provisional Phytotoxity-Based	SITE AUDITOR SCHEME (2006) Investigation Levels (PIL)		3					1										

- b: ElL of aged nickel & zinc were derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the lowest CEC=4.5 cmolc/kg & pH=5.6 for red brown natural sitty clay were selected for derivation of ElL; a conservative approach.
- c: Methyl Mercury
 d: Generic ElL for aged arsenic
- e: Chromium (III); the assumed clay content=10%, a conservative assumption.
- f: EIL = Ambient Background Concentration (ABC) + Added Contaminant Level (ACL) (Rounding rules applied). ABC = 18mg/kg, 25th percentile of the data for old NSW suburb with low traffic volume. ACL=140mg/kg, the low er ACL used based on the low est CEC=5cmol/kg or pH=5.5.
- g: Generic added contaminant limit for aged lead + ambient background concentration; old NSW suburb with low traffic volume.
- h: ElL of aged nickel was derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the lowest CEC=2.0 cmolc/kg for brw on natural silty clay was selected for derivation of ElL; a conservative approach.
- i: EIL of aged nickel w as derived from calculation spreadsheet developed by CSIRO for NEPC, old NSW suburb w ith low traffic volume; the low est CEC=4.8 cmolc/kg for brw on natural silty clay w as selected for derivation of EIL; a conservative approach.
- j: Ell. of aged nickel w as derived from calculation spreadsheet developed by CSIRO for NEPC, old NSW suburb with low traffic volume; the lowest CEC=7.0 cmolc/kg for yellow-brw on natural sitty clay was selected for derivation of ElL; a conservative approach.
- k: Ell of aged zinc was derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; CEC=15 cmolc/kg & pH=7.1 for red brown natural silty clay were adopted for derivation of Ell.
- I: EIL of aged zinc w as derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the low est CEC=2.0 cmolc/kg & pH=5.2 for brown natural sitly clay were selected for derivation of EIL; a conservative approach.
- m: EllL of aged zinc w as derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the low est CEC=7.0 cmolc/kg & pH=6.2 for yellow-brown natural silty clay were selected for derivation of ElL; a conservative approach.

																	page	4 of (
								META	ALS (r	ng/kg)								
Sample Location	Depth (m)	ARSENIC	CADMIUM	CHROMIUM (Total)	COPPER	LEAD	MANGANESE	MERCURY	NICKEL	NICKEL	NICKEL	NICKEL	ZINC	ZINC	ZINC	ZINC	CEC (cmq/kg)	Hd
Natural Soil (Silty Clay, y	rellow-brown)																	
D225	1.0-1.1	60	0.6	39	27	79	1400	<0.05				15	_			140	_	_
D225	1.9-2.0	48	13	36	39	54	14000	0.54	-	-	-	77	_	-	-	2400	34	7.7
D225 D226	1.0-1.1	40	0.4	30	15	91	14000	< 0.05	-	-	-	8.8	-	-	-	87	10	1.1
D229	1.0-1.1	29	0.4	28	27	58	1400	<0.05	-	-	-	24	-	-		170	11	6.7
D229 D230	1.0-1.1	130	0.4	26 27	52	240	4200	<0.05	-			29	-	-		310	16	7.3
D230 D231	1.0-1.1	33	0.7	17	52 46	440	1000	0.05				35				230	24	8.0
D231 D232	0.2-0.3	44	0.4	32	60	230	220	<0.05				19	-	-		130	-	0.0
D232	1.0-1.1	96	0.6	30	96	550	930	0.06				23	-	-		330	15	8.4
D232 D233	0.2-0.3	68	0.4	32	84	150	260	<0.05				10	-	-		49	- 15	0.4
D233	1.0-1.1	130	0.7	24	220	180	410	0.15				21	-	-		130	_	
D233	1.9-2.0	140	1.1	19	170	150	460	0.15				41	-	-		300	_	1 .
D233	1.0-1.1	18	<0.3	35	35	150	120	<0.05	-	-	-	14				39	_	
Natural Soil (Silty Clay, r		10	<0.5	55	33	13	120	<0.00				14				33	_	
D235	0.2-0.3	14	0.4	37	24	14	310	<0.05	16	_		_	51	_	_	_	18	
Natural Soil (Silty Clay, y		''	0	٠.			0.0	40.00					٥.					
D235	1.0-1.1	20	<0.3	20	22	6	300	<0.05	_	_	_	17	_	_		35	9.1	_
D236	0.2-0.3	14	<0.3	33	41	14	250	<0.05	_	_	_	10	_	_	_	29	8.2	_
D237	1.0-1.1	19	0.3	25	35	9	83	<0.05	_	_	_	19	_	_	_	56	-	_
D238	1.0-1.1	22	0.3	31	37	31	110	<0.05	_	_	_	20	_	_	_	97	17	_
D243	1.0-1.1	9	0.3	58	33	7	510	<0.05	_	_	_	27	_	_	_	50	-	_
D244	1.0-1.1	11	<0.3	38	17	10	150	<0.05	_			15	_	_	-	29	-	_
D245	1.0-1.1	23	0.3	40	40	18	190	<0.05	_			16	_	_	-	55	-	_
D245	1.9-2.0	8	0.5	38	53	9	290	<0.05	-	-	-	16		-	-	170	11	7.7
Limits of Reporting (LOR)		3	0.3	0.5	0.5	1	1	0.05	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.02	-
	F PROTECTION AMENDMENT							С										
Health-based Investigation	Levels (HIL) D - Commercial / Industrial D	3000	900	3600	2E+05	1500	60000	180	6000	6000	6000	6000	400000	400000	400000	400000		
Ecological Investigation Lev	rels (EIL) - Commercial and industrial	160	-	660 ^e	160 ^f	1900	-	-	50 50	10 h	55 55	130	350	940	200	550 m		
	V SITE AUDITOR SCHEME (2006) ed Investigation Levels (PIL)		3					1										

- a: Commercial / industrial includes premises such as shops, offices, factories and industrial sites.
- b: EIL of aged nickel & zinc were derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the lowest CEC=4.5 cmolc/kg & pH=5.6 for red brown natural silty clay were selected for derivation of EIL; a conservative approach.
- c: Methyl Mercury
- d: Generic ElL for aged arsenic
- e: Chromium (III); the assumed clay content=10%, a conservative assumption.
- f: ElL = Ambient Background Concentration (ABC) + Added Contaminant Level (ACL) (Rounding rules applied). ABC = 18mg/kg, 25th percentile of the data for old NSW suburb with low traffic volume. ACL=140mg/kg, the lower ACL used based on the lowest CEC=5cmol/kg or pH=5.5.
- g: Generic added contaminant limit for aged lead + ambient background concentration; old NSW suburb with low traffic volume.
- h: ElL of aged nickel was derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the lowest CEC=2.0 cmolc/kg for brw on natural silty clay was selected for derivation of ElL; a conservative approach.
- i: EIL of aged nickel w as derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the low est CEC=4.8 cmolc/kg for brw on natural sitty clay was selected for derivation of EIL; a conservative approach.
- j: ElL of aged nickel w as derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the low est CEC=7.0 cmolc/kg for yellow-brw on natural silty clay w as selected for derivation of ElL; a conservative approach.
- k: ElL of aged zinc was derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; CEC=15 cmolc/kg & pH=7.1 for red brown natural silty clay were adopted for derivation of ElL.
- I: EIL of aged zinc was derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the low est CEC=2.0 cmolc/kg & pH=5.2 for brown natural silty clay were selected for derivation of EIL; a conservative approach.
- m: ElL of aged zinc was derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the lowest CEC=7.0 cmolc/kg & pH=6.2 for yellow-brown natural silty clay were selected for derivation of ElL; a conservative approach.

																	page	5 of
								META	LS (m	g/kg)								
Sample Location	Depth (m)	ARSENIC	CADMIUM	CHROMIUM (Total)	COPPER	LEAD	MANGANESE	MERCURY	NICKEL	NICKEL	NICKEL	NICKEL	ZINC	ZINC	ZINC	ZINC	CEC (cmq/kg)	Hd
Natural Soil (Silty Clay, y	rellow-brown)																	
D246	1.0-1.1	17	0.3	21	32	11	390	<0.05				27	_			43	19	١.
D247	0.2-0.3	19	0.3	38	24	18	62	<0.05				21				55	22	١.
D247	1.0-1.1	16	<0.3	29	21	15	120	<0.05				22				58	-	١.
D248	1.0-1.1	290	1.8	37	66	140	1300	0.07		_	_	33		_		700	-	١.
D249	0.0-0.1	95	0.5	20	38	85	770	<0.05		_	_	12		_		120	-	١.
D249	1.0-1.1	45	0.4	35	42	48	380	<0.05	_		_	24		-	-	110	11	١.
D259	1.0-1.1	54	0.3	33	50	35	130	<0.05	_	_	_	23		-		99	-	
D271	1.0-1.1	96	0.7	34	54	210	690	0.05	-		-	19		-	-	240	21	6.9
D272	0.7-0.8	49	0.5	26	51	65	170	< 0.05	-	-	-	14		-	-	110	11	-
Natural Soil (Silty Clay, r	ed brown)																	
D273	1.0-1.1	55	0.5	41	30	75	120	< 0.05	10	-	-	-	74	-		-	-	-
Natural Soil (Silty Clay, y	rellow-brown)																	
D273	1.9-2.0	42	0.4	28	34	95	42	< 0.05	-	-	-	15	-	-	-	92	21	-
Natural Soil (Silty Clay, r	ed brown)																	
D274	0.2-0.3	63	8.0	71	15	130	670	< 0.05	7.6	-	-	-	82	-	-	-	-	-
D274	1.0-1.1	33	0.3	31	28	45	51	< 0.05	9.6	-	-	-	61	-	-	-	23	-
D275	0.2-0.3	42	0.5	39	12	76	1200	< 0.05	6.1	-	-	-	48	-	-	-	-	-
D275	1.0-1.1	42	0.4	34	28	45	140	< 0.05	10	-	-	-	53	-	-	-	-	-
D275	1.9-2.0	130	1.0	31	64	67	6200	0.08	18	-	-	-	100	-	-	-	31	-
D276	0.2-0.3	76	0.6	45	45	74	800	< 0.05	9.1	-	-	-	84	-	-	-	-	-
D276	1.0-1.1	85	0.7	40	80	47	510	< 0.05	15	-	-	-	100	-	-	-	-	-
D277	1.0-1.1	43	0.4	31	31	42	590	<0.05	13	-	-	-	79	-	-	-	-	-
Limits of Reporting (LOR)		3	0.3	0.5	0.5	1	1	0.05	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.02	-
NATIONAL ENVIRONMENT MEASURE (2013)	PROTECTION AMENDMENT							С										
Health-based Investigation	Levels (HIL) D - Commercial / Industrial [3000	900	3600	240000	1500	60000	180	6000	6000	6000	6000	400000	400000	400000	400000		
Ecological Investigation Lev	rels (EIL) - Commercial and industrial	160 ^d	-	660	160 ^f	g 1900	-	-	50	10	55	j 130	350	940	200	550 m		
	V SITE AUDITOR SCHEME (2006) ed Investigation Levels (PIL)		3					1										

- b: EIL of aged nickel & zinc were derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the lowest CEC=4.5 cmolc/kg & pH=5.6 for red brown natural silty clay were selected for derivation of EIL; a conservative approach.
- c: Methyl Mercury
- d: Generic EIL for aged arsenic
- e: Chromium (III); the assumed clay content=10%, a conservative assumption.
- f: ElL = Ambient Background Concentration (ABC) + Added Contaminant Level (ACL) (Rounding rules applied). ABC = 18mg/kg, 25th percentile of the data for old NSW suburb with low traffic volume. ACL=140mg/kg, the low er ACL used based on the low est CEC=5cmol/kg or pH=5.5.
- $g: \ \ Generic \ added \ contaminant \ limit \ for \ aged \ lead + ambient \ background \ concentration; \ old \ NSW \ suburb \ w \ ith \ low \ traffic \ volume.$
- h: ElL of aged nickel was derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the lowest CEC=2.0 cmolc/kg for brw on natural silty clay was selected for derivation of ElL; a conservative approach.
- is EIL of aged nickel w as derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the lowest CEC=4.8 cmolc/kg for brwon natural sitiv clay was selected for derivation of EIL a conservative approach.
- natural sitty clay was selected for derivation of ElL; a conservative approach.

 j: ElL of aged nickel was derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the lowest CEC=7.0 cmolc/kg for yellow-brw on natural sitty clay was selected for derivation of ElL; a conservative approach.
- k: ElL of aged zinc was derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; CEC=15 cmolc/kg & pH=7.1 for red brown natural sitty clay were adopted for derivation of ElL.
- I: EIL of aged zinc was derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the low est CEC=2.0 cmolc/kg & pH=5.2 for brown natural silty clay were selected for derivation of EIL; a conservative approach.
- mt. EllL of aged zinc was derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the low est CEC=7.0 cmolc/kg & pH=6.2 for yellow-brown natural silty clay were selected for derivation of ElL; a conservative approach.

																	page	6 of 6
								META	ALS (n	ng/kg)								
Sample Location	Depth (m)	ARSENIC	CADMIUM	CHROMIUM (Total)	COPPER	LEAD	MANGANESE	MERCURY	NICKEL	NICKEL	NICKEL	NICKEL	ZINC	ZINC	ZINC	ZINC	CEC (cmq/kg)	Hd
Natural Soil (Silty Clay, bro	own)																	
D278	0.0-0.1	28	1.0	22	35	52	2400	<0.05	_		15	_	_	_	160	_	10	-
D278	0.2-0.3	27	0.9	21	32	53	2500	<0.05	-	-	15	-	-	-	150	-	_	-
Natural Soil (Silty Clay, re-																		
D278	1.0-1.1	70	0.9	70	37	59	510	<0.05	17		-	-	200	-	-	-	11	-
D279	0.0-0.1	280	3.4	26	47	310	4300	0.08	18	-	-	-	570	-	-	-	-	-
D279	0.2-0.3	300	3.4	26	47	330	4400	<0.05	19		-	-	560	-		-	-	-
Natural Soil (Silty Clay, br																	İ	
D280	0.2-0.3	32	0.4	30	37	20	130	<0.05	-	-	21	-	-	-	61	-	11	-
D281	0.2-0.3	66	0.4	20	440	25	66	<0.05	-	-	12	-	-	-	55	-	4.8	-
Natural Soil (Silty Clay, re-	d brown)																İ	
D285	0.2-0.3	97	1.0	35	40	160	2300	< 0.05	17	-	-	-	340	-	-	-	-	-
D285	1.0-1.1	200	2.0	30	64	240	3200	< 0.05	21	-	-	-	670	-	-	-	-	-
Natural Soil (Silty Clay, ye	llow-brown)																	
D285	1.9-2.0	260	9.8	22	61	64	2600	0.36	-	-	-	11	-	-	-	1600	-	-
D286	0.2-0.3	26	0.3	29	13	58	1600	< 0.05	-	-	-	6.4	-	-	-	45	-	-
D286	1.0-1.1	50	0.4	35	25	67	1000	< 0.05	-	-	-	10	-	-	-	69	15	-
Natural Soil (Silty Clay, re-	d brown)																	
D287	1.0-1.1	79	0.6	63	31	80	210	< 0.05	5.4	-	-	-	69	-	-	-	-	-
Natural Soil (Silty Clay, ye	llow-brown)																	
D287	1.9-2.0	85	0.5	35	46	54	50	0.07	-	-	-	11	-	-	-	77	-	-
D288	0.6-0.7	15	0.3	21	14	25	240	< 0.05	-	-	-	26	-	-	-	180	16	7.1
Natural Soil (Silty Clay, bro	own)																	
D289	0.5-0.6	22	0.3	22	31	45	190	<0.05	-	-	30	-	-	-	150	-	16	-
Natural Soil (Silty Clay, ye	llow-brown)																İ	
D289	1.0-1.1	22	0.4	19	47	21	300	<0.05	-	-	-	31	-	-	-	160	14	7.6
Natural Soil (Silty Clay, re-																	İ	
D290	0.2-0.3	27	0.9	24	26	82	1400	<0.05	12	-	-	-	170	-	-	-	-	-
D290	1.0-1.1	28	1.1	27	25	84	1800	<0.05	14	-	-	-	180	-	-	-	7.7	6.4
Limits of Reporting (LOR)		3	0.3	0.5	0.5	1	1	0.05	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.02	-
NATIONAL ENVIRONMENT I MEASURE (2013)	PROTECTION AMENDMENT							с										
Health-based Investigation Le	evels (HIL) D - Commercial / Industrial I	3000	900	3600 e	2E+05	1500 g	60000	180	6000 b	6000 h	6000	6000	400000 b	400000	400000	400000 m		
Ecological Investigation Level	ls (EIL) - Commercial and industrial	160	-	660	160	1900	-	-	50	10	55	130	350	940	200	550 ^m		
GUIDELINES FOR THE NSW Provisional Phytotoxity-Based	SITE AUDITOR SCHEME (2006)		3					1										
riovisional Phytotoxity-Baset	u investigation Levels (PIL)		3					- 1									ĺ	

- a: Commercial / industrial includes premises such as shops, offices, factories and industrial sites.
 - b: ElL of aged nickel & zinc were derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the lowest CEC=4.5 cmolc/kg & pH=5.6 for red brown natural silty clay were selected for derivation of ElL; a conservative approach.
 - c: Methyl Mercury
 - d: Generic ElL for aged arsenic
 - e: Chromium (III); the assumed clay content=10%, a conservative assumption.
 - f: EIL = Ambient Background Concentration (ABC) + Added Contaminant Level (ACL) (Rounding rules applied). ABC = 18mg/kg, 25th percentile of the data for old NSW suburb with low traffic volume. ACL=140mg/kg, the lower ACL used based on the lowest CEC=5cmol/kg or pH=5.5.
 - $g: \ \ Generic \ added \ contaminant \ limit for \ aged \ lead + ambient \ background \ concentration; \ old \ NSW \ suburb \ with \ low \ traffic \ volume.$
 - h: EIL of aged nickel was derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the lowest CEC=2.0 cmolc/kg for brw on natural silty clay was selected for derivation of EIL; a conservative approach.
 - i: EIL of aged nickel was derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the lowest CEC=4.8 cmolc/kg for brw on natural silty clay was selected for derivation of EIL; a conservative approach.
 - j: EIL of aged nickel was derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the lowest CEC=7.0 cmolc/kg for yellow-brw on natural silty clay was selected for derivation of EIL; a conservative approach.

 k: EIL of aged zinc was derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; CEC=15 cmolc/kg & pH=7.1 for red brown
 - K: EL or aged zinc was derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; CEL=15 cmoic/kg & pH=7.1 for red brown natural sitly clay were adopted for derivation of EL.

 I: ElL of aged zinc was derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the low est CEC=2.0 cmoic/kg & pH=5.2 for
 - brown natural sitty clay were selected for derivation of EIL; a conservative approach.

 m: EIL of aged zinc was derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the lowest CEC=7.0 cmolc/kg & pH=6.2 for yellow-brown natural sitty clay were selected for derivation of EIL; a conservative approach.

			otal)		IVIL I/AL	S (mg/k	9)					ļ
Depth (m)	ARSENIC	CADMIUM	CHROMIUM (Total)	COPPER	LEAD	MANGANESE	MERCURY	NICKEL	ZINC	ZINC	CEC (cmol/kg)	Hd
1 0-1 1	1200	86	41	390	320	1900	0.08	20	3800	_	_	_
										_	_	١.
·· · =··			0			0		_0				
1.9-2.0	54	0.3	19	28	84	390	<0.05	20	260	-	-	-
1.0-1.1	37	0.4	28	49	44	110	<0.05	18	120	-	27	7.9
1.0-1.1	26	1.2	38	25	63	370	<0.05	30	-	310	16	8.0
1.9-2.0	32	2.0	49	42	240	860	0.06	30	-	570	10	7.7
1.9-2.0	15	0.4	16	16	5	770	<0.05	21	61	-	21	-
1.0-1.1	6	<0.3	39	32	10	240	<0.05	21	35	-	-	-
1.9-2.0	16	0.3	22	25	21	220	< 0.05	20	62	-	13	-
1.9-2.0	8	<0.3	56	33	6	280	<0.05	22	47	-	-	-
1.9-2.0	20	0.4	19	30	7	240	<0.05	27	66	-	11	-
1.9-2.0	17	0.5	16	25	17	610	<0.05	36	97	-	4.1	8.7
1.0-1.1	6	<0.3	31	14	5	140	< 0.05	15	28	-	-	-
1.9-2.0	15	0.5	18	39	19	420	0.06	20	220	-	7.5	8.0
1.9-2.0	18	<0.3	14	24	18	540	< 0.05	35	35	-	15	-
1.0-1.1	32	0.4	24	30	16	160	< 0.05	29	74	-	14	-
1.0-1.1	69	0.4	15	500	32	110	< 0.05	13	49	-	-	-
1.0-1.1	8	<0.3	16	8.9	19	45	< 0.05	9.1	79	-	-	-
	3	0.3	0.5	0.5	1	1	0.05	0.5	0.5	0.5	0	-
	3000	900	3600	240000	1500	60000	c 180	6000	400000	400000		
,	d	500	е	f	g	20000	100	b	b	h		
EL) - Commercial and industrial	160	-	660	160	1900	-	-	40	390	700		
GUIDELINES FOR THE NSW SITE AUDITOR SCHEME (2006) Provisional Phytotoxity-Based Investigation Levels (PIL)							1					
	1.0-1.1 1.9-2.0 1.9-2.0 1.0-1.1 1.9-2.0 1.9-2.0 1.9-2.0 1.9-2.0 1.9-2.0 1.9-2.0 1.9-2.0 1.9-2.0 1.9-1.1 1.9-2.0 1.9-1.1 1.9-1.1 1.0-1.1 1.0-1.1 1.0-1.1 1.0-1.1 1.0-1.1	1.0-1.1 1200 1.9-2.0 1200 1.9-2.0 54 1.0-1.1 37 1.0-1.1 26 1.9-2.0 32 1.9-2.0 15 1.0-1.1 6 1.9-2.0 16 1.9-2.0 16 1.9-2.0 16 1.9-2.0 16 1.9-2.0 17 1.0-1.1 6 1.9-2.0 17 1.0-1.1 6 1.9-2.0 15 1.9-1.0 15 1.0-1.1 1 10 1.0-1.1 10 1.0-1.1 1 10 1.0-1.1 1 10 1.0-1.1 1 10 1.0-1.1 1 10 1.0-1.1 1 10 1.0-1.1 1 10 1.0-1.1 1 10 1.0-1.1 1 10 1.0-1.1 1 10 1.0-1.1 10	1.0-1.1 1.9-2.0 1.9-2.0 54 0.3 1.0-1.1 37 0.4 1.0-1.1 26 1.2 32 2.0 1.9-2.0 32 2.0 1.9-2.0 15 0.4 1.0-1.1 6 <0.3 1.9-2.0 16 0.3 1.9-2.0 17 0.5 1.9-2.0 17 0.5 1.0-1.1 6 <0.3 1.9-2.0 17 0.5 1.0-1.1 6 <0.3 1.9-2.0 17 0.5 1.0-1.1 6 <0.3 1.9-2.0 17 0.5 1.0-1.1 6 <0.3 1.9-2.0 18 <0.3 1.9-2.0 18 <0.3 1.9-2.0 18 <0.3 1.9-2.0 18 <0.3 1.9-2.0 18 <0.3 1.0-1.1 6 0.4 1.0-1.1 8 <0.3 0.4 1.0-1.1 9 0.4 1.0-1.1 8 <0.3 0.3 OTECTION AMENDMENT S (HIL) D - Commercial / Industrial D SIL) - Commercial and industrial 160 - TE AUDITOR SCHEME (2006)	1.0-1.1 1.9-2.0 1.9-2.0 54 0.3 19 1.0-1.1 37 0.4 28 1.9-2.0 32 2.0 49 1.9-2.0 15 0.4 16 0.3 22 1.9-2.0 16 0.3 22 1.9-2.0 16 0.3 22 1.9-2.0 16 0.3 22 1.9-2.0 17 0.5 16 0.3 22 1.9-2.0 17 0.5 16 1.0-1.1 6 <0.3 31 1.9-2.0 17 0.5 16 1.0-1.1 6 <0.3 31 1.9-2.0 17 0.5 16 1.0-1.1 1 1.9-2.0 17 0.5 18 1.9-2.0 18 <0.3 31 1.9-2.0 18 <0.3 31 1.9-2.0 18 0.3 31 1.9-2.0 18 0.3 31 1.9-2.0 18 0.3 14 1.0-1.1 19 0.4 1.0-1.1 1	1.0-1.1 1.9-2.0 1.9-2.0 54 0.3 19 28 1.0-1.1 37 0.4 28 49 1.0-1.1 26 1.2 38 25 1.9-2.0 32 2.0 49 42 1.9-2.0 15 0.4 16 16 1.0-1.1 6 0.3 22 25 1.9-2.0 16 0.3 22 25 1.9-2.0 16 0.3 22 25 1.9-2.0 16 0.3 22 25 1.9-2.0 16 0.3 22 25 1.9-2.0 16 0.3 22 25 1.9-2.0 16 0.3 22 25 1.9-2.0 16 0.3 1.9-2.0 16 0.3 22 25 1.9-2.0 16 0.3 1.9-2.0 16 0.3 22 25 1.9-2.0 17 0.5 16 25 1.0-1.1 6 0.3 1.9-2.0 17 0.5 16 25 1.0-1.1 1 1.9-2.0 15 0.5 18 39 1.9-2.0 18 0.3 14 24 30 1.0-1.1 69 0.4 15 500 18 0.3 0.5 0.5 OTECTION AMENDMENT SE (HILL) D - Commercial / Industrial D 160 160 160 160 160 160 160 16	1.0-1.1 1.9-2.0 1.9-2.0 54 0.3 19 28 84 1.0-1.1 37 0.4 28 49 44 1.0-1.1 26 1.2 38 25 63 1.9-2.0 32 2.0 49 42 240 1.9-2.0 15 0.4 16 16 5 1.0-1.1 6 0.3 32 20 49 42 240 1.9-2.0 15 0.4 16 0.3 32 20 25 21 1.9-2.0 16 0.3 22 25 21 1.9-2.0 18 0.3 56 33 6 1.9-2.0 19 1.9-2.0 16 0.3 22 25 21 1.9-2.0 16 0.3 19 28 8 0.4 19 30 7 1.9-2.0 16 0.3 19 30 7 1.9-2.0 17 0.5 16 25 17 1.0-1.1 6 0.3 31 14 5 1.9-2.0 15 0.5 18 39 19 1.9-2.0 18 0.3 14 24 18 1.0-1.1 69 0.4 15 500 32 1.0-1.1 8 09 0.4 15 500 32 1.0-1.1 8 09 0.4 15 500 32 1.0-1.1 8 09 0.4 15 500 32 1.0-1.1 8 09 0.4 15 500 32 1.0-1.1 8 09 0.4 15 500 32 1.0-1.1 8 09 0.4 15 00 00 00 00 00 00 00 00 00 00 00 00 00	1.0-1.1 1.9-2.0 1.9-2.0 54 0.3 19 28 84 390 1.0-1.1 37 0.4 28 49 44 110 1.0-1.1 26 1.2 38 25 63 370 1.9-2.0 32 2.0 49 42 240 860 1.9-2.0 15 0.4 16 16 5 770 1.0-1.1 6 <0.3 39 32 10 240 1.9-2.0 16 0.3 22 25 21 220 1.9-2.0 18 <0.3 56 33 6 280 1.9-2.0 19-2.0 18 <0.3 56 33 6 280 1.9-2.0 19-2.0 17 0.5 16 25 17 610 1.0-1.1 6 <0.3 31 14 5 140 1.9-2.0 15 0.5 18 39 19 420 1.9-2.0 16 0.3 1.9-2.0 17 0.5 16 25 17 610 1.0-1.1 6 <0.3 31 14 5 140 1.9-2.0 15 0.5 18 39 19 420 1.9-2.0 18 <0.3 14 24 18 540 1.0-1.1 32 0.4 24 30 16 160 1.0-1.1 32 0.4 24 30 16 160 10-1.1	1.0-1.1 1.9-2.0 1.0-1.1 1.9-2.0 54 0.3 19 28 84 390 <0.05 1.0-1.1 37 0.4 28 49 44 110 <0.05 1.0-1.1 26 1.2 38 25 63 370 <0.05 1.9-2.0 32 2.0 49 42 240 860 0.06 1.9-2.0 15 0.4 16 16 5 770 <0.05 1.0-1.1 6 <0.3 39 32 10 240 <0.05 1.9-2.0 16 0.3 22 25 21 220 <0.05 1.9-2.0 16 0.3 22 25 21 220 <0.05 1.9-2.0 16 0.3 32 20 0.4 19 30 7 240 <0.05 1.9-2.0 16 0.3 30 30 7 240 0.05 1.9-2.0 17 0.5 16 25 17 610 <0.05 1.9-2.0 17 0.5 16 25 17 610 <0.05 1.9-2.0 18 <0.3 11 4 5 140 5 140 0.05 1.9-2.0 17 0.5 16 25 17 610 <0.05 1.9-2.0 18 0.3 14 24 18 540 0.05 1.9-2.0 18 0.3 14 24 18 540 0.05 1.0-1.1 16 9 0.4 15 0.5 18 39 19 420 0.06 1.9-2.0 18 0.3 14 24 18 540 0.05 1.0-1.1 18 0.3 14 24 18 540 0.05 1.0-1.1 18 0.3 16 16 0.0.05 1.0-1.1 18 0.3 16 16 0.0.05 1.0-1.1 19-2.0 18 0.3 16 16 0.0.05 1.0-1.1 19-2.0 18 0.3 16 16 16 0.0.05 10 0.05 10 0.05 10 0.06 10 0.05 10 0.06 10 0.05 10 0.06 10 0.06 10 0.06 10 0.06 10 0.06 10 0.05 10 0.06 1	1.0-1.1 1.9-2.0 1.9-2.0 54 0.3 19 28 84 390 0.08 20 1.0-1.1 37 0.4 28 49 44 110 0.05 18 1.0-1.1 26 1.9-2.0 32 2.0 49 42 240 860 0.06 30 1.9-2.0 15 0.4 16 60 33 22 25 21 20 0.05 21 1.9-2.0 16 0.3 22 25 21 20 0.05 21 1.9-2.0 16 0.3 22 25 21 20 0.05 21 1.9-2.0 16 0.3 22 25 21 20 0.05 21 1.9-2.0 16 0.3 22 25 21 20 0.05 21 1.9-2.0 16 0.3 22 25 21 20 0.05 20 1.9-2.0 16 0.3 22 25 21 20 0.05 21 1.9-2.0 16 0.3 22 25 21 20 0.05 20 1.9-2.0 16 0.3 22 25 21 20 0.05 20 1.9-2.0 16 0.3 31 14 5 140 0.05 36 1.0-1.1 6 0.3 31 14 5 140 0.05 36 1.0-1.1 6 0.3 31 14 5 140 0.05 36 1.0-1.1 6 0.3 31 14 5 140 0.05 36 1.0-1.1 6 0.3 31 14 5 140 0.05 36 1.0-1.1 6 0.3 31 14 5 140 0.05 36 1.0-1.1 6 0.3 31 14 5 140 0.05 36 1.0-1.1 6 0.3 31 14 5 140 0.05 36 1.0-1.1 6 0.3 31 14 5 140 0.05 36 1.0-1.1 6 0.3 31 14 5 140 0.05 35 15 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.	1.0-1.1	1.0-1.1 1.9-2.0 1.9-2.0 54 0.3 19 28 84 390 0.05 20 260 - 1.0-1.1 37 0.4 28 49 44 110 0.05 18 120 - 1.0-1.1 26 1.2 38 25 63 370 0.05 30 - 310 1.9-2.0 32 2.0 49 42 240 860 0.06 30 - 570 1.9-2.0 1.0-1.1 6 0.3 22 25 21 20 0.05 21 61 - 1.0-1.1 6 0.3 22 25 21 20 0.05 21 61 - 1.9-2.0 1.9-2.0 16 0.3 22 25 21 20 0.05 21 61 - 1.9-2.0 18 0.05 21 61 - 1.9-2.0 16 0.3 22 25 21 20 0.05 20 260 - 310 - 570 1.9-2.0 15 0.4 16 16 5 770 0.05 21 61 - 1.9-2.0 16 0.3 22 25 21 20 0.05 20 26 - 30 - 570 1.9-2.0 16 0.3 22 25 21 20 0.05 21 61 - 1.9-2.0 16 0.3 22 25 21 20 0.05 20 0.05 21 35 - 1.9-2.0 16 0.3 22 25 21 20 0.05 20 0.05 21 35 - 1.9-2.0 16 0.3 22 25 21 20 0.05 20 0.05 20 26 - 1.9-2.0 16 0.3 22 25 21 20 0.05 20 20 0.05 20 20 0.05 20 20 0.05 20 20 20 20 20 20 20 20 20 20 20 20 20	1.0-1.1 1 200 8.6 41 390 320 1900 0.08 20 3800 1.9-2.0

- b: ElL of aged nickel & zinc were derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the lowest CEC=4.1 cmolc/kg & pH=7.9 were selected for derivation of ElL; a conservative approach.
- c: Methyl Mercury
- d: Generic ElL for aged arsenic
- e: Chromium (III); the assumed clay content=10%, a conservative assumption.
- f: ElL = Ambient Background Concentration (ABC) + Added Contaminant Level (ACL) (Rounding rules applied). ABC = 18mg/kg, 25th percentile of the data for old NSW suburb with low traffic volume. ACL=140mg/kg, the low er ACL used based on the low est
- g: Generic added contaminant limit for aged lead + ambient background concentration; old NSW suburb with low traffic volume.
- h: EIL of aged zinc was derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the low est CEC=10 cmolc/kg & pH=7.7 were selected for derivation of EIL; a conservative approach.

TABLE D9A METALS, CATION EXCHANGE CAPACITY (CEC) & pH TEST RESULTS DISCRETE SAMPLES - NATURAL SOIL (SHALEY CLAY & SHALE/SLATE) IN GW1 (Ref No: 12675/4-AB)

					MET	ALS (m	g/kg)					
Sample Location	Depth (m)	ARSENIC	САБМІОМ	CHROMIUM (Total)	COPPER	LEAD	MANGANESE	MERCURY	NICKEL	ZINC	CEC (cmq/kg)	Hd
Natural Soil (Shaley Clay)												
DW1	2.0-2.1	8	0.5	24	28	20	300	<0.05	29	170	20	9.7
Natural Soil (Shale/Slate)												
DW1	3.0-3.1	8	0.4	22	32	25	590	<0.05	30	110	9.9	9.5
DW1	4.0-4.1	13	0.5	23	30	14	480	<0.05	34	140	-	-
DW1	5.0-5.1	12	0.4	22	32	14	630	<0.05	41	140	-	-
DW1	6.0-6.1	39	0.6	23	41	14	440	<0.05	40	63	-	-
DW1	7.0-7.1	22	0.6	23	36	8	500	< 0.05	46	110	14	9.8
DW1	8.0-8.1	28	0.4	23	31	7	370	< 0.05	39	140	-	-
DW1	9.0-9.1	40	0.6	20	59	27	1100	< 0.05	41	67	-	-
DW1	10.0-10.1	32	0.4	27	18	14	640	< 0.05	52	160	-	-
DW1	11.0-11.1	62	0.6	39	61	13	840	< 0.05	74	320	22	9.5
DW1	12.0-12.1	24	0.4	25	39	9	450	<0.05	52	140	-	-
Limits of Reporting (LOR)		3	0.3	0.5	0.5	1	1	0.05	0.5	0.5	0.02	-
MEASURE (2013)	PROTECTION AMENDMENT							С				
Health-based Investigation L	evels (HIL) D - Commercial / Industrial D	3000	900	3600	240000	1500	60000	180		400000		
Ecological Investigation Leve	els (EIL) - Commercial and industrial	160 ^d	-	660	300 ^f	1900	-	-	280	700		
GUIDELINES FOR THE NSW	SITE AUDITOR SCHEME (2006)											
Provisional Phytotoxity-Base	ed Investigation Levels (PIL)		3					1				

- b: ElL of aged nickel & zinc were derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the lowest CEC=9.9 cmolc/kg & pH=9.5 were selected for derivation of ElL; a conservative approach.
- c: Methyl Mercury
- d: Generic EIL for aged arsenic
- e: Chromium (III); the assumed clay content=10%, a conservative assumption.
- f: EIL = Ambient Background Concentration (ABC) + Added Contaminant Level (ACL) (Rounding rules applied). ABC = 18mg/kg, 25th percentile of the data for old NSW suburb with low traffic volume. ACL=280mg/kg, the lower ACL used based on the lowest CEC=10cmol/kg or pH=8.0.
- g: Generic added contaminant limit for aged lead + ambient background concentration; old NSW suburb with low traffic volume.

TABLE D10 METALS, CATION EXCHANGE CAPACITY (CEC) & pH TEST RESULTS DISCRETE SAMPLES (JUDGEMENTAL SAMPLING)

(Ref No: 12675/4-AB)

	(430)	NO. 12		<u> </u>	METAI	_S (mg/l	kg)					
Sample Location	Depth (m)	ARSENIC	САБМІОМ	CHROMIUM (Total)	COPPER	LEAD	MANGANESE	MERCURY	NICKEL	ZINC	CEC (cmaj/kg)	Hd
Gampio Education	Dopan (m)									- 14		
Rubbish Pits												
A3	0-0.1	140	4.8	33	77	360	-	0.58	49	2400	3.3	5.9
Duplicate D4 = A3 (0-0.1m)		110	4.8	32	59	210	-	1.1	18	2100	-	-
A4	0-0.1	440	8.0	29	69	220	-	0.04	20	2700	-	-
A5	0-0.1	270	14	25	83	250	-	0.13	22	4100	-	-
A6	0-0.1	350	9.0	32	64	290	-	0.07	20	3500	-	-
A7	0-0.1	250	8.6	27	60	330	-	0.03	23	2500	-	-
A8	0-0.1	290	8.5	29	64	330	-	0.02	26	2300	-	-
A9	0-0.1	200	3.3	33	78	330	-	0.03	15	1100	2.8	5.0
A10	0-0.1	190	3.6	34	120	330	-	0.04	14	1100	-	-
A11	0-0.1	200	4.0	34	1100	360	-	0.06	29	1400	-	-
A12	0-0.1	210	3.2	35	99	340	-	0.04	14	1200	-	-
A13	0-0.1	200	3.2	34	110	320	-	0.05	14	1100	-	-
A14	0-0.1	180	3.3	34	100	290	-	0.05	13	1000	-	-
Hematite Zone												
A15	0-0.1	170	4.2	34	580	330	4200	0.03	19	1000	5.0	4.9
A16	0-0.1	160	3.3	29	1100	170	3600	0.09	18	1000	-	-
A17	0-0.1	150	3.7	50	520	210	3100	0.08	14	920	4.1	5.0
A18	0-0.1	150	3.7	32	990	290	5300	0.09	18	1100	-	-
Limits of Reporting (LOR)		3	0.3	0.3	0.5	1	1	0.01	0.5	0.5	0.02	-
NATIONAL ENVIRONMENT P (2013)	ROTECTION AMENDMENT MEASURE											
Health-based Investigation Lev	vels (HIL) D - Commercial / Industrial D	3000	900	3600 ^c	240000	1500	60000	180 1	6000	400000		
Ecological Investigation Levels	6 (EIL) - Commercial and industrial	160	-	660 b,f	g 100	1900	-	-	20 b	210		
GUIDELINES FOR THE NSW \$	SITE AUDITOR SCHEME (2006)											
Provisional Phytotoxity-Based	Investigation Levels (PIL)		3					1				

- a: Commercial / industrial includes premises such as shops, offices, factories and industrial sites.
- b: ElL of aged chromium(III), nickel & zinc were derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the low est CEC=2.8 cmolc/kg & pH=4.9; the assumed clay content=10 % were selected for derivation of ElL;
- c: Chromium (VI)
- d: Methyl Mercury
- e: Generic ElL for aged arsenic
- f: Chromium (III
- g: EIL = Ambient Background Concentration (ABC) + Added Contaminant Level (ACL) (Rounding rules applied). ABC = 18mg/kg, 25th percentile of the data for old NSW suburb with low traffic volume. ACL=60mg/kg, the lower ACL used based on the lowest CEC=5cmol/kg or pH=5.0.
- h: Generic added contaminant limit for aged lead + ambient background concentration; old NSW suburb with low traffic volume.

TABLE E
TOTAL PETROLEUM HYDROCARBONS (TPH) F2 & F3 (SILICA GEL CLEAN-UP) TEST RESULTS
DISCRETE SAMPLES

(Ref No: 12675/4-AB)

Sample Location Depth (m) Soil type \$\frac{\text{L}}{\text{L}}\$ \$\frac{\text{L}}{\te				(NO. 120/3/4-AD	<u></u>	
Sample Location Depth (m) Soli type E' E' E E E E E E E						_	
Design Depth (m) Soil type CL CL CL CL				TPH-Silica Gel	Clean-up (mg/kg)		<u> </u>
DS16 0-0.1 clay <25 <90 120 1300 DS18 0-0.1 clay <25 <90 120 1300 DS18 0.5-0.6 clay <25 <90 120 1300 DS19 0-0.1 clay <25 <90 120 1300 DS19 0.5-0.6 clay <25 <90 120 1300 DS19 0.5-0.6 clay <25 <90 120 1300 DS22 0-0.1 clay <25 <90 120 1300 DS22 0.5-0.6 clay <25 <90 120 1300 CS12-1 0-0.1 clay <25 <90 120 1300 CS12-2 0-0.1 clay <25 <90 120 1300 CS12-3 0-0.1 clay <25 <90 120 1300 CS14-1 0-0.1 clay <25 <90 120 1300 CS14-1 0-0.1 clay <25 <90 120 1300 CS14-2 0.5-0.6 clay <25 <90 120 1300 CS14-3 0-0.1 clay <25 <90 120 1300 CS14-1 0-0.1 clay <25 <90 120 1300 CS14-2 0-0.1 clay <25 <90 120 1300 CS14-3 0-0.1 clay <25 <90 120 1300 CS14-1 0-0.1 clay <25 <90 120 1300 CS14-2 0-0.1 clay <25 <90 120 1300 CS14-3 0-0.1 clay <25 <90 120 1300 CS14-5 0-0.1 clay <25 <90 120 1300 CS15-1 0-0.1 clay <25 <90 120 1300 CS15-1 0-0.1 clay <25 <90 120 1300 CS15-2 0-0.1 clay <25 <90 120 1300 CS15-3 0-0.1 clay <25 <90 120 1300 CS15-3 0-0.1 clay <25 <90 120 1300 CS15-3 0-0.1 clay <25 <90 120 1300 CS18-1 0-0.1 clay <25 <90 120 1300 CS18-2 0.5-0.6 clay <25 <90 120 1300 CS18-3 0-0.1 clay <25 <90 120 1300 CS18-2 0.5-0.6 clay <25 <90 120 1300 CS18-3 0-0.1 clay <25 <90 120 1300 CS18-3 0-0.1 clay <25 <90 120 1300 CS18-3 0-0.1 clay <25 <90 120 1300 CS18-3 0-0.1 clay <25 <90 120 1300 CS18-3 0-0.1 clay <25 <90 120 1300 CS18-3 0-0.1 clay <25 <90 120 1300 CS18-3 0-0.1 clay <25 <90 120 1300 CS18-3 0-0.1 clay <25 <90 120 1300 CS18-3 0-0.1 clay <25 <90 120 1300 CS18-3 0-0.1 clay <25 <90 120 1300 CS18-3 0-0.1 clay <25 <90 120 1300 CS18-3 0-0.1 clay <25 <90 120 1300 CS22-1 0-0.1 clay <25 <90 120 1300 CS22-2 0-0.1 clay <25 <90 120 1300		Depth (m)	Soil type	F2	F3	F2	Б3
DS18 0-0.1 clay <25	DS11	0-0.1	clay	<25	<90	120	1300
DS18 0.5-0.6 clay <25	DS16	0-0.1	clay	<25	<90	120	1300
DS19 0-0.1 clay <25 <90 120 1300 DS19 0.5-0.6 clay <25 <90 120 1300 DS22 0-0.1 clay <25 <90 120 1300 DS22 0.5-0.6 clay <25 <90 120 1300 CS12-1 0-0.1 clay <25 <90 120 1300 CS12-2 0.5-0.6 clay <25 <90 120 1300 CS12-2 0.5-0.6 clay <25 <90 120 1300 CS12-2 0.5-0.6 clay <25 <90 120 1300 CS12-2 0.5-0.6 clay <25 <90 120 1300 CS12-3 0-0.1 clay <25 <90 120 1300 CS14-1 0-0.1 clay <25 <90 120 1300 CS14-2 0-0.1 clay <25 <90 120 1300 CS14-3 0-0.1 clay <25 <90 120 1300 CS14-3 0-0.1 clay <25 <90 120 1300 CS15-1 0-0.1 clay <25 <90 120 1300 CS15-2 0-0.1 clay <25 <90 120 1300 CS15-2 0-0.1 clay <25 <90 120 1300 CS15-2 0-0.1 clay <25 <90 120 1300 CS15-2 0-0.1 clay <25 <90 120 1300 CS15-2 0-0.1 clay <25 <90 120 1300 CS15-2 0-0.1 clay <25 <90 120 1300 CS15-2 0.5-0.6 clay <25 <90 120 1300 CS15-3 0-0.1 clay <25 <90 120 1300 CS16-2 0.5-0.6 clay <25 <90 120 1300 CS18-1 0-0.1 clay <25 <90 120 1300 CS18-2 0-0.1 clay <25 <90 120 1300 CS18-3 0-0.1 clay <25 <90 120 1300 CS18-2 0-0.1 clay <25 <90 120 1300 CS18-2 0-0.1 clay <25 <90 120 1300 CS18-3 0-0.1 clay <25 <90 120 1300 CS18-3 0-0.1 clay <25 <90 120 1300 CS18-3 0-0.1 clay <25 <90 120 1300 CS18-3 0-0.1 clay <25 <90 120 1300 CS18-3 0-0.1 clay <25 <90 120 1300 CS18-3 0-0.1 clay <25 <90 120 1300 CS18-3 0-0.1 clay <25 <90 120 1300 CS22-1 0-0.1 clay <25 <90 120 1300 CS22-2 0-0.1 clay <25 <90 120 1300 CS22-2 0-0.1 clay <25 <90 120 1300 CS22-3 0-0.1 clay <25 <90 120 1300	DS18	0-0.1	clay	<25	<90	120	1300
DS19 0.5-0.6 clay	DS18	0.5-0.6	clay	<25	<90	120	1300
DS22 0-0.1 clay <25	DS19	0-0.1	clay	<25	<90	120	1300
DS22 0.5-0.6 clay <25	DS19	0.5-0.6	clay	<25	<90	120	1300
CS12-1 0-0.1 clay <25 <90 120 1300 CS12-2 0-0.1 clay <25 <90 120 1300 CS12-2 0.5-0.6 clay <25 <90 120 1300 CS12-3 0-0.1 clay <25 <90 120 1300 CS14-1 0-0.1 clay <25 <90 120 1300 CS14-2 0-0.1 clay <25 <90 120 1300 CS14-3 0-0.1 clay <25 <90 120 1300 CS14-3 0-0.1 clay <25 <90 120 1300 CS15-1 0-0.1 clay <25 <90 120 1300 CS15-2 0.5-0.6 clay <25 <90 120 1300 CS15-2 0.5-0.6 clay <25 <90 120 1300 CS15-3 0-0.1 clay <25 <90 120 1300 CS15-3 0-0.1 clay <25 <90 120 1300 CS18-1 0-0.1 clay <25 <90 120 1300 CS18-2 0.5-0.6 clay <25 <90 120 1300 CS18-2 0-0.1 clay <25 <90 120 1300 CS18-2 0-0.1 clay <25 <90 120 1300 CS18-3 0-0.1 clay <25 <90 120 1300 CS18-2 0-0.1 clay <25 <90 120 1300 CS18-3 0-0.1 clay <25 <90 120 1300 CS18-3 0-0.1 clay <25 <90 120 1300 CS18-3 0-0.1 clay <25 <90 120 1300 CS18-3 0-0.1 clay <25 <90 120 1300 CS18-3 0-0.1 clay <25 <90 120 1300 CS18-3 0-0.1 clay <25 <90 120 1300 CS22-1 0-0.1 clay <25 <90 120 1300 CS22-2 0-0.1 clay <25 <90 120 1300 CS22-2 0-0.1 clay <25 <90 120 1300 CS22-3 0-0.1 clay <25 <90 120 1300 CS22-3 0-0.1 clay <25 <90 120 1300 CS22-3 0-0.1 clay <25 <90 120 1300	DS22	0-0.1	clay	<25	<90	120	1300
CS12-2 0-0.1 clay <25	DS22	0.5-0.6	clay	<25	<90	120	1300
CS12-2 0.5-0.6 clay <25 <90 120 1300 CS12-3 0-0.1 clay <25 <90 120 1300 CS14-1 0-0.1 clay <25 <90 120 1300 CS14-2 0-0.1 clay <25 <90 120 1300 CS14-3 0-0.1 clay <25 <90 120 1300 CS15-1 0-0.1 clay <25 <90 120 1300 CS15-1 0-0.1 clay <25 <90 120 1300 CS15-2 0-0.1 clay <25 <90 120 1300 CS15-2 0.5-0.6 clay <25 <90 120 1300 CS15-3 0-0.1 clay <25 <90 120 1300 CS15-3 0-0.1 clay <25 <90 120 1300 CS18-1 0-0.1 clay <25 <90 120 1300 CS18-2 0.5-0.6 clay <25 <90 120 1300 CS18-1 0-0.1 clay <25 <90 120 1300 CS18-2 0-0.1 clay <25 <90 120 1300 CS18-2 0-0.1 clay <25 <90 120 1300 CS18-2 0-0.1 clay <25 <90 120 1300 CS18-3 0-0.1 clay <25 <90 120 1300 CS18-3 0-0.1 clay <25 <90 120 1300 CS18-3 0-0.1 clay <25 <90 120 1300 CS18-3 0-0.1 clay <25 <90 120 1300 CS22-1 0-0.1 clay <25 <90 120 1300 CS22-2 0-0.1 clay <25 <90 120 1300 CS22-2 0-0.1 clay <25 <90 120 1300 CS22-2 0-0.1 clay <25 <90 120 1300 CS22-2 0-0.1 clay <25 <90 120 1300 CS22-2 0-0.1 clay <25 <90 120 1300 CS22-2 0-0.1 clay <25 <90 120 1300 CS22-2 0-0.1 clay <25 <90 120 1300 CS22-2 0-0.1 clay <25 <90 120 1300 CS22-2 0-0.1 clay <25 <90 120 1300 CS22-2 0-0.1 clay <25 <90 120 1300	CS12-1	0-0.1	clay	<25	<90	120	1300
CS12-3 0-0.1 clay <25 <90 120 1300 CS14-1 0-0.1 clay <25 <90 120 1300 CS14-2 0-0.1 clay <25 <90 120 1300 CS14-3 0-0.1 clay <25 <90 120 1300 CS15-1 0-0.1 clay <25 <90 120 1300 CS15-2 0-0.1 clay <25 <90 120 1300 CS15-2 0.5-0.6 clay <25 <90 120 1300 CS15-3 0-0.1 clay <25 <90 120 1300 CS18-1 0-0.1 clay <25 <90 120 1300 CS18-2 0-0.1 clay <25 <90 120 1300 CS18-2 0-0.1 clay <25 <90 120 1300 CS18-2 0-0.1 clay <25 <90 120 1300 CS18-3 0-0.1 clay <25 <90 120 1300 CS18-2 0-0.1 clay <25 <90 120 1300 CS18-2 0-0.1 clay <25 <90 120 1300 CS18-2 0-0.1 clay <25 <90 120 1300 CS18-3 0-0.1 clay <25 <90 120 1300 CS18-3 0-0.1 clay <25 <90 120 1300 CS18-3 0-0.1 clay <25 <90 120 1300 CS22-1 0-0.1 clay <25 <90 120 1300 CS22-2 0-0.1 clay <25 <90 120 1300 CS22-2 0-0.1 clay <25 <90 120 1300 CS22-3 0-0.1 clay <25 <90 120 1300 CS22-3 0-0.1 clay <25 <90 120 1300 CS22-3 0-0.1 clay <25 <90 120 1300	CS12-2	0-0.1	clay	<25	<90	120	1300
CS14-1 0-0.1 clay <25	CS12-2	0.5-0.6	clay	<25	<90	120	1300
CS14-2 0-0.1 clay <25	CS12-3	0-0.1	clay	<25	<90	120	1300
CS14-3 0-0.1 clay <25	CS14-1	0-0.1	clay	<25	<90	120	1300
CS15-1 0-0.1 clay <25	CS14-2	0-0.1	clay	<25	<90	120	1300
CS15-2 0-0.1 clay <25	CS14-3	0-0.1	clay	<25	<90	120	1300
CS15-2 0.5-0.6 clay <25	CS15-1	0-0.1	clay	<25	<90	120	1300
CS15-3 0-0.1 clay <25	CS15-2	0-0.1	clay	<25	<90	120	1300
CS18-1 0-0.1 clay <25	CS15-2	0.5-0.6	clay	<25	<90	120	1300
CS18-2 0-0.1 clay <25		0-0.1	clay	<25	<90	120	1300
CS18-2 0.5-0.6 clay <25	CS18-1	0-0.1	clay	<25	<90	120	1300
CS18-3 0-0.1 clay <25		0-0.1	clay	<25	<90		1300
CS22-1 0-0.1 clay <25	CS18-2	0.5-0.6	clay	<25	<90	120	1300
CS22-2 0-0.1 clay <25 <90 120 1300 CS22-3 0-0.1 clay <25 <90 120 1300		0-0.1	clay	<25	<90		
CS22-3 0-0.1 clay <25 <90 120 1300	CS22-1	0-0.1	clay	<25	<90	120	1300
		0-0.1	clay	<25	<90		1300
Limits of Paparting (LOP)	CS22-3	0-0.1	clay	<25	<90	120	1300
Limits of Reporting (LOR) 25 90	Limits of Re	eporting (LOF	R)	25	90		

Notes: F2: >C10-C16 F3: >C16-C34

TABLE F ASBESTOS TEST RESULTS DISCRETE SAMPLES

(Ref No: 12675/4-AB)

Sample Location	Depth (m)	ASBESTOS
Soil Sample FCP1 Fibro-cement P	0-0.1	0.66 % w/w ACM (>7mm) found; 0.36 % w/w AF/FA (<7mm) found
Fibro-cement P	iece	
FCP1		АСМ

Notes: ACM: Asbestos Containing Material

AF: Asbestos Fine FA: Fibrous Asbestos

TABLE G METALS TEST RESULTS DAM WATER SAMPLE

(Ref No: 12675/4-AB)

Analyte				ME	ΓALS (μg/l	L)			
Sample Location	ARSENIC (As) - Total	САБМІИМ (Сd)	CHROMIUM (Cr) - Total	COPPER (Cu)	LEAD (Pb)	MANGANESE (Mn)	MERCURY (Hg)	NICKEL (Ni)	ZINC (Zn)
DAM WATER SAMPLE (Unfiltered/Total)									
W1	3	<0.1	2	6	6	92	<0.1	3	13
DAM WATER SAMPLE (Filtered/Dissolved) W1	2	<0.1	2	5	2	7	<0.1	2	7
Limit of Reporting (LOR)	1	0.1	1	1	1	1	0.1	1	5
ANZ ^a Guidelines for Fresh and Marine Water Quality (2000) Aquatic Ecosystems- Trigger Values (TV) (95% Protection of freshwater species)	24 ^b 13 ^c	0.2	ID ^{d,} 1 ^e	1.4	3.4	1900	0.6 ^f ID ^g	11	8
Irrigation Water (Trigger Values) STV	2000	50	1000	5000	5000	10000	2	2000	5000
NHMRC ^h Guidelines for Managing Risks in Recreational Water (2008) Health Values Aesthetic Values	7	2	50 °	2000	10	500 100	1	20	3000

Notes a: ANZ = Australia and New Zealands

b: as As (III)

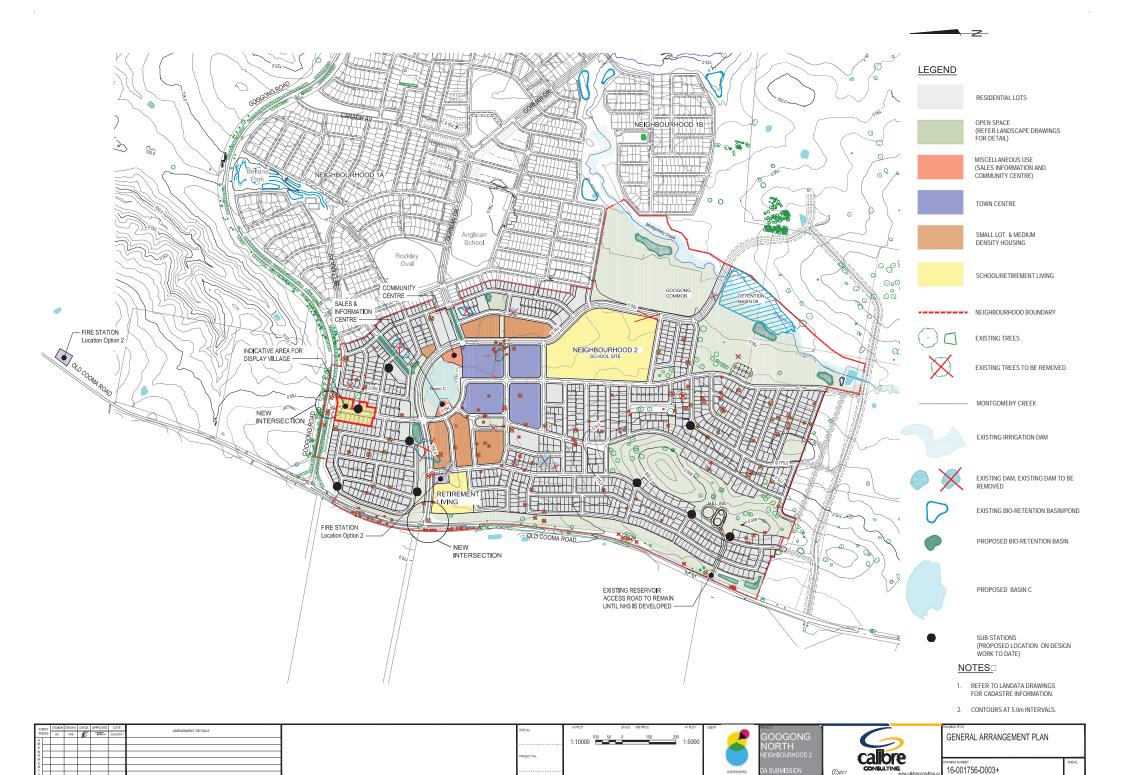
c: as As (V)

d: as Cr (III)

e: as Cr (VI)

f: as Hg (Inorganic)

g: as Hg (methyl)


h: Australian Government National Health and Medical Research Council

ID: Insufficient data to derive a reliable trigger value

STV: Short Term Trigger Value (up to 20 years)

APPENDIX A

GENERAL AGRRANGEMENT PLAN (DRAWING NO 16-001756-D003+ DATED 23 MARCH 2017)
PREPARED BY CALIBRE CONSULTING

APPENDIX B

TABLE1 TEST PIT/SAMPLE LOGS

Project	Neighbourhood (NH) 1A Stage 7 & NH 2	Job No	12675/4
Location	Googong Road, Googong	Refer to Drawing No	12675/4-AB1
		Logged & Sampled by	LY/JH

Page 1 of 24

Test Pit	Depth (m)	Sample Depth (m)	Date	Time	Material Description	Remarks*
D101	0.0-0.2	0.0-0.1	17/10/2016		TOPSOIL: Silty Clay, low plasticity, brown, with gravel and root fibres	
	0.2-1.1	0.2-0.3 1.0-1.1			(CI) Silty CLAY, medium plasticity, red- brown, with inclusion of ironstone gravel	
	1.1-2.0	1.9-2.0			(CL) Shaley CLAY, low plasticity, yellow- brown and dark grey, with shale fragments and ironstone gravel	
D102	0.0-0.2	0.0-0.1	17/10/2016		TOPSOIL: Silty Clay, low plasticity, brown, with gravel and root fibres	
	0.2-0.7	0.2-0.3			(CI) Silty CLAY, medium plasticity, red- brown, with inclusion of ironstone gravel	
D103	0.0-0.2	0.0-0.1	18/10/2016		TOPSOIL: Silty Clay, low plasticity, brown, with gravel and root fibres	
	0.2-0.7	0.2-0.3			(CI) Silty CLAY, medium plasticity, red- brown, with inclusion of ironstone gravel	
D104	0.0-0.2	0.0-0.1	18/10/2016		TOPSOIL: Silty Clay, low plasticity, brown, with gravel and root fibres	
	0.2-0.7	0.2-0.3			(CI) Silty CLAY, medium plasticity, red- brown, with inclusion of ironstone gravel	
D105	0.0-0.2	0.0-0.1	18/10/2016		TOPSOIL: Silty Clay, low plasticity, brown, with gravel and root fibres	
	0.2-0.7	0.2-0.3			(CI) Silty CLAY, medium plasticity, red- brown, with inclusion of ironstone gravel	
D106	0.0-0.2	0.0-0.1	18/10/2016		TOPSOIL: Silty Clay, low plasticity, brown, with gravel and root fibres	
	0.2-0.7	0.2-0.3			(CI) Silty CLAY, medium plasticity, red- brown, with inclusion of ironstone gravel	
D107	0.0-0.2	0.0-0.1	18/10/2016		TOPSOIL: Silty Clay, low plasticity, brown, with gravel and root fibres	
	0.2-0.7	0.2-0.3			(CI) Silty CLAY, medium plasticity, red- brown, with inclusion of ironstone gravel	
D108	0.0-0.2	0.0-0.1	18/10/2016		TOPSOIL: Silty Clay, low plasticity, brown, with gravel and root fibres	
	0.2-0.7	0.2-0.3			(CI) Silty CLAY, medium plasticity, red- brown, with inclusion of ironstone gravel	

Project Neighbourhood (NH) 1A Stage 7 & NH 2 Job No 12675/4 Location Googong Road, Googong **Refer to Drawing No** 12675/4-AB1 Logged & Sampled by LY/JH

TABLE 1

			ı	T		Page 2 of 2
Test Pit	Depth (m)	Sample Depth (m)	Date	Time	Material Description	Remarks*
D109	0.0-0.2	0.0-0.1	18/10/2016		TOPSOIL: Silty Clay, low plasticity, brown, with gravel and root fibres	
	0.2-0.7	0.2-0.3			(CI) Silty CLAY, medium plasticity, red- brown, with inclusion of ironstone gravel	
D110	0.0-0.2	0.0-0.1	17/10/2016		TOPSOIL: Silty Clay, low plasticity, brown, with gravel and root fibres	
	0.2-0.7	0.2-0.3			(CI) Silty CLAY, medium plasticity, red- brown, with inclusion of ironstone gravel	
D111	0.0-0.2	0.0-0.1	17/10/2016		TOPSOIL: Silty Clay, low plasticity, brown, with gravel and root fibres	
	0.2-0.7	0.2-0.3			(CI) Silty CLAY, medium plasticity, red- brown, with inclusion of ironstone gravel	
D112	0.0-0.2	0.0-0.1	17/10/2016		TOPSOIL: Silty Clay, low plasticity, brown, with gravel and root fibres	
	0.2-0.7	0.2-0.3			(CI) Silty CLAY, medium plasticity, red- brown, with inclusion of ironstone gravel	
D113	0.0-0.2	0.0-0.1	17/10/2016		TOPSOIL: Silty Clay, low plasticity, brown, with gravel and root fibres	
	0.2-0.7	0.2-0.3			(CI) Silty CLAY, medium plasticity, red- brown, with inclusion of ironstone gravel	
D114	0.0-0.2	0.0-0.1	17/10/2016		TOPSOIL: Silty Clay, low plasticity, brown, with gravel and root fibres	
	0.2-0.7	0.2-0.3			(CI) Silty CLAY, medium plasticity, red- brown, with inclusion of ironstone gravel	
D115	0.0-0.2	0.0-0.1	17/10/2016		TOPSOIL: Silty Clay, low plasticity, brown, with gravel and root fibres	
	0.2-0.7	0.2-0.3			(CI) Silty CLAY, medium plasticity, red- brown, with inclusion of ironstone gravel	
D116	0.0-0.2	0.0-0.1	18/10/2016		TOPSOIL: Silty Clay, low plasticity, brown, with gravel and root fibres	
	0.2-1.0	0.2-0.3			(CI) Silty CLAY, medium plasticity, red- brown, with inclusion of ironstone gravel	
	1.0-1.4	1.0-1.1			(CL) Shaley CLAY, low plasticity, yellow- brown and dark grey, with shale fragments and ironstone gravel	
	1.4-1.5	1.4-1.5			SHALE	

NS = No Sample

*Odour (O), Discolouration (D), Petroleum Hydrocarbon Staining (PHS), Fibro-cement Piece (FCP), Ash Material (ASHM), Demolition Waste (DW), Groundwater (GW), Perched Water (PW) PID reading etc.

Project	Neighbourhood (NH) 1A Stage 7 & NH 2	Job No	12675/4
Location	Googong Road, Googong	Refer to Drawing No	12675/4-AB1
		Logged & Sampled by	LY/JH

	D. at	0	Т		Г	Page 3 of 2
Test Pit	Depth (m)	Sample Depth (m)	Date	Time	Material Description	Remarks*
D117	0.0-0.2	0.0-0.1	18/10/2016		TOPSOIL: Silty Clay, low plasticity, brown, with gravel and root fibres	
	0.2-0.7	0.2-0.3			(CI) Silty CLAY, medium plasticity, red- brown, with inclusion of ironstone gravel	
D118	0.0-0.2	0.0-0.1	18/10/2016		TOPSOIL: Silty Clay, low to medium plasticity, grey	
	0.2-0.5	0.2-0.3			(CL) Shaley CLAY, low plasticity, yellow- brown and dark grey, with shale fragments and ironstone gravel	
	0.5				Refusal on bedrock	
D119	0.0-0.2	0.0-0.1	18/10/2016		TOPSOIL: Silty Clay, low to medium plasticity, grey	
	0.2-0.5	0.2-0.3			(CL) Shaley CLAY, low plasticity, yellow- brown and dark grey, with shale fragments and ironstone gravel	
	0.5				Refusal on bedrock	
D120	0.0-0.2	0.0-0.1	18/10/2016		TOPSOIL: Silty Clay, low to medium plasticity, grey	
	0.2-0.5	0.2-0.3			(CL) Shaley CLAY, low plasticity, yellow- brown and dark grey, with shale fragments and ironstone gravel	
	0.5				Refusal on bedrock	
D121	0.0-0.2	0.0-0.1	18/10/2016		TOPSOIL: Silty Clay, low to medium plasticity, grey	
	0.2-0.7	0.2-0.3			(CL) Shaley CLAY, low plasticity, yellow- brown and dark grey, with shale fragments and ironstone gravel	
D122	0.0-0.2	0.0-0.1	18/10/2016		TOPSOIL: Silty Clay, low plasticity, brown, with gravel and root fibres	
	0.2-0.5	0.2-0.3			(CI) Silty CLAY, medium plasticity, red- brown, with inclusion of ironstone gravel	
	0.5				Refusal on bedrock	
D123	0.0-0.2	0.0-0.1	18/10/2016		TOPSOIL: Silty Clay, low plasticity, brown, with gravel and root fibres	
	0.2-0.7	0.2-0.3			(CI) Silty CLAY, medium plasticity, red- brown, with inclusion of ironstone gravel	

NS = No Sample

*Odour (O), Discolouration (D), Petroleum Hydrocarbon Staining (PHS), Fibro-cement Piece (FCP), Ash Material (ASHM), Demolition Waste (DW), Groundwater (GW), Perched Water (PW) PID reading etc.

Project	Neighbourhood (NH) 1A Stage 7 & NH 2	Job No	12675/4
Location	Googong Road, Googong	Refer to Drawing No	12675/4-AB1
		Logged & Sampled by	LY/JH

			17.022		Page 4	
Test Pit	Depth (m)	Sample Depth (m)	Date	Time	Material Description	Remarks*
D124	0.0-0.2	0.0-0.1	17/10/2016		TOPSOIL: Silty Clay, low plasticity, brown, with gravel and root fibres	
	0.2-0.7	0.2-0.3			(CI) Silty CLAY, medium plasticity, red- brown, with inclusion of ironstone gravel	
D125	0.0-0.2	0.0-0.1	17/10/2016		TOPSOIL: Silty Clay, low plasticity, brown, with gravel and root fibres	
	0.2-0.7	0.2-0.3			(CI) Silty CLAY, medium plasticity, red- brown, with inclusion of ironstone gravel	
D126	0.0-0.2	0.0-0.1	17/10/2016		TOPSOIL: Silty Clay, low plasticity, brown, with gravel and root fibres	
	0.2-0.7	0.2-0.3			(CI) Silty CLAY, medium plasticity, red- brown, with inclusion of ironstone gravel	
D127	0.0-0.2	0.0-0.1	18/10/2016		TOPSOIL: Silty Clay, low plasticity, brown, with gravel and root fibres	
	0.2-0.7	0.2-0.3			(CI) Silty CLAY, medium plasticity, red- brown, with inclusion of ironstone gravel	
D128	0.0-0.2	0.0-0.1	18/10/2016		TOPSOIL: Silty Clay, low to medium plasticity, grey	
	0.2-0.7	0.2-0.3			(CL) Shaley CLAY, low plasticity, yellow- brown and dark grey, with shale fragments and ironstone gravel	
D129	0.0-0.2	0.0-0.1	18/10/2016		TOPSOIL: Silty Clay, low to medium plasticity, grey	
	0.2-0.5	0.2-0.3			(CL) Shaley CLAY, low plasticity, yellow- brown and dark grey, with shale fragments and ironstone gravel	
	0.5				Refusal on bedrock	
D130	0.0-0.2	0.0-0.1	18/10/2016		TOPSOIL: Silty Clay, low to medium plasticity, grey	
	0.2-1.1	0.2-0.3 1.0-1.1			(CL) Shaley CLAY, low plasticity, yellow- brown and dark grey, with shale fragments and ironstone gravel	
	1.1				Refusal	

Project	Neighbourhood (NH) 1A Stage 7 & NH 2	Job No	12675/4
Location	Googong Road, Googong	Refer to Drawing No	12675/4-AB1
		Logged & Sampled by	LY/JH

Page 5 of 24

Test Pit	Depth (m)	Sample Depth (m)	Date	Time	Material Description	Page 5 o
D131	0.0-0.2	0.0-0.1	18/10/2016		TOPSOIL: Silty Clay, low plasticity, brown, with gravel and root fibres	
	0.2-0.7	0.2-0.3			(CI) Silty CLAY, medium plasticity, red- brown, with inclusion of ironstone gravel	
D132	0.0-0.2	0.0-0.1	17/10/2016		TOPSOIL: Silty Clay, low plasticity, brown, with gravel and root fibres	
	0.2-2.0	0.2-0.3 1.0-1.1 1.9-2.0			(CI) Silty CLAY, medium plasticity, red- brown, with inclusion of ironstone gravel	
D133	0.0-0.2	0.0-0.1	17/10/2016		TOPSOIL: Silty Clay, low plasticity, brown, with gravel and root fibres	
	0.2-0.7	0.2-0.3			(CI) Silty CLAY, medium plasticity, red- brown, with inclusion of ironstone gravel	
D134	0.0-0.2	0.0-0.1	17/10/2016		TOPSOIL: Silty Clay, low plasticity, brown, with gravel and root fibres	
	0.2-0.7	0.2-0.3			(CI) Silty CLAY, medium plasticity, red- brown, with inclusion of ironstone gravel	
D135	0.0-0.2	0.0-0.1	17/10/2016		TOPSOIL: Silty Clay, low to medium plasticity, grey	
	0.2-0.7	0.2-0.3			(CI) Silty CLAY, medium plasticity, red- brown, with inclusion of ironstone gravel	
D136	0.0-0.2	0.0-0.1	17/10/2016		TOPSOIL: Silty Clay, low plasticity, brown, with gravel and root fibres	
	0.2-0.7	0.2-0.3			(CI) Silty CLAY, medium plasticity, red- brown, with inclusion of ironstone gravel	
D137	0.0-0.2	0.0-0.1	17/10/2016		TOPSOIL: Silty Clay, low plasticity, brown, with gravel and root fibres	
	0.2-0.7	0.2-0.3			(CI) Silty CLAY, medium plasticity, red- brown, with inclusion of ironstone gravel	
D138	0.0-0.2	0.0-0.1	17/10/2016		TOPSOIL: Silty Clay, low plasticity, brown, with gravel and root fibres	
	0.2-0.7	0.2-0.3			(CI) Silty CLAY, medium plasticity, red- brown, with inclusion of ironstone gravel	

Project	Neighbourhood (NH) 1A Stage 7 & NH 2	Job No	12675/4
Location	Googong Road, Googong	Refer to Drawing No	12675/4-AB1
		Logged & Sampled by	LY/JH

Test Pit	Depth (m)	Sample Depth (m)	Date	Time	Material Description	Remarks*
D139	0.0-0.2	0.0-0.1	17/10/2016		TOPSOIL: Silty Clay, low plasticity, brown, with gravel and root fibres	
	0.2-1.0	0.2-0.3			(CI) Silty CLAY, medium plasticity, red- brown, with inclusion of ironstone gravel	
	1.0-1.4	1.0-1.1			(CL) Shaley CLAY, low plasticity, yellow- brown and dark grey, with shale fragments and ironstone gravel	
	1.4-1.5	1.4-1.5			SHALE	
D140	0.0-0.2	0.0-0.1	17/10/2016		TOPSOIL: Silty Clay, low plasticity, brown, with gravel and root fibres	
	0.2-0.7	0.2-0.3			(CI) Silty CLAY, medium plasticity, red- brown, with inclusion of ironstone gravel	
D141	0.0-0.2	0.0-0.1	17/10/2016		TOPSOIL: Silty Clay, low plasticity, brown, with gravel and root fibres	
	0.2-0.7	0.2-0.3			(CI) Silty CLAY, medium plasticity, red- brown, with inclusion of ironstone gravel	
D142	0.0-0.2	0.0-0.1	17/10/2016		TOPSOIL: Silty Clay, low plasticity, brown, with gravel and root fibres	
	0.2-1.0	0.2-0.3			(CI) Silty CLAY, medium plasticity, red- brown, with inclusion of ironstone gravel	
	1.0-2.0	1.0-1.1 1.9-2.0			(CL) Shaley CLAY, low plasticity, yellow- brown and dark grey, with shale fragments and ironstone gravel	
D143	0.0-0.2	0.0-0.1	17/10/2016		TOPSOIL: Silty Clay, low plasticity, brown, with gravel and root fibres	
	0.2-0.7	0.2-0.3			(CI) Silty CLAY, medium plasticity, red- brown, with inclusion of ironstone gravel	
D144	0.0-0.2	0.0-0.1	17/10/2016		TOPSOIL: Silty Clay, low to medium plasticity, grey	
	0.2-0.7	0.2-0.3			(CI) Silty CLAY, medium plasticity, redbrown, with inclusion of ironstone gravel	
D145	0.0-0.2	0.0-0.1	17/10/2016		TOPSOIL: Silty Clay, low to medium plasticity, grey	
	0.2-0.7	0.2-0.3			(CI) Silty CLAY, medium plasticity, redbrown, with inclusion of ironstone gravel	

Project	Neighbourhood (NH) 1A Stage 7 & NH 2	Job No	12675/4
Location	Googong Road, Googong	Refer to Drawing No	12675/4-AB1
		Logged & Sampled by	LY/JH

<u> </u>						Page 7 of 2
Test Pit	Depth (m)	Sample Depth (m)	Date	Time	Material Description	Remarks*
D146	0.0-0.2	0.0-0.1	17/10/2016		TOPSOIL: Silty Clay, low to medium plasticity, grey	
	0.2-0.7	0.2-0.3			(CL) Shaley CLAY, low plasticity, yellow- brown and dark grey, with shale fragments and ironstone gravel	
D147	0.0-0.2	0.0-0.1	17/10/2016		TOPSOIL: Silty Clay, low to medium plasticity, grey	
	0.2-0.7	0.2-0.3			(CI) Silty CLAY, medium plasticity, red- brown, with inclusion of ironstone gravel	
D148	0.0-0.2	0.0-0.1	17/10/2016		TOPSOIL: Silty Clay, low plasticity, brown, with gravel and root fibres	
	0.2-0.7	0.2-0.3			(CI) Silty CLAY, medium plasticity, red- brown, with inclusion of ironstone gravel	
D149	0.0-0.2	0.0-0.1	17/10/2016		TOPSOIL: Silty Clay, low plasticity, brown, with gravel and root fibres	
	0.2-0.7	0.2-0.3			(CI) Silty CLAY, medium plasticity, red- brown, with inclusion of ironstone gravel	
D150	0.0-0.2	0.0-0.1	17/10/2016		TOPSOIL: Silty Clay, low plasticity, brown, with gravel and root fibres	
	0.2-0.7	0.2-0.3			(CI) Silty CLAY, medium plasticity, red- brown, with inclusion of ironstone gravel	
D151	0.0-0.2	0.0-0.1	17/10/2016		TOPSOIL: Silty Clay, low plasticity, brown, with gravel and root fibres	
	0.2-0.7	0.2-0.3			(CI) Silty CLAY, medium plasticity, red- brown, with inclusion of ironstone gravel	
D152	0.0-0.2	0.0-0.1	17/10/2016		TOPSOIL: Silty Clay, low plasticity, brown, with gravel and root fibres	
	0.2-1.0	0.2-0.3			(CI) Silty CLAY, medium plasticity, red- brown, with inclusion of ironstone gravel	
	1.0-2.0	1.0-1.1 1.9-2.0			(CL) Shaley CLAY, low plasticity, yellow- brown and dark grey, with shale fragments and ironstone gravel	
D153	0.0-0.2	0.0-0.1	17/10/2016		TOPSOIL: Silty Clay, low plasticity, brown, with gravel and root fibres	
	0.2-0.7	0.2-0.3			(CI) Silty CLAY, medium plasticity, red- brown, with inclusion of ironstone gravel	

NS = No Sample

*Odour (O), Discolouration (D), Petroleum Hydrocarbon Staining (PHS), Fibro-cement Piece (FCP), Ash Material (ASHM), Demolition Waste (DW), Groundwater (GW), Perched Water (PW) PID reading etc.

Project Neighbourhood (NH) 1A Stage 7 & NH 2 Job No 12675/4 Location Googong Road, Googong **Refer to Drawing No** 12675/4-AB1 Logged & Sampled by LY/JH

TABLE 1

Depth Sample Date Time Material Description	Page 8 of
(m) Depth (m) Date Time Material Description	Remarks*
.0-0.2 0.0-0.1 17/10/2016 TOPSOIL: Silty Clay, low plasticity, brown, with gravel and root fibres	
.2-0.7 0.2-0.3 (CI) Silty CLAY, medium plasticity, redbrown, with inclusion of ironstone gravel	
.0-0.2 0.0-0.1 17/10/2016 TOPSOIL: Silty Clay, low plasticity, brown, with gravel and root fibres	
.2-0.7 0.2-0.3 (CI) Silty CLAY, medium plasticity, redbrown, with inclusion of ironstone gravel	
.0-0.2 0.0-0.1 17/10/2016 TOPSOIL: Silty Clay, low to medium plasticity, grey	
.2-0.7 0.2-0.3 (CL) Shaley CLAY, low plasticity, yellow-brown and dark grey, with shale fragments and ironstone gravel	
.0-0.2 0.0-0.1 17/10/2016 TOPSOIL: Silty Clay, low to medium plasticity, grey	
.2-2.0 0.2-0.3 (CL) Shaley CLAY, low plasticity, yellow-brown and dark grey, with shale fragments and ironstone gravel	
.0-0.2 NS 18/10/2016 TOPSOIL: Silty Clay, low plasticity, grey Inclusion and gla	on of scrap metal ss
.2-0.7 0.25-0.35 (CI) Silty CLAY, medium plasticity, red-brown, with inclusion of ironstone gravel	
.0-0.2 NS 18/10/2016 TOPSOIL: Silty Clay, low plasticity, grey Inclusion and gla	on of scrap metal ss
.2-0.7 0.25-0.35 (CI) Silty CLAY, medium plasticity, red-brown, with inclusion of ironstone gravel	
.0-0.2 NS 18/10/2016 TOPSOIL: Silty Clay, low plasticity, grey Inclusion and gla	on of scrap metal ss
.2-1.2 0.25-0.35 0.5-0.6 1.0-1.1 (CI) Silty CLAY, medium plasticity, redbrown, with inclusion of ironstone gravel	
.0-0.2 NS 18/10/2016 TOPSOIL: Silty Clay, low plasticity, grey Inclusion and gla	on of scrap metal ss
.2-0.7 0.25-0.35 (CI) Silty CLAY, medium plasticity, red-brown, with inclusion of ironstone gravel	

Project Neighbourhood (NH) 1A Stage 7 & NH 2 Job No 12675/4 Location Googong Road, Googong **Refer to Drawing No** 12675/4-AB1 Logged & Sampled by LY/JH

TABLE 1

T(D')	Depth	Sample	Dete	T!	Material December 2	Page 9 of
Test Pit	(m)	Depth (m)	Date	Time	Material Description	Remarks*
A11	0.0-0.2	NS	18/10/2016		TOPSOIL: Silty Clay, low plasticity, grey	Inclusion of scrap metal and glass
	0.2-2.0	0.25-0.35 0.5-0.6 1.0-1.1 1.9-2.0			(CI) Silty CLAY, medium plasticity, red- brown, with inclusion of ironstone gravel	
A13	0.0-0.2	NS	18/10/2016		TOPSOIL: Silty Clay, low plasticity, grey	Inclusion of scrap metal and glass
	0.2-0.7	0.25-0.35 0.5-0.6			(CI) Silty CLAY, medium plasticity, red- brown, with inclusion of ironstone gravel	
A15	0.0-0.5	0.2-0.3	18/10/2016		(CI) Silty CLAY, medium plasticity, red- brown, with inclusion of ironstone gravel	
	0.5-2.0	0.5-0.6 1.0-1.1 1.9-2.0			(CL) Shaley CLAY, low plasticity, yellow- brown and dark grey, with shale fragments and ironstone gravel	
A16	0.0-0.5	0.2-0.3	18/10/2016		(CI) Silty CLAY, medium plasticity, red- brown, with inclusion of ironstone gravel	
	0.5-1.6	0.5-0.6 1.0-1.1 1.5-1.6			(CL) Shaley CLAY, low plasticity, yellow- brown and dark grey, with shale fragments and ironstone gravel	
	1.6				Refusal on bedrock	
A17	0.0-1.0	0.2-0.3 0.5-0.6	18/10/2016		(CI) Silty CLAY, medium plasticity, red- brown, with inclusion of ironstone gravel	
	1.0-2.0	1.0-1.1 1.9-2.0			(CL) Shaley CLAY, low plasticity, yellow- brown and dark grey, with shale fragments and ironstone gravel	
A18	0.0-0.5	0.2-0.3	18/10/2016		(CI) Silty CLAY, medium plasticity, redbrown, with inclusion of ironstone gravel	
	0.5-1.1	0.5-0.6 1.0-1.1			(CL) Shaley CLAY, low plasticity, yellow- brown and dark grey, with shale fragments and ironstone gravel	
	1.1				Refusal on bedrock	

Project	Neighbourhood (NH) 1A Stage 7 & NH 2	Job No	12675/4
Location	Googong Dam Road, Googong	Refer to Drawing No	12675/4-AB2
		Logged & Sampled by	LY/JH

ie 10 o<u>f 2</u>4

						Page 10 of 2
Test Pit	Depth (m)	Sample Depth (m)	Date	Time	Material Description	Remarks*
DS11	0.0-0.2	0.0-0.1	18/10/2016		TOPSOIL: Silty Clay, low plasticity, brown, with gravel and root fibres	
CS12-1	0.0-0.2	0.0-0.1	18/10/2016		TOPSOIL: Silty Clay, low plasticity, brown, with gravel and root fibres	
CS12-2	0.0-0.2	0.0-0.2	18/10/2016		TOPSOIL: Silty Clay, low to medium plasticity, grey	
	0.2-0.7	0.5-0.6			(CL) Shaley CLAY, low plasticity, yellow- brown and dark grey, with shale fragments and ironstone gravel	
CS12-3	0.0-0.2	0.0-0.1	18/10/2016		TOPSOIL: Silty Clay, low plasticity, brown, with gravel and root fibres	
CS14-1	0.0-0.2	0.0-0.1	18/10/2016		TOPSOIL: Silty Clay, low plasticity, brown, with gravel and root fibres	
CS14-2	0.0-0.2	0.0-0.1	18/10/2016		TOPSOIL: Silty Clay, low plasticity, brown, with gravel and root fibres	
CS14-3	0.0-0.2	0.0-0.1	18/10/2016		TOPSOIL: Silty Clay, low plasticity, brown, with gravel and root fibres	
CS15-1	0.0-0.2	0.0-0.1	18/10/2016		TOPSOIL: Silty Clay, low plasticity, brown, with gravel and root fibres	
CS15-2	0.0-0.2	0.0-0.1	18/10/2016		TOPSOIL: Silty Clay, low to medium plasticity, grey	
	0.2-0.7	0.5-0.6			(CL) Shaley CLAY, low plasticity, yellow- brown and dark grey, with shale fragments and ironstone gravel	
CS15-3	0.0-0.2	0.0-0.1	18/10/2016		TOPSOIL: Silty Clay, low plasticity, brown, with gravel and root fibres	
DS16	0.0-0.2	0.0-0.1	18/10/2016		TOPSOIL: Silty Clay, low plasticity, brown, with gravel and root fibres	
DS18	0.0-0.2	0.0-0.1	18/10/2016		TOPSOIL: Silty Clay, low to medium plasticity, grey	
	0.2-0.6	0.5-0.6			(CL) Shaley CLAY, low plasticity, yellow- brown and dark grey, with shale fragments and ironstone gravel	
	0.6				Refusal on bedrock	

Project	Neighbourhood (NH) 1A Stage 7 & NH 2	Job No	12675/4
Location	Googong Dam Road, Googong	Refer to Drawing No	12675/4-AB2
		Logged & Sampled by	LY/JH

Page 11 of 24

Test Pit	Depth (m)	Sample Depth (m)	Date	Time	Material Description	Remarks*
CS18-1	0.0-0.2	0.0-0.1	18/10/2016		TOPSOIL: Silty Clay, low plasticity, brown, with gravel and root fibres	
CS18-2	0.0-0.2	0.0-0.1	18/10/2016		TOPSOIL: Silty Clay, low to medium plasticity, grey	
	0.2-0.6	0.5-0.6			(CL) Shaley CLAY, low plasticity, yellow- brown and dark grey, with shale fragments and ironstone gravel	
	0.6				Refusal on bedrock	
CS18-3	0.0-0.2	0.0-0.1	18/10/2016		TOPSOIL: Silty Clay, low plasticity, brown, with gravel and root fibres	
DS19	0.0-0.2	0.0-0.1	18/10/2016		TOPSOIL: Silty Clay, low to medium plasticity, grey	
	0.2-0.7	0.5-0.6			(CL) Shaley CLAY, low plasticity, yellow- brown and dark grey, with shale fragments and ironstone gravel	
DS22	0.0-0.2	0.0-0.1	18/10/2016		TOPSOIL: Silty Clay, low plasticity, brown, with gravel and root fibres	
	0.2-0.6	0.5-0.6			(CI) Silty CLAY, medium plasticity, red- brown, with inclusion of ironstone gravel	
CS22-1	0.0-0.2	0.0-0.1	18/10/2016		TOPSOIL: Silty Clay, low plasticity, brown, with gravel and root fibres	
CS22-2	0.0-0.2	0.0-0.1	18/10/2016		TOPSOIL: Silty Clay, low plasticity, brown, with gravel and root fibres	
CS/22-3	0.0-0.2	0.0-0.1	18/10/2016		TOPSOIL: Silty Clay, low plasticity, brown, with gravel and root fibres	

Project	Neighbourhood (NH) 1A Stage 7 & NH 2	Job No	12675/4
Location	Googong Dam Road, Googong	Refer to Drawing No	12675/4-AB1
		Logged & Sampled by	SS/JH

e 12 o<u>f 2</u>4

I						Page 12 of 2
Test Pit	Depth (m)	Sample Depth (m)	Date	Time	Material Description	Remarks*
D201	0-0.2	0-0.1	13/02/2017		TOPSOIL: Silty Clay, low to medium plasticity, brown, with root fibres	
	0.2-2.1	0.2-0.3 1.0-1.1 1.9-2.0			(CI) Silty CLAY, medium plasticity, red- brown, with ironstone gravel	
	2.1	NS			Terminated at 2.1m due to refusal on shale	
D202	0-0.2	0-0.1	13/02/2017		TOPSOIL: Silty Clay, low to medium plasticity, brown, with root fibres	
	0.2-1.6	0.2-0.3 1.0-1.1			(CI) Silty CLAY, medium plasticity, red- brown, with ironstone gravel	
D203	0-0.2	0-0.1	14/02/2017		TOPSOIL: Silty Clay, low to medium plasticity, brown, with root fibres	
	0.2-1.0	0.2-0.3 0.9-1.0			(CI) Silty CLAY, medium plasticity, red- brown, with ironstone gravel	
	1.0	NS			Terminated at 1.0m due to refusal on shale	
D204	0-0.2	0-0.1	14/02/2017		TOPSOIL: Silty Clay, low plasticity, grey, with trace of root fibres	
	0.2-1.1	0.2-0.3 1.0-1.1			(CI-CH) Silty CLAY, medium to high plasticity, yellow-brown	
	1.1	NS			Terminated at 1.1m due to refusal on shale	
D205	0-0.2	0-0.1	14/02/2017		TOPSOIL: Silty Clay, low plasticity, grey, with trace of root fibres	
	0.2-0.8	0.2-0.3 0.7-0.8			(CI-CH) Silty CLAY, medium to high plasticity, yellow-brown	
	0.8	NS			Terminated at 0.8m due to refusal on shale	
D206	0-0.2	0-0.1	14/02/2017		TOPSOIL: Silty Clay, low plasticity, grey, with trace of root fibres	
	0.2-0.7	0.2-0.3 0.6-0.7			(CI-CH) Silty CLAY, medium to high plasticity, yellow-brown	
	0.7	NS			Terminated at 0.7m due to refusal on shale	

Project	Neighbourhood (NH) 1A Stage 7 & NH 2	Job No	12675/4
Location	Googong Dam Road, Googong	Refer to Drawing No	12675/4-AB1
		Logged & Sampled by	SS/JH

e 13 o<u>f 2</u>4

						Page 13 of 2
Test Pit	Depth (m)	Sample Depth (m)	Date	Time	Material Description	Remarks*
D207	0-0.2	0-0.1	14/02/2017		TOPSOIL: Silty Clay, low plasticity, grey, with trace of root fibres	
	0.2-1.1	0.2-0.3 1.0-1.1			(CI-CH) Silty CLAY, medium to high plasticity, yellow-brown	
	1.1	NS			Terminated at 0.7m due to refusal on shale	
D208	0-0.2	0-0.1	14/02/2017		TOPSOIL: Silty Clay, low to medium plasticity, brown, with root fibres	
	0.2-1.6	0.2-0.3 1.0-1.1			(CI) Silty CLAY, medium plasticity, red- brown, with ironstone gravel	
D209	0-0.2	0-0.1	13/02/2017		TOPSOIL: Silty Clay, low to medium plasticity, brown, with root fibres	
	0.2-1.0	0.2-0.3			(CI) Silty CLAY, medium plasticity, red- brown, with ironstone gravel	
	1.1-2.5	1.0-1.1 1.9-2.0			(CI) Shaley CLAY, medium plasticity, yellow-brown-grey, with ironstone fragments	
D210	0-0.2	0-0.1	13/02/2017		TOPSOIL: Silty Clay, low to medium plasticity, brown, with root fibres	
	0.2-1.0	0.2-0.3			(CI) Silty CLAY, medium plasticity, red- brown, with ironstone gravel	
	1.0-1.6	1.0-1.1			(CI) Silty CLAY, medium plasticity, red- brown, with ironstone gravel and dark grey gravel	
D211	0-0.2	0-0.1	14/02/2017		TOPSOIL: Silty Clay, low to medium plasticity, brown, with root fibres	
	0.2-1.0	0.2-0.3			(CI-CH) Silty CLAY, medium to high plasticity, yellow-brown	
	1.0-2.5	1.0-1.1 1.9-2.0			(CI) Silty CLAY, medium plasticity, red- brown, with ironstone gravel	
D212	0-0.2	0-0.1	14/02/2017		TOPSOIL: Silty Clay, low plasticity, grey, with trace of root fibres	
	0.2-1.6	0.2-0.3 1.0-1.1			(CI-CH) Silty CLAY, medium to high plasticity, yellow-brown	

Project	Neighbourhood (NH) 1A Stage 7 & NH 2	Job No	12675/4
Location	Googong Dam Road, Googong	Refer to Drawing No	12675/4-AB1
		Logged & Sampled by	SS/JH

Page 14 of 24

Test Pit	Depth (m)	Sample Depth (m)	Date	Time	Material Description	Page 14 of Remarks*
D213	0-0.2	0-0.1	13/02/2017		TOPSOIL: Silty Clay, low to medium plasticity, brown, with root fibres	
	0.2-1.0	0.2-0.3			(CI) Silty CLAY, medium plasticity, red- brown, with ironstone gravel	
	1.0-1.6	1.0-1.1			(CI) Silty CLAY, medium plasticity, brown, with siltstone gravel	
	1.6-2.0	1.9-2.0			SHALE, grey-black, very low to low strength, extremely weathered	
D214	0-0.2	0-0.1	13/02/2017		TOPSOIL: Silty Clay, low to medium plasticity, brown, with root fibres	
	0.2-0.8	0.2-0.3			(CI) Silty CLAY, medium plasticity, red- brown, with ironstone gravel	
	0.8-1.2	1.0-1.1			(CI) Silty CLAY, medium plasticity, red- brown, with ironstone gravel, with black ironstone gravel	
D215	0-0.2	0-0.1	14/02/2017		TOPSOIL: Silty Clay, low to medium plasticity, brown, with root fibres	
	0.2-0.9	0.2-0.3			(CI) Silty CLAY, medium plasticity, red- brown, with ironstone gravel	
	0.9-2.0	1.0-1.1 1.9-2.0			(CI-CH) Silty CLAY, medium to high plasticity, yellow-brown, with ironstone gravel	
D216	0-0.2	0-0.1	14/02/2017		TOPSOIL: Silty Clay, low to medium plasticity, brown, with root fibres	
	0.2-1.0	0.2-0.3			(CI) Silty CLAY, medium plasticity, red- brown, with ironstone gravel	
	1.0-1.5	1.0-1.1			(CI) Shaley CLAY, medium plasticity, yellow-brown-grey, with ironstone fragments	
D217	0-0.2	0-0.1	14/02/2017		TOPSOIL: Silty Clay, low to medium plasticity, brown, with root fibres	
	0.2-0.8	0.2-0.3			(CI) Silty CLAY, medium plasticity, red- brown, with ironstone gravel	
	0.8-1.2	1.0-1.1			(CI-CH) Silty CLAY, medium to high plasticity, yellow-brown, with ironstone gravel	
	1.2-2.2	1.9-2.0			(CI-CH) Silty CLAY, medium to high plasticity, yellow-brown, with siltstone gravel	

Project	Neighbourhood (NH) 1A Stage 7 & NH 2	Job No	12675/4
Location	Googong Dam Road, Googong	Refer to Drawing No	12675/4-AB1
		Logged & Sampled by	SS/JH

15 of 24

	Page				1 age 13 0	
Test Pit	Depth (m)	Sample Depth (m)	Date	Time	Material Description	Remarks*
D218	0-0.2	0-0.1			TOPSOIL: Silty Clay, low to medium plasticity, brown, with root fibres	
	0.2-0.5	0.2-0.3			(CI) Silty CLAY, medium plasticity, brown	
	0.5-0.9	NS			(CI) Silty CLAY, medium plasticity, red- brown, with ironstone gravel	
	0.9-1.2	1.0-1.1			(CI-CH) Silty CLAY, medium to high plasticity, yellow-brown, with ironstone gravel	
D219	0-0.2	0-0.1	14/02/2017		TOPSOIL: Silty Clay, low plasticity, grey, with trace of root fibres	
	0.2-1.9	0.2-0.3 1.0-1.1			(CI-CH) Silty CLAY, medium to high plasticity, yellow-brown	
	1.9-2.4	1.9-2.0			(CI) Silty CLAY, medium plasticity, red- brown, with ironstone gravel	
D220	0-0.2	0-0.1	14/02/2017		TOPSOIL: Silty Clay, low plasticity, grey, with trace of root fibres	
	0.2-1.0	0.2-0.3			(CI-CH) Silty CLAY, medium to high plasticity, yellow-brown	
	1.0-1.5	1.0-1.1			(CI) Silty CLAY, medium plasticity, red- brown, with ironstone gravel	
D221	0-0.4	0-0.1 0.2-0.3	14/02/2017		TOPSOIL: Silty Clay, low to medium plasticity, brown, with root fibres	
	0.4-0.8	NS			(CI) Silty CLAY, medium plasticity, red- brown, with ironstone gravel	
	0.8-1.5	1.0-1.1			(CI-CH) Silty CLAY, medium to high plasticity, yellow-brown, with ironstone gravel	
	1.5-2.1	1.9-2.0			(CI-CH) Silty CLAY, medium to high plasticity, yellow-brown, with coarse ironstone gravel	
D222	0-0.2	0-0.1	14/02/2017		TOPSOIL: Silty Clay, low to medium plasticity, brown, with root fibres	
	0.2-0.7	0.2-0.3			(CI) Silty CLAY, medium plasticity, red- brown, with ironstone gravel	
	0.7-1.2	1.0-1.1			(CI-CH) Silty CLAY, medium to high plasticity, yellow-brown, with ironstone gravel	

Project	Neighbourhood (NH) 1A Stage 7 & NH 2	Job No	12675/4
Location	Googong Dam Road, Googong	Refer to Drawing No	12675/4-AB1
		Logged & Sampled by	SS/JH

Page 16 of 24

	Depth	Sample				Page 16 of 2
Test Pit	(m)	Depth (m)	Date	Time	Material Description	Remarks*
D223	0-0.2	0-0.1	14/02/2017		TOPSOIL: Silty Clay, low to medium plasticity, brown, with root fibres	
	0.2-0.6	0.2-0.3			(CI) Silty CLAY, medium plasticity, red- brown, with ironstone gravel	
	0.6-0.8	NS			(CH) Shaley CLAY, high plasticity, red- brown	
	1.0-1.2	1.0-1.1			SHALE, grey, very low to low strength, extremely weathered, with ironstone fragments	
D224	0-0.2	0-0.1	14/02/2017		TOPSOIL: Silty Clay, low to medium plasticity, brown, with root fibres	
	0.2-0.6	0.2-0.3			(CI) Silty CLAY, medium plasticity, red- brown, with ironstone gravel	
	0.6-1.2	1.0-1.1			(CI-CH) Silty CLAY, medium to high plasticity, yellow-brown	
D225	0-0.2	0-0.1	14/02/2017		TOPSOIL: Silty Clay, low to medium plasticity, brown, with root fibres	
	0.2-0.5	0.2-0.3			(CI) Silty CLAY, medium plasticity, brown	
	0.5-2.1	1.0-1.1 1.9-2.0			(CI-CH) Silty CLAY, medium to high plasticity, yellow-brown, with ironstone gravel	
D226	0-0.4	0-0.1 0.2-0.3	15/02/17		TOPSOIL: Silty Clay, low to medium plasticity, brown, with root fibres	
	0.4-1.2	1.0-1.1			(CI-CH) Silty CLAY, medium to high plasticity, yellow-brown, with ironstone gravel	
D229	0-0.5	0-0.1 0.2-0.3	15/02/2017		TOPSOIL: Silty Clay, low to medium plasticity, brown, with root fibres	
	0.5-1.2	1.0-1.1			(CI-CH) Silty CLAY, medium to high plasticity, yellow-brown	
	1.2-1.5	NS			SHALE, grey, very low to low strength, extremely weathered, with ironstone fragments	

Project	Neighbourhood (NH) 1A Stage 7 & NH 2	Job No	12675/4
Location	Googong Dam Road, Googong	Refer to Drawing No	12675/4-AB1
		Logged & Sampled by	SS/JH

Page 17 of 24

Test Pit	Depth (m)	Sample Depth (m)	Date	Time	Material Description	Page 17 of Remarks*
D230	0-0.5	0-0.1 0.2-0.3	15/02/2017		TOPSOIL: Silty Clay, low to medium plasticity, brown, with root fibres	
	0.5-1.2	1.0-1.1			(CI-CH) Silty CLAY, medium to high plasticity, yellow-brown, with ironstone gravel	
D231	0-0.4	0-0.1 0.2-0.3	15/02/2017		TOPSOIL: Silty Clay, low to medium plasticity, brown, with root fibres	
	0.4-1.5	1.0-1.1			(CI-CH) Silty CLAY, medium to high plasticity, yellow-brown, with ironstone gravel	
	1.5-2.1	1.9-2.0			SHALE, grey, very low to low strength, extremely weathered, with ironstone fragments	
D232	0-0.2	0-0.1	14/02/2017		TOPSOIL: Silty Clay, low to medium plasticity, brown, with root fibres	
	0.2-0.5	0.2-0.3			(CI-CH) Silty CLAY, medium to high plasticity, yellow-brown	
	0.5-1.2	1.0-1.1			(CI-CH) Silty CLAY, medium to high plasticity, yellow-brown, with ironstone gravel	
D233	0-0.2	0-0.1	14/02/2017		TOPSOIL: Silty Clay, low to medium plasticity, brown, with root fibres	
	0.2-1.2	0.2-0.3 1.0-1.1			(CI-CH) Silty CLAY, medium to high plasticity, yellow-brown, with fine grained ironstone gravel	
	1.2-2.1	1.9-2.0			(CI-CH) Silty CLAY, medium to high plasticity, yellow-brown, with fine to coarse grained ironstone gravel	
D234	0-0.4	0-0.1 0.2-0.3	14/02/2017		TOPSOIL: Silty Clay, low to medium plasticity, brown, with root fibres	
	0.4-1.2	1.0-1.1			(CI-CH) Silty CLAY, medium to high plasticity, yellow-brown, with ironstone gravel	

Project	Neighbourhood (NH) 1A Stage 7 & NH 2	Job No	12675/4
Location	Googong Dam Road, Googong	Refer to Drawing No	12675/4-AB1
		Logged & Sampled by	SS/JH

Page 18 of 24

	Depth	Sample				Page 18 of 2
Test Pit	(m)	Depth (m)	Date	Time	Material Description	Remarks*
D235	0-0.2	0-0.1	14/02/2017		TOPSOIL: Silty Clay, low to medium plasticity, brown, with root fibres	
	0.2-0.6	0.2-0.3			(CI) Silty CLAY, medium plasticity, red- brown, with ironstone gravel	
	0.6-1.0	NS			(CI-CH) Silty CLAY, medium to high plasticity, yellow-brown, with ironstone gravel	
	1.0-2.1	1.0-1.1 1.9-2.0			SHALE, grey, very low to low strength, extremely weathered, with ironstone fragments	
D236	0-0.2	0-0.1	14/02/2017		TOPSOIL: Silty Clay, low to medium plasticity, brown, with root fibres	
	0.2-0.9	0.2-0.3			(CI-CH) Silty CLAY, medium to high plasticity, yellow-brown	
	0.9-1.3	1.0-1.1			SHALE, grey, very low to low strength, extremely weathered, with ironstone fragments	
D237	0-0.5	0-0.1 0.2-0.3	14/02/2017		TOPSOIL: Silty Clay, low to medium plasticity, brown, with root fibres	
	0.5-1.2	1.0-1.1			(CI-CH) Silty CLAY, medium to high plasticity, yellow-brown, with ironstone gravel	
	1.2-2.1	1.9-2.0			SHALE, grey, very low to low strength, extremely weathered, with ironstone fragments	
D238	0-0.4	0-0.1 0.2-0.3	14/02/2017		TOPSOIL: Silty Clay, low to medium plasticity, brown, with root fibres	
	0.4-1.1	1.0-1.1			(CI-CH) Silty CLAY, medium to high plasticity, yellow-brown, with ironstone gravel	
D243	0-0.4	0-0.1 0.2-0.3	15/02/2017		TOPSOIL: Silty Clay, low to medium plasticity, brown, with root fibres	
	0.4-1.3	1.0-1.1			(CI-CH) Silty CLAY, medium to high plasticity, yellow-brown, with ironstone gravel	
	1.3-2.1	1.9-2.0			SHALE, grey, very low to low strength, extremely weathered, with ironstone fragments	

Project	Neighbourhood (NH) 1A Stage 7 & NH 2	Job No	12675/4
Location	Googong Dam Road, Googong	Refer to Drawing No	12675/4-AB1
		Logged & Sampled by	SS/JH

e 19 o<u>f 2</u>4

						Page 19 of 2
Test Pit	Depth (m)	Sample Depth (m)	Date	Time	Material Description	Remarks*
D244	0-0.4	0-0.1 0.2-0.3	15/02/2017		TOPSOIL: Silty Clay, low to medium plasticity, brown, with root fibres	
	0.4-1.2	1.0-1.1			(CI-CH) Silty CLAY, medium to high plasticity, yellow-brown, with ironstone gravel	
D245	0-0.4	0-0.1 0.2-0.3	15/02/2017		TOPSOIL: Silty Clay, low to medium plasticity, brown, with root fibres	
	0.4-2.2	1.0-1.1 1.9-2.0			(CI-CH) Silty CLAY, medium to high plasticity, yellow-brown, with ironstone gravel	
D246	0-0.4	0-0.1 0.2-0.3	15/02/2017		TOPSOIL: Silty Clay, low to medium plasticity, brown, with root fibres	
	0.4-1.2	1.0-1.1			(CI-CH) Silty CLAY, medium to high plasticity, yellow-brown, with ironstone gravel	
D247	0-0.2	0-0.1	15/02/2017		TOPSOIL: Silty Clay, low to medium plasticity, brown, with root fibres	
	0.2-0.9	0.2-0.3			(CI) Silty CLAY, medium plasticity, red- brown, with ironstone gravel	
	0.9-1.4	1.0-1.1			(CI-CH) Silty CLAY, medium to high plasticity, yellow-brown	
	1.4-1.6	NS			(CI-CH) Silty CLAY, medium to high plasticity, yellow-brown, with ironstone gravel	
	1.6-2.2	1.9-2.0			SHALE, grey, very low to low strength, extremely weathered, with ironstone fragments	
D248	0-0.4	0-0.1 0.2-0.3	15/02/2017		TOPSOIL: Silty Clay, low to medium plasticity, brown, with root fibres	
	0.4-1.2	1.0-1.1			(CI-CH) Silty CLAY, medium to high plasticity, yellow-brown, with ironstone gravel	
D249	0-0.4	0-0.1 0.2-0.3			TOPSOIL: Silty Clay, low to medium plasticity, brown, with root fibres	
	0.4-1.2	1.0-1.1			(CI-CH) Silty CLAY, medium to high plasticity, yellow-brown, with ironstone gravel	
	1.2-1.4	NS			SHALE, grey, very low to low strength, extremely weathered, with ironstone fragments	

Project	Neighbourhood (NH) 1A Stage 7 & NH 2	Job No	12675/4
Location	Googong Dam Road, Googong	Refer to Drawing No	12675/4-AB1
		Logged & Sampled by	SS/JH

20 of <u>2</u>4

	Depth	Sample		1		Page 20 of 2
Test Pit	(m)	Depth (m)	Date	Time	Material Description	Remarks*
D259	0-0.4	0-0.1 0.2-0.3	16/02/2017		TOPSOIL: Silty Clay, low to medium plasticity, brown, with root fibres	
	0.4-1.2	1.0-1.1			(CI-CH) Silty CLAY, medium to high plasticity, yellow-brown, with ironstone gravel	
	1.2-2.2	1.9-2.0			SHALE, grey, very low to low strength, extremely weathered, with ironstone fragments	
D263	0-0.3	0-0.1 0.2-0.3	15/02/2017		TOPSOIL: Silty Clay, low to medium plasticity, brown, with root fibres	
	0.3-0.7	NS			(CI-CH) Silty CLAY, medium to high plasticity, yellow-brown	
	0.7-0.9	NS			SHALE, grey, very low to low strength, extremely weathered, with ironstone fragments	
	0.9				Terminated at 0.9m due to refusal on shale	
D264	0-0.5	0-0.1 0.2-0.3	15/02/2017		TOPSOIL: Silty Clay, low to medium plasticity, brown, with root fibres	
	0.5-0.8	NS			(CI-CH) Silty CLAY, medium to high plasticity, yellow-brown, with ironstone gravel	
	0.8				Terminated at 0.8m due to refusal on shale	
D265	0-0.4	0-0.1 0.2-0.3	15/02/2017		TOPSOIL: Silty Clay, low to medium plasticity, brown, with root fibres	
	0.4-0.8	NS			(CI-CH) Silty CLAY, medium to high plasticity, yellow-brown, with ironstone gravel	
	0.8-1.2	1.0-1.1			SHALE, grey, very low to low strength, extremely weathered, with ironstone fragments	
	1.2				Terminated at 1.2m due to refusal on shale	

Project	Neighbourhood (NH) 1A Stage 7 & NH 2	Job No	12675/4
Location	Googong Dam Road, Googong	Refer to Drawing No	12675/4-AB1
		Logged & Sampled by	SS/JH

Page 21 of 24

Test Pit	Pit Depth Sample		Date	Time	Material Description	Page 21 of 2 Remarks*
I EST FIT	(m)	Depth (m)	Date	rime	Material Description	Remarks"
D271	0-0.4	0-0.1 0.2-0.3	16/02/2017		TOPSOIL: Silty Clay, low to medium plasticity, brown, with root fibres	
	0.4-1.5	1.0-1.1			(CI-CH) Silty CLAY, medium to high plasticity, yellow-brown, with ironstone gravel	
	1.5-2.1	1.9-2.0			SHALE, grey, very low to low strength, extremely weathered, with ironstone fragments	
D272	0-0.4	0-0.1 0.2-0.3	16/02/2017		TOPSOIL: Silty Clay, low to medium plasticity, brown, with root fibres	
	0.4-0.8	0.7-0.8			(CI-CH) Silty CLAY, medium to high plasticity, yellow-brown, with ironstone gravel	
	0.8-1.0	NS			SHALE, grey, very low to low strength, extremely weathered, with ironstone fragments	
D273	0-0.4	0-0.1 0.2-0.3	16/02/2017		TOPSOIL: Silty Clay, low to medium plasticity, brown, with root fibres	
	0.4-1.5	1.0-1.1			(CI) Silty CLAY, medium plasticity, red- brown, with ironstone gravel	
	1.5-2.2	1.9-2.0			(CI-CH) Silty CLAY, medium to high plasticity, yellow-brown, with ironstone gravel	
D274	0-0.2	0-0.1	16/02/2017		TOPSOIL: Silty Clay, low to medium plasticity, brown, with root fibres	
	0.2-1.2	0.2-0.3 1.0-1.1			(CI) Silty CLAY, medium plasticity, red- brown, with ironstone gravel	
D275	0-0.2	0-0.1	16/02/2017		TOPSOIL: Silty Clay, low to medium plasticity, brown, with root fibres	
	0.2-2.1	0.2-0.3 1.0-1.1 1.9-2.0		(CI) Silty CLAY, medium plasticity, red- brown, with ironstone gravel, with ironstone gravel		
D276	0-0.2	0-0.1	16/02/2017	/02/2017 TOPSOIL: Silty Clay, low to medium plasticity, brown, with root fibres		
	0.2-1.2	0.2-0.3 1.0-1.1		(CI) Silty CLAY, medium plasticity, red- brown, with ironstone gravel		
				I		

Project	Neighbourhood (NH) 1A Stage 7 & NH 2	Job No	12675/4
Location	Googong Dam Road, Googong	Refer to Drawing No	12675/4-AB1
		Logged & Sampled by	SS/JH

Page 22 of 24

Test Pit	Depth (m)	Sample Depth (m)	Date	Time	Material Description	Page 22 of 2 Remarks*
D277	0-0.4	0-0.1 0.2-0.3	16/02/2017		TOPSOIL: Silty Clay, low to medium plasticity, brown, with root fibres	
	0.4-1.2	1.0-1.1			(CI) Silty CLAY, medium plasticity, red- brown, with ironstone gravel	
	1.2-2.1	1.9-2.0			SHALE, grey, very low to low strength, extremely weathered, with ironstone fragments	
D278	0-0.4	0-0.1 0.2-0.3	16/02/2017		(CI) Silty CLAY, medium plasticity, brown, with root fibres	
	0.4-1.2	1.0-1.1			(CI) Silty CLAY, medium plasticity, red- brown, with ironstone gravel	
D279	0-0.6	0-0.1 0.2-0.3	16/02/2017		(CI) Silty CLAY, medium plasticity, red- brown, with ironstone gravel, with root fibres	
	0.6				Terminated at 0.6m due to refusal on shale	
D280	0-0.2	0-0.1	16/02/2017		TOPSOIL: Silty Clay, low to medium plasticity, brown, with root fibres	
	0.2-0.9	0.2-0.3			(CI) Silty CLAY, medium plasticity, brown, with shale gravel	
	0.9-1.2	1.0-1.1			SHALE, grey, very low to low strength, extremely weathered, with ironstone fragments	
D281	0-0.2	0-0.1	16/02/2017		TOPSOIL: Silty Clay, low to medium plasticity, brown, with root fibres, with shale gravel	
	0.2-0.8	0.2-0.3			(CI) Silty CLAY, medium plasticity, brown, with shale gravel	
	0.8-1.2	1.0-1.1			SHALE, grey, very low to low strength, extremely weathered, with ironstone fragments	
	1.1				Terminated at 1.1m due to refusal on shale	

Project	Neighbourhood (NH) 1A Stage 7 & NH 2	Job No	12675/4
Location	Googong Dam Road, Googong	Refer to Drawing No	12675/4-AB1
		Logged & Sampled by	SS/JH

Page 23 of 24

Tost Pit Depth Sample			1		Page 23 of 2	
Test Pit	(m)	Depth (m)	Date	Time	Material Description	Remarks*
D282	0-0.4	0-0.1 0.2-0.3	16/02/2017		TOPSOIL: Silty Clay, low to medium plasticity, brown, with root fibres	
	0.4-0.8	NS			(CI-CH) Silty CLAY, medium to high plasticity, yellow-brown, with shale gravel	
	0.8-1.2	1.0-1.1			SHALE, grey, very low to low strength, extremely weathered, with ironstone fragments	
D283	0-0.4	0-0.1 0.2-0.3	17/02/2017		TOPSOIL: Silty Clay, low to medium plasticity, brown, with root fibres	
	0.4-0.6	NS			SHALE, grey, very low to low strength, extremely weathered, with ironstone fragments	
D284	0-0.4	0-0.1 0.2-0.3	17/02/2017		TOPSOIL: Silty Clay, low to medium plasticity, brown, with root fibres	
	0.4				Terminated at 0.4m due to refusal on shale	
D285	0-0.2	0-0.1	17/02/2017		TOPSOIL: Silty Clay, low to medium plasticity, brown, with root fibres	
	0.2-1.2	0.2-0.3 1.0-1.1			(CI) Silty CLAY, medium plasticity, red- brown, with ironstone gravel	
	1.2-2.1	1.9-2.0			(CI-CH) Silty CLAY, medium to high plasticity, yellow-brown, with ironstone gravel	
D286	0-0.2	0-0.1	17/02/2017		TOPSOIL: Silty Clay, low to medium plasticity, brown, with root fibres	
	0.2-1.2	0.2-0.3 1.0-1.1			(CI-CH) Silty CLAY, medium to high plasticity, yellow-brown, with ironstone gravel	
D287	0-0.4	0-0.1 0.2-0.3	17/02/2017	TOPSOIL: Silty Clay, low to medium plasticity, brown, with root fibres		
	0.4-1.5	1.0-1.1		(CI) Silty CLAY, medium plasticity, red- brown, with ironstone gravel		
	1.5-2.0	1.9-2.0		(CI-CH) Silty CLAY, medium to high plasticity, yellow-brown		

Project	Neighbourhood (NH) 1A Stage 7 & NH 2	Job No	12675/4
Location	Googong Dam Road, Googong	Refer to Drawing No	12675/4-AB1
		Logged & Sampled by	SS/JH

Page 24 of 24

Test Pit	Depth (m)	Sample Depth (m)	Date	Time	Material Description	Remarks*
D288	0-0.4	0-0.1 0.2-0.3	17/02/2017		TOPSOIL: Silty Clay, low to medium plasticity, brown, with root fibres	
	0.4-0.7	0.6-0.7			(CI-CH) Silty CLAY, medium to high plasticity, yellow-brown, with ironstone gravel	
	0.7-0.9	NS			SHALE, grey, very low to low strength, extremely weathered, with ironstone fragments	
D289	0-0.4	0-0.1 0.2-0.3	17/02/2017		TOPSOIL: Silty Clay, low to medium plasticity, brown, with root fibres	
	0.4-0.6	0.5-0.6			(CI) Silty CLAY, medium plasticity, brown	
	0.6-1.6	1.0-1.1			(CI-CH) Silty CLAY, medium to high plasticity, yellow-brown, with ironstone gravel	
D290	0-0.2	0-0.1	17/02/2017		TOPSOIL: Silty Clay, low to medium plasticity, brown, with root fibres	
	0.2-1.2	0.2-0.3 1.0-1.1			(CI) Silty CLAY, medium plasticity, red- brown, with ironstone gravel	
FCP1	0-0.1	0-0.1	17/02/2017		FILL: Silty Clay, medium plasticity, brown	Inclusion of FCP; FCP sample FCP1 collected
	0.1-0.2	NS			(CI) Silty CLAY, medium plasticity, brown	

APPENDIX C

ENGINEERING LOG – MONITORING WELL

engineering log - monitoring well

Client:PEETJob No.: 12675/4Project:Proposed Residential SubdivisonBorehole No.: GW 1Location:Neighbourhood 1A, Stage 7 & Neighbourhood 2Date: 15/02/2017

Googong Road Googong Logged/Checked by: JH

			gong	Road	Googong Lo	Logged/Checked by: JH R.L. surface : AHD				
d	Irill rig	:			G	Geoprobe 7822DT R.	R.L. surface :			
g	roundv	vater	15/02/	2017	: DF	RY (m)				
			_		_	MATERIAL DESCRIPTION			MONITORING WELL	
groundwater	samples	PID Reading (ppm)	depth or R.L. in meters	graphic log	classification symbol	soil type, plasticity or particle characteristic, colour, secondary and minor components.	-	Graphic Log	Description Toomm Lockable Monument	
			_ _ _						700mm Edexable Worldment	
			- 0 1		CI	TOPSOIL: Silt Clay, low to medium plasticity, brown, trace of root fibres Silty CLAY, medium plasticity, red-brown, with inclusion of ironstone gravel			Bentonite Grout	
	DS				CI	Shaley CLAY, medium plasticity, yellow- brown-grey, with shale and ironstone fragments			Casing	
	DS		3 — - -			SHALE, distinctly weathered				
	DS		4 — — —							
	DS		5 — — — —							
	DS		6 —							
	DS		7 ————————————————————————————————————			SLATE, distinctly weathered			Bentonite plug/pellets Sand	
	DS		8 —						Screening	

engineering log - monitoring well

Client:PEETJob No.: 12675/4Project:Proposed Residential SubdivisonBorehole No.: GW 1Location:Neighbourhood 1A, Stage 7 & Neighbourhood 2Date: 15/02/2017

Googong Road Googong

Logged/Checked by: JH

	rill rig	:		<u>, </u>			R.L. surfa	ace: AHD
	groundy		15/02/	2017		RY (m)		
L	, 							
ا ا		6	j		uo	MATERIAL DESCRIPTION	50	MONITORING WELL
groundwater	samples	PID Reading (ppm)	depth or R.L. in meters	graphic log	classification symbol	soil type, plasticity or particle characteristic, colour, secondary and minor components.	Graphic Log	Description
	DS		9 — — —					
	DS		10 — —					
	DS		- 11					
	DS		 12 —					
			13 —					
			14 —					Endcap
			15 —			Monitoring well terminated at 14.5m		
			16 —					
			18 —					
			_					

KEY TO SYMBOLS Symbol Description Symbol Description Strata symbols Gradual profile change Topsoil Silty Clay medium plasticity Shaley Clay medium plasticity Shale Limestone Monitor Well Details Locked Cap concrete seal bentonite slurry bentonite pellets silica sand, blank PVC slotted pipe w/ sand endcap on pipe packed in sand Descriptions of various line types (solid, dotted, etc.) Profile change

Notes:

- 1. Exploratory borings were drilled between 15/02/2017 and 15/02/2017 using a 50, 100 and 125mm diameter continuous flight power auger.
- 2. These logs are subject to the limitations, conclusions and recommendations in this report.
- 3. Results of tests conducted on samples recovered are reported on the logs.

APPENDIX D

SGS ENVIRONMENTAL SERVICES ANALYTICAL REPORTS AND ENVIROLAB SERVICES CERTIFICATES OF ANALYSIS

ANALYTICAL REPORT

CLIENT DETAILS

LABORATORY DETAILS

Contact John Xu
Client Geotechnique
Address P.O. Box 880

P.O. Box 880 PENRITH NSW 2751 Manager Huong Crawford

Laboratory SGS Alexandria Environmental
Address Unit 16. 33 Maddox St

Alexandria NSW 2015

Telephone 02 4722 2700 Facsimile 02 4722 6161

Email john.xu@geotech.com.au

12675-4 Googong NH1A-7 and NH2

Order Number (Not specified)
Samples 198

Telephone +61 2 8594 0400 Facsimile +61 2 8594 0499

Email au.environmental.sydney@sgs.com

 SGS Reference
 SE158264 R1

 Date Received
 19/10/2016

 Date Reported
 19/1/2017

COMMENTS

Project

Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562(4354).

This report cancels and supersedes the report No.SE158264R0. dated 31/10/16 issued by SGS Environment, Health and Safety due to amended sample ID for #92.

SIGNATORIES

Bennet Lo

Senior Organic Chemist/Metals Chemist

Dong Liang

Metals/Inorganics Team Leader

Huong Crawford

Production Manager

Kamrul Ahsan

Senior Chemist

Ly Kim Ha

Organic Section Head

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015

Australia Australia t +61 2 8594 0400 f +61 2 8594 0499

www.sgs.com.au

TRH Silica Gel (Total Recoverable Hydrocarbons - Silica Gel) in Soil [AN403] Tested: 21/10/2016

			DS11 0-0.1	DS16 0-0.1	DS18 0-0.1	DS18 0.5-0.6	DS19 0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			18/10/2016	18/10/2016	18/10/2016	18/10/2016	18/10/2016
PARAMETER	UOM	LOR	SE158264.160	SE158264.161	SE158264.162	SE158264.163	SE158264.164
TRH C10-C14-Silica	mg/kg	20	<20	<20	<20	<20	<20
TRH C15-C28-Silica	mg/kg	45	<45	<45	<45	<45	<45
TRH C29-C36-Silica	mg/kg	45	<45	<45	<45	<45	<45
TRH C37-C40-Silica	mg/kg	100	<100	<100	<100	<100	<100
TRH >C10-C16-Silica (F2)	mg/kg	25	<25	<25	<25	<25	<25
TRH >C16-C34-Silica (F3)	mg/kg	90	<90	<90	<90	<90	<90
TRH >C34-C40-Silica (F4)	mg/kg	120	<120	<120	<120	<120	<120
TRH C10-C36-Silica	mg/kg	110	<110	<110	<110	<110	<110

			DS19 0.5-0.6	DS22 0-0.1	DS22 0.5-0.6	CS12-1 0-0.1	CS12-2 0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 18/10/2016	- 18/10/2016	- 18/10/2016	- 18/10/2016	- 18/10/2016
PARAMETER	UOM	LOR	SE158264.165	SE158264.166	SE158264.167	SE158264.168	SE158264.169
TRH C10-C14-Silica	mg/kg	20	<20	<20	<20	<20	<20
TRH C15-C28-Silica	mg/kg	45	<45	<45	<45	<45	<45
TRH C29-C36-Silica	mg/kg	45	<45	<45	<45	<45	<45
TRH C37-C40-Silica	mg/kg	100	<100	<100	<100	<100	<100
TRH >C10-C16-Silica (F2)	mg/kg	25	<25	<25	<25	<25	<25
TRH >C16-C34-Silica (F3)	mg/kg	90	<90	<90	<90	<90	<90
TRH >C34-C40-Silica (F4)	mg/kg	120	<120	<120	<120	<120	<120
TRH C10-C36-Silica	mg/kg	110	<110	<110	<110	<110	<110

			CS12-2 0.5-0.6	CS12-3 0-0.1	CS14-1 0-0.1	CS14-2 0-0.1	CS14-3 0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 18/10/2016	- 18/10/2016	- 18/10/2016	- 18/10/2016	- 18/10/2016
PARAMETER	UOM	LOR	SE158264.170	SE158264.171	SE158264.172	SE158264.173	SE158264.174
TRH C10-C14-Silica	mg/kg	20	<20	<20	<20	<20	<20
TRH C15-C28-Silica	mg/kg	45	<45	<45	<45	<45	<45
TRH C29-C36-Silica	mg/kg	45	<45	<45	<45	<45	<45
TRH C37-C40-Silica	mg/kg	100	<100	<100	<100	<100	<100
TRH >C10-C16-Silica (F2)	mg/kg	25	<25	<25	<25	<25	<25
TRH >C16-C34-Silica (F3)	mg/kg	90	<90	<90	<90	<90	<90
TRH >C34-C40-Silica (F4)	mg/kg	120	<120	<120	<120	<120	<120
TRH C10-C36-Silica	mg/kg	110	<110	<110	<110	<110	<110

			CS15-1 0-0.1	CS15-2 0-0.1	CS15-2 0.5-0.6	CS15-3 0-0.1	CS18-1 0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 18/10/2016	- 18/10/2016	- 18/10/2016	- 18/10/2016	- 18/10/2016
PARAMETER	UOM	LOR	SE158264.175	SE158264.176	SE158264.177	SE158264.178	SE158264.179
TRH C10-C14-Silica	mg/kg	20	<20	<20	<20	<20	<20
TRH C15-C28-Silica	mg/kg	45	<45	<45	<45	<45	<45
TRH C29-C36-Silica	mg/kg	45	<45	<45	<45	<45	<45
TRH C37-C40-Silica	mg/kg	100	<100	<100	<100	<100	<100
TRH >C10-C16-Silica (F2)	mg/kg	25	<25	<25	<25	<25	<25
TRH >C16-C34-Silica (F3)	mg/kg	90	<90	<90	<90	<90	<90
TRH >C34-C40-Silica (F4)	mg/kg	120	<120	<120	<120	<120	<120
TRH C10-C36-Silica	mg/kg	110	<110	<110	<110	<110	<110

19/01/2017 Page 2 of 34

TRH Silica Gel (Total Recoverable Hydrocarbons - Silica Gel) in Soil [AN403] Tested: 21/10/2016 (continued)

			CS18-2 0-0.1	CS18-2 0.5-0.6	CS18-3 0-0.1	CS22-1 0-0.1	CS22-2 0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 18/10/2016	- 18/10/2016	- 18/10/2016	-	- 18/10/2016
PARAMETER	UOM	LOR	SE158264.180	SE158264.181	SE158264.182	18/10/2016 SE158264.183	SE158264.184
TRH C10-C14-Silica	mg/kg	20	<20	<20	<20	<20	<20
TRH C15-C28-Silica	mg/kg	45	<45	<45	<45	<45	<45
TRH C29-C36-Silica	mg/kg	45	<45	<45	<45	<45	<45
TRH C37-C40-Silica	mg/kg	100	<100	<100	<100	<100	<100
TRH >C10-C16-Silica (F2)	mg/kg	25	<25	<25	<25	<25	<25
TRH >C16-C34-Silica (F3)	mg/kg	90	<90	<90	<90	<90	<90
TRH >C34-C40-Silica (F4)	mg/kg	120	<120	<120	<120	<120	<120
TRH C10-C36-Silica	mg/kg	110	<110	<110	<110	<110	<110

			CS22-3 0-0.1	Duplicate D8	Duplicate D9	Duplicate D10
			SOIL	SOIL	SOIL	SOIL
			18/10/2016	18/10/2016	18/10/2016	18/10/2016
PARAMETER	UOM	LOR	SE158264.185	SE158264.193	SE158264.194	SE158264.195
TRH C10-C14-Silica	mg/kg	20	<20	<20	<20	<20
TRH C15-C28-Silica	mg/kg	45	<45	<45	<45	<45
TRH C29-C36-Silica	mg/kg	45	<45	<45	<45	<45
TRH C37-C40-Silica	mg/kg	100	<100	<100	<100	<100
TRH >C10-C16-Silica (F2)	mg/kg	25	<25	<25	<25	<25
TRH >C16-C34-Silica (F3)	mg/kg	90	<90	<90	<90	<90
TRH >C34-C40-Silica (F4)	mg/kg	120	<120	<120	<120	<120
TRH C10-C36-Silica	mg/kg	110	<110	<110	<110	<110

19/01/2017 Page 3 of 34

SE158264 R1

pH in soil (1:5) [AN101] Tested: 21/10/2016

			A8 0.5-0.6	A11 1.0-1.1	A15 0.5-0.6	A16 0.2-0.3	A17 1.9-2.0
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			18/10/2016	18/10/2016	18/10/2016	18/10/2016	18/10/2016
PARAMETER	UOM	LOR	SE158264.006	SE158264.012	SE158264.017	SE158264.020	SE158264.027
рН	pH Units	-	6.7	6.7	7.1	7.0	6.9

			A18 1.0-1.1	D101 0-0.1	D101 1.0-1.1	D116 0-0.1	D116 0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			18/10/2016	17/10/2016	17/10/2016	18/10/2016	18/10/2016
PARAMETER	UOM	LOR	SE158264.030	SE158264.031	SE158264.033	SE158264.063	SE158264.064
pH	pH Units	-	7.5	5.5	6.5	5.9	6.9

			D119 0-0.1	D130 0-0.1	D130 1.0-1.1	D132 0-0.1	D132 0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			18/10/2016	18/10/2016	18/10/2016	17/10/2016	17/10/2016
PARAMETER	UOM	LOR	SE158264.071	SE158264.093	SE158264.095	SE158264.098	SE158264.099
pH	pH Units	-	5.3	6.0	7.0	5.9	6.5

			D139 0-0.1	D139 1.4-1.5	D142 0-0.1	D142 1.9-2.0	D152 0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			17/10/2016	17/10/2016	17/10/2016	17/10/2016	17/10/2016
PARAMETER	UOM	LOR	SE158264.114	SE158264.117	SE158264.122	SE158264.125	SE158264.144
рН	pH Units	-	6.7	6.5	6.9	8.0	6.5

			D152 0.2-0.3	D157 0-0.1	D157 1.0-1.1
			SOIL	SOIL	SOIL
					-
			17/10/2016	17/10/2016	17/10/2016
PARAMETER	UOM	LOR	SE158264.145	SE158264.156	SE158264.158
рН	pH Units	-	6.6	5.7	8.6

19/01/2017 Page 4 of 34

Exchangeable Cations and Cation Exchange Capacity (CEC/ESP/SAR) [AN122] Tested: 25/10/2016

			A8 0.5-0.6	A11 1.0-1.1	A15 0.5-0.6	A16 0.2-0.3	A17 1.9-2.0
			SOIL - 18/10/2016	SOIL - 18/10/2016	SOIL - 18/10/2016	SOIL - 18/10/2016	SOIL - 18/10/2016
PARAMETER	UOM	LOR	SE158264.006	SE158264.012	SE158264.017	SE158264.020	SE158264.027
Exchangeable Sodium, Na	mg/kg	2	21	93	96	37	38
Exchangeable Sodium, Na	meq/100g	0.01	0.09	0.40	0.42	0.16	0.17
Exchangeable Sodium Percentage*	%	0.1	0.9	3.8	4.2	1.7	4.2
Exchangeable Potassium, K	mg/kg	2	69	76	66	81	30
Exchangeable Potassium, K	meq/100g	0.01	0.18	0.20	0.17	0.21	0.08
Exchangeable Potassium Percentage*	%	0.1	1.8	1.8	1.7	2.2	1.9
Exchangeable Calcium, Ca	mg/kg	2	1500	460	210	700	140
Exchangeable Calcium, Ca	meq/100g	0.01	7.4	2.3	1.1	3.5	0.68
Exchangeable Calcium Percentage*	%	0.1	75.3	21.7	10.6	37.6	17.2
Exchangeable Magnesium, Mg	mg/kg	2	260	940	1000	660	370
Exchangeable Magnesium, Mg	meq/100g	0.02	2.1	7.7	8.4	5.4	3.0
Exchangeable Magnesium Percentage*	%	0.1	22.0	72.6	83.6	58.4	76.7
Cation Exchange Capacity	meq/100g	0.02	9.8	11	10	9.3	3.9

			A18 1.0-1.1	D101 0-0.1	D101 1.0-1.1	D116 0-0.1	D116 0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 18/10/2016	- 17/10/2016	- 17/10/2016	- 18/10/2016	- 18/10/2016
PARAMETER	UOM	LOR	SE158264.030	SE158264.031	SE158264.033	SE158264.063	SE158264.064
Exchangeable Sodium, Na	mg/kg	2	84	16	20	23	29
Exchangeable Sodium, Na	meq/100g	0.01	0.37	0.07	0.09	0.10	0.13
Exchangeable Sodium Percentage*	%	0.1	3.5	1.7	1.2	1.4	1.5
Exchangeable Potassium, K	mg/kg	2	57	120	110	80	60
Exchangeable Potassium, K	meq/100g	0.01	0.15	0.31	0.29	0.20	0.15
Exchangeable Potassium Percentage*	%	0.1	1.4	7.8	4.1	2.9	1.8
Exchangeable Calcium, Ca	mg/kg	2	370	540	970	930	810
Exchangeable Calcium, Ca	meq/100g	0.01	1.9	2.7	4.8	4.6	4.1
Exchangeable Calcium Percentage*	%	0.1	17.8	68.2	68.2	65.9	46.6
Exchangeable Magnesium, Mg	mg/kg	2	990	110	230	260	530
Exchangeable Magnesium, Mg	meq/100g	0.02	8.1	0.89	1.9	2.1	4.4
Exchangeable Magnesium Percentage*	%	0.1	77.3	22.3	26.5	29.8	50.1
Cation Exchange Capacity	meq/100g	0.02	10	4.0	7.1	7.1	8.7

DIDLUTTED		LOR	D119 0-0.1 SOIL - 18/10/2016	D130 0-0.1 SOIL	D130 1.0-1.1 SOIL	D132 0-0.1 SOIL 17/10/2016	D132 0.2-0.3 SOIL
	11014						
PARAMETER Exchangeable Sodium, Na	UOM mg/kg	2	SE158264.071	SE158264.093	SE158264.095	SE158264.098	SE158264.099
<u> </u>			46	20	81	13	29
Exchangeable Sodium, Na	meq/100g	0.01	0.20	0.09	0.35	0.06	0.13
Exchangeable Sodium Percentage*	%	0.1	2.2	1.5	3.0	0.7	1.1
Exchangeable Potassium, K	mg/kg	2	58	41	100	240	140
Exchangeable Potassium, K	meq/100g	0.01	0.15	0.11	0.26	0.60	0.35
Exchangeable Potassium Percentage*	%	0.1	1.6	1.8	2.3	7.6	3.0
Exchangeable Calcium, Ca	mg/kg	2	650	640	500	1100	1400
Exchangeable Calcium, Ca	meq/100g	0.01	3.3	3.2	2.5	5.7	7.1
Exchangeable Calcium Percentage*	%	0.1	35.5	54.0	21.6	71.6	61.3
Exchangeable Magnesium, Mg	mg/kg	2	680	310	1000	190	490
Exchangeable Magnesium, Mg	meq/100g	0.02	5.6	2.5	8.4	1.6	4.0
Exchangeable Magnesium Percentage*	%	0.1	60.8	42.8	73.1	20.0	34.7
Cation Exchange Capacity	meq/100g	0.02	9.2	5.9	12	7.9	12

19/01/2017 Page 5 of 34

Exchangeable Cations and Cation Exchange Capacity (CEC/ESP/SAR) [AN122] Tested: 25/10/2016 (continued)

			D139 0-0.1	D139 1.4-1.5	D142 0-0.1	D142 1.9-2.0	D152 0-0.1
PARAMETER	UOM	LOR	SOIL - 17/10/2016 SE158264.114	SOIL - 17/10/2016 SE158264.117	SOIL - 17/10/2016 SE158264.122	SOIL - 17/10/2016 SE158264.125	SOIL - 17/10/2016 SE158264.144
Exchangeable Sodium, Na	mg/kg	2	27	33	42	180	31
Exchangeable Sodium, Na	meg/100g	0.01	0.12	0.14	0.18	0.76	0.14
Exchangeable Sodium Percentage*	%	0.1	1,4	2.5	2.0	6.3	1.7
Exchangeable Potassium, K	mg/kg	2	38	24	79	97	56
Exchangeable Potassium, K	meq/100g	0.01	0.10	0.06	0.20	0.25	0.14
Exchangeable Potassium Percentage*	%	0.1	1.2	1.1	2.2	2.0	1.8
Exchangeable Calcium, Ca	mg/kg	2	1000	260	880	670	750
Exchangeable Calcium, Ca	meq/100g	0.01	5.2	1.3	4.4	3.3	3.7
Exchangeable Calcium Percentage*	%	0.1	63.6	22.0	47.9	27.3	46.7
Exchangeable Magnesium, Mg	mg/kg	2	340	530	540	960	490
Exchangeable Magnesium, Mg	meq/100g	0.02	2.8	4.3	4.4	7.9	4.0
Exchangeable Magnesium Percentage*	%	0.1	33.8	74.5	47.9	64.4	49.8
Cation Exchange Capacity	meq/100g	0.02	8.2	5.8	9.2	12	8.0

PARAMETER	UOM	LOR	D152 0.2-0.3 SOIL - 17/10/2016 SE158264.145	D157 0-0.1 SOIL - 17/10/2016 SE158264.156	D157 1.0-1.1 SOIL - 17/10/2016 SE158264.158
Exchangeable Sodium, Na	mg/kg	2	32	14	820
Exchangeable Sodium, Na	meq/100g	0.01	0.14	0.06	3.6
Exchangeable Sodium Percentage*	%	0.1	1.7	2.1	15.2
Exchangeable Potassium, K	mg/kg	2	58	28	120
Exchangeable Potassium, K	meq/100g	0.01	0.15	0.07	0.30
Exchangeable Potassium Percentage*	%	0.1	1.8	2.4	1.3
Exchangeable Calcium, Ca	mg/kg	2	740	410	580
Exchangeable Calcium, Ca	meq/100g	0.01	3.7	2.1	2.9
Exchangeable Calcium Percentage*	%	0.1	46.4	69.8	12.4
Exchangeable Magnesium, Mg	mg/kg	2	490	92	2000
Exchangeable Magnesium, Mg	meq/100g	0.02	4.0	0.75	17
Exchangeable Magnesium Percentage*	%	0.1	50.1	25.6	71.2
Cation Exchange Capacity	meq/100g	0.02	8.0	2.9	24

19/01/2017 Page 6 of 34

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES [AN040/AN320] Tested: 25/10/2016

			A4 0.25-0.35	A4 0.5-0.6	A6 0.25-0.35	A6 0.5-0.6	A8 0.25-0.35
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 18/10/2016	- 18/10/2016	- 18/10/2016	- 18/10/2016	- 18/10/2016
PARAMETER	UOM	LOR	SE158264.001	SE158264.002	SE158264.003	SE158264.004	SE158264.005
Arsenic, As	mg/kg	3	300	380	300	340	310
Cadmium, Cd	mg/kg	0.3	7.0	7.6	9.0	12	11
Copper, Cu	mg/kg	0.5	89	79	100	49	110
Lead, Pb	mg/kg	1	420	540	300	39	250
Manganese, Mn	mg/kg	1	7400	6200	8800	7400	9400
Nickel, Ni	mg/kg	0.5	44	31	45	17	24
Zinc, Zn	mg/kg	0.5	2700	3100	3100	4100	3700

			A8 0.5-0.6	A8 1.0-1.1	A9 0.25-0.35	A9 0.5-0.6	A11 0.25-0.35
			SOIL	SOIL	SOIL	SOIL	SOIL
			18/10/2016	18/10/2016	18/10/2016	18/10/2016	18/10/2016
PARAMETER	UOM	LOR	SE158264.006	SE158264.007	SE158264.008	SE158264.009	SE158264.010
Arsenic, As	mg/kg	3	270	260	180	160	220
Cadmium, Cd	mg/kg	0.3	10	8.2	3.6	2.5	3.9
Copper, Cu	mg/kg	0.5	94	94	310	53	64
Lead, Pb	mg/kg	1	350	300	340	310	220
Manganese, Mn	mg/kg	1	7700	8000	3200	4200	4600
Nickel, Ni	mg/kg	0.5	28	30	17	39	29
Zinc, Zn	mg/kg	0.5	3300	3000	1100	870	1400

			A11 0.5-0.6	A11 1.0-1.1	A11 1.9-2.0	A13 0.25-0.35	A13 0.5-0.6
			SOIL	SOIL	SOIL	SOIL	SOIL
			18/10/2016	18/10/2016	18/10/2016	18/10/2016	18/10/2016
PARAMETER	UOM	LOR	SE158264.011	SE158264.012	SE158264.013	SE158264.014	SE158264.015
Arsenic, As	mg/kg	3	390	300	540	230	200
Cadmium, Cd	mg/kg	0.3	17	14	49	3.4	2.7
Copper, Cu	mg/kg	0.5	71	49	65	200	160
Lead, Pb	mg/kg	1	98	81	93	300	290
Manganese, Mn	mg/kg	1	12000	7300	7800	3500	3200
Nickel, Ni	mg/kg	0.5	51	28	24	17	15
Zinc, Zn	mg/kg	0.5	6300	3900	7600	1000	810

			A15 0.2-0.3	A15 0.5-0.6	A15 1.0-1.1	A15 1.9-2.0	A16 0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			18/10/2016	18/10/2016	18/10/2016	18/10/2016	18/10/2016
PARAMETER	UOM	LOR	SE158264.016	SE158264.017	SE158264.018	SE158264.019	SE158264.020
Arsenic, As	mg/kg	3	11	13	19	11	11
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	0.3	<0.3	<0.3
Copper, Cu	mg/kg	0.5	29	34	33	14	26
Lead, Pb	mg/kg	1	15	15	77	14	31
Manganese, Mn	mg/kg	1	120	86	180	1000	93
Nickel, Ni	mg/kg	0.5	17	20	19	26	17
Zinc, Zn	mg/kg	0.5	45	53	53	41	77

19/01/2017 Page 7 of 34

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES [AN040/AN320] Tested: 25/10/2016 (continued)

			A16 0.5-0.6	A16 1.0-1.1	A16 1.5-1.6	A17 0.2-0.3	A17 0.5-0.6
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 18/10/2016	- 18/10/2016	- 18/10/2016	- 18/10/2016	- 18/10/2016
PARAMETER	UOM	LOR	SE158264.021	SE158264.022	SE158264.023	SE158264.024	SE158264.025
Arsenic, As	mg/kg	3	11	13	15	520	600
Cadmium, Cd	mg/kg	0.3	0.3	0.4	<0.3	2.2	4.0
Copper, Cu	mg/kg	0.5	19	19	18	640	870
Lead, Pb	mg/kg	1	21	23	16	190	730
Manganese, Mn	mg/kg	1	58	71	170	660	4300
Nickel, Ni	mg/kg	0.5	28	29	30	17	40
Zinc, Zn	mg/kg	0.5	100	110	100	560	1000

			A17 1.0-1.1	A17 1.9-2.0	A18 0.2-0.3	A18 0.5-0.6	A18 1.0-1.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			18/10/2016	18/10/2016	18/10/2016	18/10/2016	18/10/2016
PARAMETER	UOM	LOR	SE158264.026	SE158264.027	SE158264.028	SE158264.029	SE158264.030
Arsenic, As	mg/kg	3	420	410	87	72	13
Cadmium, Cd	mg/kg	0.3	2.9	16	0.5	0.4	0.3
Copper, Cu	mg/kg	0.5	320	250	110	83	32
Lead, Pb	mg/kg	1	49	570	94	56	17
Manganese, Mn	mg/kg	1	630	12000	480	170	270
Nickel, Ni	mg/kg	0.5	20	130	14	15	28
Zinc, Zn	mg/kg	0.5	770	2500	200	160	180

			D101 0-0.1	D101 0.2-0.3	D101 1.0-1.1	D101 1.9-2.0	D102 0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 50IL	- SOIL	- SOIL	SOIL -	- 50IL
			17/10/2016	17/10/2016	17/10/2016	17/10/2016	17/10/2016
PARAMETER	UOM	LOR	SE158264.031	SE158264.032	SE158264.033	SE158264.034	SE158264.035
Arsenic, As	mg/kg	3	52	61	75	23	54
Cadmium, Cd	mg/kg	0.3	0.7	0.5	0.6	0.9	0.8
Copper, Cu	mg/kg	0.5	22	28	33	36	29
Lead, Pb	mg/kg	1	240	280	490	42	190
Manganese, Mn	mg/kg	1	3200	2300	4000	920	1500
Nickel, Ni	mg/kg	0.5	11	8.6	13	51	12
Zinc, Zn	mg/kg	0.5	210	180	230	430	230

			D102 0.2-0.3	D103 0-0.1	D103 0.2-0.3	D104 0-0.1	D104 0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			17/10/2016	18/10/2016	18/10/2016	18/10/2016	18/10/2016
PARAMETER	UOM	LOR	SE158264.036	SE158264.037	SE158264.038	SE158264.039	SE158264.040
Arsenic, As	mg/kg	3	59	140	140	230	210
Cadmium, Cd	mg/kg	0.3	0.5	2.9	2.1	1.9	2.3
Copper, Cu	mg/kg	0.5	25	100	95	65	59
Lead, Pb	mg/kg	1	270	300	310	260	310
Manganese, Mn	mg/kg	1	1500	3700	3500	1700	3000
Nickel, Ni	mg/kg	0.5	8.8	19	17	17	19
Zinc, Zn	mg/kg	0.5	170	890	800	830	960

19/01/2017 Page 8 of 34

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES [AN040/AN320] Tested: 25/10/2016 (continued)

			D105 0-0.1	D105 0.2-0.3	D106 0-0.1	D106 0.2-0.3	D107 0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	- 30iL	-	- 30IL	-
			18/10/2016	18/10/2016	18/10/2016	18/10/2016	18/10/2016
PARAMETER	UOM	LOR	SE158264.041	SE158264.042	SE158264.043	SE158264.044	SE158264.045
Arsenic, As	mg/kg	3	150	240	72	74	180
Cadmium, Cd	mg/kg	0.3	0.9	1.0	0.5	0.7	2.1
Copper, Cu	mg/kg	0.5	100	140	57	67	150
Lead, Pb	mg/kg	1	370	410	110	110	500
Manganese, Mn	mg/kg	1	1300	1000	270	290	3100
Nickel, Ni	mg/kg	0.5	13	15	20	24	25
Zinc, Zn	mg/kg	0.5	270	320	150	160	630

			D107 0.2-0.3	D108 0-0.1	D108 0.2-0.3	D109 0-0.1	D109 0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			18/10/2016	18/10/2016	18/10/2016	18/10/2016	18/10/2016
PARAMETER	UOM	LOR	SE158264.046	SE158264.047	SE158264.048	SE158264.049	SE158264.050
Arsenic, As	mg/kg	3	200	110	150	120	120
Cadmium, Cd	mg/kg	0.3	2.2	2.3	3.1	2.4	2.9
Copper, Cu	mg/kg	0.5	170	67	75	51	46
Lead, Pb	mg/kg	1	430	620	710	310	240
Manganese, Mn	mg/kg	1	3000	2700	3000	3000	3000
Nickel, Ni	mg/kg	0.5	19	16	19	17	14
Zinc, Zn	mg/kg	0.5	640	870	1000	650	630

			D110 0-0.1	D110 0.2-0.3	D111 0-0.1	D111 0.2-0.3	D112 0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
			17/10/2016	17/10/2016	17/10/2016	17/10/2016	17/10/2016
PARAMETER	UOM	LOR	SE158264.051	SE158264.052	SE158264.053	SE158264.054	SE158264.055
Arsenic, As	mg/kg	3	150	270	87	100	97
Cadmium, Cd	mg/kg	0.3	1.9	1.4	0.9	1.0	0.8
Copper, Cu	mg/kg	0.5	58	63	41	50	35
Lead, Pb	mg/kg	1	330	300	310	330	560
Manganese, Mn	mg/kg	1	3400	1900	3100	3100	3700
Nickel, Ni	mg/kg	0.5	16	13	9.5	11	9.5
Zinc, Zn	mg/kg	0.5	520	490	280	340	280

			D112 0.2-0.3	D113 0-0.1	D113 0.2-0.3	D114 0-0.1	D114 0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			17/10/2016	17/10/2016	17/10/2016	17/10/2016	17/10/2016
PARAMETER	UOM	LOR	SE158264.056	SE158264.057	SE158264.058	SE158264.059	SE158264.060
Arsenic, As	mg/kg	3	110	110	260	60	66
Cadmium, Cd	mg/kg	0.3	0.6	0.8	0.7	1.1	0.8
Copper, Cu	mg/kg	0.5	40	36	74	27	28
Lead, Pb	mg/kg	1	420	210	190	210	200
Manganese, Mn	mg/kg	1	2300	1600	660	2300	1600
Nickel, Ni	mg/kg	0.5	8.3	7.9	12	14	10
Zinc, Zn	mg/kg	0.5	230	220	300	380	300

19/01/2017 Page 9 of 34

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES [AN040/AN320] Tested: 25/10/2016 (continued)

			D115 0-0.1	D115 0.2-0.3	D116 0-0.1	D116 0.2-0.3	D116 1.0-1.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			17/10/2016	17/10/2016	18/10/2016	18/10/2016	18/10/2016
PARAMETER	UOM	LOR	SE158264.061	SE158264.062	SE158264.063	SE158264.064	SE158264.065
Arsenic, As	mg/kg	3	86	88	120	200	220
Cadmium, Cd	mg/kg	0.3	2.2	1.6	4.0	6.7	7.8
Copper, Cu	mg/kg	0.5	35	43	66	180	210
Lead, Pb	mg/kg	1	320	320	620	760	790
Manganese, Mn	mg/kg	1	3100	2400	3700	5200	4800
Nickel, Ni	mg/kg	0.5	13	12	27	44	35
Zinc, Zn	mg/kg	0.5	610	550	1200	2900	3100

			D116 1.4-1.5	D117 0-0.1	D117 0.2-0.3	D118 0-0.1	D118 0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
PARAMETER	UOM	LOR	18/10/2016 SE158264.066	18/10/2016 SE158264.067	18/10/2016 SE158264.068	18/10/2016 SE158264.069	18/10/2016 SE158264.070
Arsenic, As	mg/kg	3	530	180	170	15	44
Cadmium, Cd	mg/kg	0.3	46	2.3	2.2	0.4	0.4
Copper, Cu	mg/kg	0.5	720	110	110	22	58
Lead, Pb	mg/kg	1	710	960	1000	42	64
Manganese, Mn	mg/kg	1	18000	3100	3300	550	110
Nickel, Ni	mg/kg	0.5	36	23	25	12	25
Zinc, Zn	mg/kg	0.5	2000	1100	1100	86	130

			D119 0-0.1	D119 0.2-0.3	D120 0-0.1	D120 0.2-0.3	D121 0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			18/10/2016	18/10/2016	18/10/2016	18/10/2016	18/10/2016
PARAMETER	UOM	LOR	SE158264.071	SE158264.072	SE158264.073	SE158264.074	SE158264.075
Arsenic, As	mg/kg	3	11	10	9	8	52
Cadmium, Cd	mg/kg	0.3	0.3	0.3	0.5	0.5	0.5
Copper, Cu	mg/kg	0.5	16	18	16	17	28
Lead, Pb	mg/kg	1	41	40	270	210	110
Manganese, Mn	mg/kg	1	500	450	240	330	780
Nickel, Ni	mg/kg	0.5	13	21	14	15	11
Zinc, Zn	mg/kg	0.5	50	65	130	130	98

			D121 0.2-0.3	D122 0-0.1	D122 0.2-0.3	D123 0-0.1	D123 0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			18/10/2016	18/10/2016	18/10/2016	18/10/2016	18/10/2016
PARAMETER	UOM	LOR	SE158264.076	SE158264.077	SE158264.078	SE158264.079	SE158264.080
Arsenic, As	mg/kg	3	46	120	140	80	94
Cadmium, Cd	mg/kg	0.3	0.4	0.8	0.7	3.9	2.9
Copper, Cu	mg/kg	0.5	39	110	120	73	89
Lead, Pb	mg/kg	1	53	430	160	370	280
Manganese, Mn	mg/kg	1	210	2100	77	2800	2700
Nickel, Ni	mg/kg	0.5	29	16	16	18	27
Zinc, Zn	mg/kg	0.5	120	250	190	1300	1100

19/01/2017 Page 10 of 34

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES [AN040/AN320] Tested: 25/10/2016 (continued)

			D124 0-0.1	D124 0.2-0.3	D125 0-0.1	D125 0.2-0.3	D126 0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
PARAMETER	UOM	LOR	17/10/2016 SE158264.081	17/10/2016 SE158264.082	17/10/2016 SE158264.083	17/10/2016 SE158264.084	17/10/2016 SE158264.085
Arsenic, As	mg/kg	3	59	66	46	51	71
Cadmium, Cd	mg/kg	0.3	0.8	0.7	0.5	0.5	1.1
Copper, Cu	mg/kg	0.5	30	33	18	20	30
Lead, Pb	mg/kg	1	300	310	190	230	270
Manganese, Mn	mg/kg	1	2300	1600	1900	2100	2600
Nickel, Ni	mg/kg	0.5	8.5	8.2	7.4	7.6	9.3
Zinc, Zn	mg/kg	0.5	380	310	130	140	360

			D126 0.2-0.3	D127 0-0.1	D127 0.2-0.3	D128 0-0.1	D128 0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			- SOIL	SOIL -	301L -	- SOIL	301L -
			17/10/2016	18/10/2016	18/10/2016	18/10/2016	18/10/2016
PARAMETER	UOM	LOR	SE158264.086	SE158264.087	SE158264.088	SE158264.089	SE158264.090
Arsenic, As	mg/kg	3	76	250	270	8	10
Cadmium, Cd	mg/kg	0.3	0.7	3.5	3.3	<0.3	<0.3
Copper, Cu	mg/kg	0.5	43	310	210	8.7	13
Lead, Pb	mg/kg	1	230	660	630	30	20
Manganese, Mn	mg/kg	1	1300	3600	3700	680	100
Nickel, Ni	mg/kg	0.5	9.1	33	31	10	16
Zinc, Zn	mg/kg	0.5	300	1500	1800	82	110

			D129 0-0.1	D129 0.2-0.3	D130 0-0.1	D130 0.2-0.3	D130 1.0-1.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			18/10/2016	18/10/2016	18/10/2016	18/10/2016	18/10/2016
PARAMETER	UOM	LOR	SE158264.091	SE158264.092	SE158264.093	SE158264.094	SE158264.095
Arsenic, As	mg/kg	3	7	13	8	12	17
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	0.3
Copper, Cu	mg/kg	0.5	9.6	15	8.1	15	11
Lead, Pb	mg/kg	1	31	68	37	30	15
Manganese, Mn	mg/kg	1	150	100	620	130	56
Nickel, Ni	mg/kg	0.5	12	12	9.6	15	23
Zinc, Zn	mg/kg	0.5	56	74	65	70	73

			D131 0-0.1	D131 0.2-0.3	D132 0-0.1	D132 0.2-0.3	D132 1.0-1.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			18/10/2016	18/10/2016	17/10/2016	17/10/2016	17/10/2016
PARAMETER	UOM	LOR	SE158264.096	SE158264.097	SE158264.098	SE158264.099	SE158264.100
Arsenic, As	mg/kg	3	180	190	290	530	940
Cadmium, Cd	mg/kg	0.3	2.1	1.7	1.3	1.2	1.2
Copper, Cu	mg/kg	0.5	71	69	41	62	99
Lead, Pb	mg/kg	1	310	280	190	120	79
Manganese, Mn	mg/kg	1	2500	2400	4100	1600	2300
Nickel, Ni	mg/kg	0.5	14	13	13	13	18
Zinc, Zn	mg/kg	0.5	630	600	350	490	660

19/01/2017 Page 11 of 34

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES [AN040/AN320] Tested: 25/10/2016 (continued)

			D132 1.9-2.0	D133 0-0.1	D133 0.2-0.3	D134 0-0.1	D134 0.2-0.03
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 17/10/2016	- 17/10/2016	- 17/10/2016	- 17/10/2016	- 17/10/2016
PARAMETER	UOM	LOR	SE158264.101	SE158264.102	SE158264.103	SE158264.104	SE158264.105
Arsenic, As	mg/kg	3	540	35	21	46	74
Cadmium, Cd	mg/kg	0.3	1.2	0.5	<0.3	0.5	0.8
Copper, Cu	mg/kg	0.5	71	12	9.8	8.7	21
Lead, Pb	mg/kg	1	55	150	100	180	200
Manganese, Mn	mg/kg	1	1400	1600	660	1300	720
Nickel, Ni	mg/kg	0.5	14	5.4	4.6	5.4	8.3
Zinc, Zn	mg/kg	0.5	580	140	60	93	110

			D135 0-0.1	D135 0.2-0.3	D136 0-0.1	D136 0.2-0.3	D137 0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			17/10/2016	17/10/2016	17/10/2016	17/10/2016	17/10/2016
PARAMETER	UOM	LOR	SE158264.106	SE158264.107	SE158264.108	SE158264.109	SE158264.110
Arsenic, As	mg/kg	3	68	54	67	69	160
Cadmium, Cd	mg/kg	0.3	0.8	0.6	0.8	0.8	3.4
Copper, Cu	mg/kg	0.5	32	24	32	30	76
Lead, Pb	mg/kg	1	200	220	280	310	380
Manganese, Mn	mg/kg	1	1200	950	2300	2600	5900
Nickel, Ni	mg/kg	0.5	12	7.1	12	13	31
Zinc, Zn	mg/kg	0.5	210	150	250	290	950

			D137 0.2-0.3	D138 0-0.1	D138 0.2-0.3	D139 0-0.1	D139 0.2-0.3
			SOIL -	SOIL -	SOIL -	SOIL -	SOIL -
PARAMETER	UOM	LOR	17/10/2016 SE158264.111	17/10/2016 SE158264.112	17/10/2016 SE158264.113	17/10/2016 SE158264.114	17/10/2016 SE158264.115
				SE150204.112	SE150204.113	SE150204.114	SE150204.115
Arsenic, As	mg/kg	3	180	360	360	850	1200
Cadmium, Cd	mg/kg	0.3	2.3	3.6	3.4	4.3	6.6
Copper, Cu	mg/kg	0.5	81	78	75	680	1100
Lead, Pb	mg/kg	1	420	230	260	1700	970
Manganese, Mn	mg/kg	1	3600	3300	3400	4000	16000
Nickel, Ni	mg/kg	0.5	23	17	19	36	110
Zinc, Zn	mg/kg	0.5	770	1700	1600	1100	1400

			D139 1.0-1.1	D139 1.4-1.5	D140 0-0.1	D140 0.2-0.3	D141 0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			17/10/2016	17/10/2016	17/10/2016	17/10/2016	17/10/2016
PARAMETER	UOM	LOR	SE158264.116	SE158264.117	SE158264.118	SE158264.119	SE158264.120
Arsenic, As	mg/kg	3	860	430	330	630	48
Cadmium, Cd	mg/kg	0.3	3.5	2.6	3.7	6.1	0.4
Copper, Cu	mg/kg	0.5	1700	560	110	270	11
Lead, Pb	mg/kg	1	960	170	900	2300	97
Manganese, Mn	mg/kg	1	1600	2400	4400	8400	760
Nickel, Ni	mg/kg	0.5	52	44	24	44	4.1
Zinc, Zn	mg/kg	0.5	630	400	1000	2800	200

19/01/2017 Page 12 of 34

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES [AN040/AN320] Tested: 25/10/2016 (continued)

			D141 0.2-0.3	D142 0-0.1	D142 0.2-0.3	D142 1.0-1.1	D142 1.9-2.0
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
PARAMETER	UOM	LOR	17/10/2016 SE158264.121	17/10/2016 SE158264.122	17/10/2016 SE158264.123	17/10/2016 SE158264.124	17/10/2016 SE158264.125
Arsenic, As	mg/kg	3	320	100	110	100	26
Cadmium, Cd	mg/kg	0.3	2.5	0.8	0.8	0.6	0.3
Copper, Cu	mg/kg	0.5	69	24	30	37	26
Lead, Pb	mg/kg	1	570	250	260	72	28
Manganese, Mn	mg/kg	1	3200	1700	1900	320	240
Nickel, Ni	mg/kg	0.5	20	10	11	11	11
Zinc, Zn	mg/kg	0.5	770	210	240	250	160

			D143 0-0.1	D143 0.2-0.3	D144 0-0.1	D144 0.2-0.3	D145 0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			17/10/2016	17/10/2016	17/10/2016	17/10/2016	17/10/2016
PARAMETER	UOM	LOR	SE158264.126	SE158264.127	SE158264.128	SE158264.129	SE158264.130
Arsenic, As	mg/kg	3	54	63	62	64	47
Cadmium, Cd	mg/kg	0.3	0.6	0.7	0.7	0.7	0.8
Copper, Cu	mg/kg	0.5	19	19	13	48	48
Lead, Pb	mg/kg	1	220	220	190	75	160
Manganese, Mn	mg/kg	1	1900	2500	2100	80	1800
Nickel, Ni	mg/kg	0.5	7.5	9.3	7.3	15	15
Zinc, Zn	mg/kg	0.5	140	160	200	200	140

			D145 0.2-0.3	D146 0-0.1	D146 0.2-0.3	D147 0-0.1	D147 0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
			17/10/2016	17/10/2016	17/10/2016	17/10/2016	17/10/2016
PARAMETER	UOM	LOR	SE158264.131	SE158264.132	SE158264.133	SE158264.134	SE158264.135
Arsenic, As	mg/kg	3	56	31	43	53	76
Cadmium, Cd	mg/kg	0.3	0.8	0.4	0.5	1.5	0.8
Copper, Cu	mg/kg	0.5	78	13	37	20	44
Lead, Pb	mg/kg	1	120	80	49	140	150
Manganese, Mn	mg/kg	1	260	1100	480	2600	1200
Nickel, Ni	mg/kg	0.5	22	8.6	18	13	17
Zinc, Zn	mg/kg	0.5	170	74	130	230	240

			D148 0-0.1	D148 0.2-0.3	D149 0-0.1	D149 0.2-0.3	D150 0-0.1
			2011	2011			00"
			SOIL	SOIL	SOIL	SOIL	SOIL
			17/10/2016	17/10/2016	17/10/2016	17/10/2016	17/10/2016
PARAMETER	UOM	LOR	SE158264.136	SE158264.137	SE158264.138	SE158264.139	SE158264.140
Arsenic, As	mg/kg	3	36	47	190	120	260
Cadmium, Cd	mg/kg	0.3	0.4	0.6	1.5	0.8	2.3
Copper, Cu	mg/kg	0.5	16	36	42	37	58
Lead, Pb	mg/kg	1	72	69	310	170	380
Manganese, Mn	mg/kg	1	570	760	4200	1400	4500
Nickel, Ni	mg/kg	0.5	9.5	23	20	11	21
Zinc, Zn	mg/kg	0.5	71	140	520	290	750

19/01/2017 Page 13 of 34

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES [AN040/AN320] Tested: 25/10/2016 (continued)

	D150 0.2-0.3	D151 0-0.1	D151 0.2-0.3	D152 0-0.1	D152 0.2-0.3
	SOIL	SOIL	SOIL	SOIL	SOIL
	17/10/2016	17/10/2016	17/10/2016	17/10/2016	17/10/2016
LOR	SE158264.141	SE158264.142	SE158264.143	SE158264.144	SE158264.145
3	300	250	240	250	270
0.3	1.9	2.7	1.3	1.8	1.9
0.5	53	120	120	92	110
1	350	1600	870	510	600
1	4000	3500	990	2500	2700
0.5	21	23	18	17	17
0.5	770	1100	920	450	540
	3 0.3 0.5 1 1 0.5	SOIL 17/10/2016 SE158264.141 3 300 0.3 1.9 0.5 53 1 350 1 4000 0.5 21	SOIL SOIL 17/10/2016 17/10/2016 SE158264.141 SE158264.142 3 300 250 0.3 1.9 2.7 0.5 53 120 1 350 1600 1 4000 3500 0.5 21 23	SOIL SOIL SOIL SOIL 17/10/2016 17/10/2016 17/10/2016 SE158264.141 SE158264.142 SE158264.143 3 300 250 240 0.3 1.9 2.7 1.3 0.5 53 120 120 1 350 1600 870 1 4000 3500 990 0.5 21 23 18	SOIL SOIL SOIL SOIL 17/10/2016 17/10/2016 17/10/2016 17/10/2016 SE158264.141 SE158264.142 SE158264.143 SE158264.144 3 300 250 240 250 0.3 1.9 2.7 1.3 1.8 0.5 53 120 120 92 1 350 1600 870 510 1 4000 3500 990 2500 0.5 21 23 18 17

			D152 1.0-1.1	D152 1.9-2.0	D153 0-0.1	D153 0.2-0.3	D154 0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			17/10/2016	17/10/2016	17/10/2016	17/10/2016	17/10/2016
PARAMETER	UOM	LOR	SE158264.146	SE158264.147	SE158264.148	SE158264.149	SE158264.150
Arsenic, As	mg/kg	3	390	390	140	170	64
Cadmium, Cd	mg/kg	0.3	5.9	4.5	1.5	1.3	0.6
Copper, Cu	mg/kg	0.5	240	150	61	64	20
Lead, Pb	mg/kg	1	360	85	460	470	180
Manganese, Mn	mg/kg	1	4700	1800	3400	3000	1300
Nickel, Ni	mg/kg	0.5	24	19	17	18	6.4
Zinc, Zn	mg/kg	0.5	950	1100	400	430	110

			D154 0.2-0.3	D155 0-0.1	D155 0.2-0.3	D156 0-0.1	D156 0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
			17/10/2016	17/10/2016	17/10/2016	17/10/2016	17/10/2016
PARAMETER	UOM	LOR	SE158264.151	SE158264.152	SE158264.153	SE158264.154	SE158264.155
Arsenic, As	mg/kg	3	80	100	120	23	26
Cadmium, Cd	mg/kg	0.3	0.8	1.6	1.7	0.6	0.4
Copper, Cu	mg/kg	0.5	33	61	83	21	27
Lead, Pb	mg/kg	1	330	160	240	73	53
Manganese, Mn	mg/kg	1	2400	3900	4400	2200	700
Nickel, Ni	mg/kg	0.5	11	20	24	16	17
Zinc, Zn	mg/kg	0.5	160	270	340	110	94

			D157 0-0.1	D157 0.2-0.3	D157 1.0-1.1	D157 1.9-2.0	Duplicate D1
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 50IL	- 30IL	- 50IL	SOIL -	- -
			17/10/2016	17/10/2016	17/10/2016	17/10/2016	17/10/2016
PARAMETER	UOM	LOR	SE158264.156	SE158264.157	SE158264.158	SE158264.159	SE158264.186
Arsenic, As	mg/kg	3	33	47	37	12	390
Cadmium, Cd	mg/kg	0.3	0.4	0.6	0.5	0.6	4.8
Copper, Cu	mg/kg	0.5	9.2	23	41	41	72
Lead, Pb	mg/kg	1	75	110	49	50	50
Manganese, Mn	mg/kg	1	1200	680	190	980	6200
Nickel, Ni	mg/kg	0.5	6.8	21	20	59	31
Zinc, Zn	mg/kg	0.5	59	73	120	210	1200

19/01/2017 Page 14 of 34

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES [AN040/AN320] Tested: 25/10/2016 (continued)

			Duplicate D2	Duplicate D3	Duplicate D4	Duplicate D5	Duplicate D6
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 17/10/2016	- 17/10/2016	- 17/10/2016	- 18/10/2016	- 18/10/2016
PARAMETER	UOM	LOR	SE158264.187	SE158264.188	SE158264.189	SE158264.190	SE158264.191
Arsenic, As	mg/kg	3	310	840	30	130	260
Cadmium, Cd	mg/kg	0.3	2.3	4.8	0.4	3.2	4.8
Copper, Cu	mg/kg	0.5	110	850	8.6	97	53
Lead, Pb	mg/kg	1	630	1900	70	280	250
Manganese, Mn	mg/kg	1	2700	3400	1500	4100	3900
Nickel, Ni	mg/kg	0.5	18	31	7.3	26	16
Zinc, Zn	mg/kg	0.5	550	1000	69	830	1600

			Duplicate D7
PARAMETER	UOM	LOR	SOIL - 18/10/2016 SE158264.192
Arsenic, As	mg/kg	3	250
Cadmium, Cd	mg/kg	0.3	3.8
Copper, Cu	mg/kg	0.5	62
Lead, Pb	mg/kg	1	210
Manganese, Mn	mg/kg	1	5700
Nickel, Ni	mg/kg	0.5	32
Zinc, Zn	mg/kg	0.5	1400

19/01/2017 Page 15 of 34

Mercury in Soil [AN312] Tested: 24/10/2016

			A4 0.25-0.35	A4 0.5-0.6	A6 0.25-0.35	A6 0.5-0.6	A8 0.25-0.35
			SOIL	SOIL	SOIL	SOIL	SOIL
			18/10/2016	18/10/2016	18/10/2016	18/10/2016	18/10/2016
PARAMETER	UOM	LOR	SE158264.001	SE158264.002	SE158264.003	SE158264.004	SE158264.005
Mercury	mg/kg	0.05	0.05	0.07	<0.05	0.07	0.10

			A8 0.5-0.6	A8 1.0-1.1	A9 0.25-0.35	A9 0.5-0.6	A11 0.25-0.35
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			18/10/2016	18/10/2016	18/10/2016	18/10/2016	18/10/2016
PARAMETER	UOM	LOR	SE158264.006	SE158264.007	SE158264.008	SE158264.009	SE158264.010
Mercury	mg/kg	0.05	<0.05	0.06	<0.05	<0.05	0.11

			A11 0.5-0.6	A11 1.0-1.1	A11 1.9-2.0	A13 0.25-0.35	A13 0.5-0.6
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			18/10/2016	18/10/2016	18/10/2016	18/10/2016	18/10/2016
PARAMETER	UOM	LOR	SE158264.011	SE158264.012	SE158264.013	SE158264.014	SE158264.015
Mercury	mg/kg	0.05	0.48	0.53	0.46	<0.05	<0.05

			A15 0.2-0.3	A15 0.5-0.6	A15 1.0-1.1	A15 1.9-2.0	A16 0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			18/10/2016	18/10/2016	18/10/2016	18/10/2016	18/10/2016
PARAMETER	UOM	LOR	SE158264.016	SE158264.017	SE158264.018	SE158264.019	SE158264.020
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05

			A16 0.5-0.6	A16 1.0-1.1	A16 1.5-1.6	A17 0.2-0.3	A17 0.5-0.6
			SOIL	SOIL	SOIL	SOIL	SOIL
			18/10/2016	18/10/2016	18/10/2016	18/10/2016	18/10/2016
PARAMETER	UOM	LOR	SE158264.021	SE158264.022	SE158264.023	SE158264.024	SE158264.025
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	0.06	0.12

			A17 1.0-1.1	A17 1.9-2.0	A18 0.2-0.3	A18 0.5-0.6	A18 1.0-1.1
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			18/10/2016	18/10/2016	18/10/2016	18/10/2016	18/10/2016
PARAMETER	UOM	LOR	SE158264.026	SE158264.027	SE158264.028	SE158264.029	SE158264.030
Mercury	mg/kg	0.05	0.24	0.13	<0.05	<0.05	<0.05

			D101 0-0.1	D101 0.2-0.3	D101 1.0-1.1	D101 1.9-2.0	D102 0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			17/10/2016	17/10/2016	17/10/2016	17/10/2016	17/10/2016
PARAMETER	UOM	LOR	SE158264.031	SE158264.032	SE158264.033	SE158264.034	SE158264.035
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05

19/01/2017 Page 16 of 34

Mercury in Soil [AN312] Tested: 24/10/2016 (continued)

			D102 0.2-0.3	D103 0-0.1	D103 0.2-0.3	D104 0-0.1	D104 0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			17/10/2016	18/10/2016	18/10/2016	18/10/2016	18/10/2016
PARAMETER	UOM	LOR	SE158264.036	SE158264.037	SE158264.038	SE158264.039	SE158264.040
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05

			D105 0-0.1	D105 0.2-0.3	D106 0-0.1	D106 0.2-0.3	D107 0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			18/10/2016	18/10/2016	18/10/2016	18/10/2016	18/10/2016
PARAMETER	UOM	LOR	SE158264.041	SE158264.042	SE158264.043	SE158264.044	SE158264.045
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05

			D107 0.2-0.3	D108 0-0.1	D108 0.2-0.3	D109 0-0.1	D109 0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			18/10/2016	18/10/2016	18/10/2016	18/10/2016	18/10/2016
PARAMETER	UOM	LOR	SE158264.046	SE158264.047	SE158264.048	SE158264.049	SE158264.050
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05

			D110 0-0.1	D110 0.2-0.3	D111 0-0.1	D111 0.2-0.3	D112 0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			17/10/2016	17/10/2016	17/10/2016	17/10/2016	17/10/2016
PARAMETER	UOM	LOR	SE158264.051	SE158264.052	SE158264.053	SE158264.054	SE158264.055
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05

			D112 0.2-0.3	D113 0-0.1	D113 0.2-0.3	D114 0-0.1	D114 0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			17/10/2016	17/10/2016	17/10/2016	17/10/2016	17/10/2016
PARAMETER	UOM	LOR	SE158264.056	SE158264.057	SE158264.058	SE158264.059	SE158264.060
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05

			D115 0-0.1	D115 0.2-0.3	D116 0-0.1	D116 0.2-0.3	D116 1.0-1.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			17/10/2016	17/10/2016	18/10/2016	18/10/2016	18/10/2016
PARAMETER	UOM	LOR	SE158264.061	SE158264.062	SE158264.063	SE158264.064	SE158264.065
Mercury	mg/kg	0.05	<0.05	<0.05	0.11	0.20	0.20

			D116 1.4-1.5	D117 0-0.1	D117 0.2-0.3	D118 0-0.1	D118 0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			18/10/2016	18/10/2016	18/10/2016	18/10/2016	18/10/2016
PARAMETER	UOM	LOR	SE158264.066	SE158264.067	SE158264.068	SE158264.069	SE158264.070
Mercury	mg/kg	0.05	0.64	<0.05	<0.05	<0.05	<0.05

19/01/2017 Page 17 of 34

Mercury in Soil [AN312] Tested: 24/10/2016 (continued)

			D119 0-0.1	D119 0.2-0.3	D120 0-0.1	D120 0.2-0.3	D121 0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			18/10/2016	18/10/2016	18/10/2016	18/10/2016	18/10/2016
PARAMETER	UOM	LOR	SE158264.071	SE158264.072	SE158264.073	SE158264.074	SE158264.075
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05

			D121 0.2-0.3	D122 0-0.1	D122 0.2-0.3	D123 0-0.1	D123 0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			18/10/2016	18/10/2016	18/10/2016	18/10/2016	18/10/2016
PARAMETER	UOM	LOR	SE158264.076	SE158264.077	SE158264.078	SE158264.079	SE158264.080
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05

			D124 0-0.1	D124 0.2-0.3	D125 0-0.1	D125 0.2-0.3	D126 0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			17/10/2016	17/10/2016	17/10/2016	17/10/2016	17/10/2016
PARAMETER	UOM	LOR	SE158264.081	SE158264.082	SE158264.083	SE158264.084	SE158264.085
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05

			D126 0.2-0.3	D127 0-0.1	D127 0.2-0.3	D128 0-0.1	D128 0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			17/10/2016	18/10/2016	18/10/2016	18/10/2016	18/10/2016
PARAMETER	UOM	LOR	SE158264.086	SE158264.087	SE158264.088	SE158264.089	SE158264.090
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05

			D129 0-0.1	D129 0.2-0.3	D130 0-0.1	D130 0.2-0.3	D130 1.0-1.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			18/10/2016	18/10/2016	18/10/2016	18/10/2016	18/10/2016
PARAMETER	UOM	LOR	SE158264.091	SE158264.092	SE158264.093	SE158264.094	SE158264.095
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05

			D131 0-0.1	D131 0.2-0.3	D132 0-0.1	D132 0.2-0.3	D132 1.0-1.1
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			18/10/2016	18/10/2016	17/10/2016	17/10/2016	17/10/2016
PARAMETER	UOM	LOR	SE158264.096	SE158264.097	SE158264.098	SE158264.099	SE158264.100
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	0.08

			D132 1.9-2.0	D133 0-0.1	D133 0.2-0.3	D134 0-0.1	D134 0.2-0.03
			SOIL	SOIL	SOIL	SOIL	SOIL
			17/10/2016	17/10/2016	17/10/2016	17/10/2016	17/10/2016
PARAMETER	UOM	LOR	SE158264.101	SE158264.102	SE158264.103	SE158264.104	SE158264.105
Mercury	mg/kg	0.05	0.12	0.09	<0.05	<0.05	<0.05

19/01/2017 Page 18 of 34

Mercury in Soil [AN312] Tested: 24/10/2016 (continued)

			D135 0-0.1	D135 0.2-0.3	D136 0-0.1	D136 0.2-0.3	D137 0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			17/10/2016	17/10/2016	17/10/2016	17/10/2016	17/10/2016
PARAMETER	UOM	LOR	SE158264.106	SE158264.107	SE158264.108	SE158264.109	SE158264.110
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	0.09

			D137 0.2-0.3	D138 0-0.1	D138 0.2-0.3	D139 0-0.1	D139 0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			17/10/2016	17/10/2016	17/10/2016	17/10/2016	17/10/2016
PARAMETER	UOM	LOR	SE158264.111	SE158264.112	SE158264.113	SE158264.114	SE158264.115
Mercury	mg/kg	0.05	0.12	<0.05	<0.05	<0.05	<0.05

			D139 1.0-1.1	D139 1.4-1.5	D140 0-0.1	D140 0.2-0.3	D141 0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			17/10/2016	17/10/2016	17/10/2016	17/10/2016	17/10/2016
PARAMETER	UOM	LOR	SE158264.116	SE158264.117	SE158264.118	SE158264.119	SE158264.120
Mercury	mg/kg	0.05	0.11	0.12	0.07	0.16	0.05

			D141 0.2-0.3	D142 0-0.1	D142 0.2-0.3	D142 1.0-1.1	D142 1.9-2.0
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			17/10/2016	17/10/2016	17/10/2016	17/10/2016	17/10/2016
PARAMETER	UOM	LOR	SE158264.121	SE158264.122	SE158264.123	SE158264.124	SE158264.125
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	0.06

			D143 0-0.1	D143 0.2-0.3	D144 0-0.1	D144 0.2-0.3	D145 0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			17/10/2016	17/10/2016	17/10/2016	17/10/2016	17/10/2016
PARAMETER	UOM	LOR	SE158264.126	SE158264.127	SE158264.128	SE158264.129	SE158264.130
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05

			D145 0.2-0.3	D146 0-0.1	D146 0.2-0.3	D147 0-0.1	D147 0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			17/10/2016	17/10/2016	17/10/2016	17/10/2016	17/10/2016
PARAMETER	UOM	LOR	SE158264.131	SE158264.132	SE158264.133	SE158264.134	SE158264.135
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05

			D148 0-0.1	D148 0.2-0.3	D149 0-0.1	D149 0.2-0.3	D150 0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			17/10/2016	17/10/2016	17/10/2016	17/10/2016	17/10/2016
PARAMETER	UOM	LOR	SE158264.136	SE158264.137	SE158264.138	SE158264.139	SE158264.140
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05

19/01/2017 Page 19 of 34

Mercury in Soil [AN312] Tested: 24/10/2016 (continued)

			D150 0.2-0.3	D151 0-0.1	D151 0.2-0.3	D152 0-0.1	D152 0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			17/10/2016	17/10/2016	17/10/2016	17/10/2016	17/10/2016
PARAMETER	UOM	LOR	SE158264.141	SE158264.142	SE158264.143	SE158264.144	SE158264.145
Mercury	mg/kg	0.05	<0.05	<0.05	0.08	0.05	0.06

			D152 1.0-1.1	D152 1.9-2.0	D153 0-0.1	D153 0.2-0.3	D154 0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			17/10/2016	17/10/2016	17/10/2016	17/10/2016	17/10/2016
PARAMETER	UOM	LOR	SE158264.146	SE158264.147	SE158264.148	SE158264.149	SE158264.150
Mercury	mg/kg	0.05	0.13	0.28	<0.05	<0.05	<0.05

			D154 0.2-0.3	D155 0-0.1	D155 0.2-0.3	D156 0-0.1	D156 0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			17/10/2016	17/10/2016	17/10/2016	17/10/2016	17/10/2016
PARAMETER	UOM	LOR	SE158264.151	SE158264.152	SE158264.153	SE158264.154	SE158264.155
Mercury	mg/kg	0.05	<0.05	0.05	0.05	<0.05	<0.05

			D157 0-0.1	D157 0.2-0.3	D157 1.0-1.1	D157 1.9-2.0	Duplicate D1
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			17/10/2016	17/10/2016	17/10/2016	17/10/2016	17/10/2016
PARAMETER	UOM	LOR	SE158264.156	SE158264.157	SE158264.158	SE158264.159	SE158264.186
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	0.12

			Duplicate D2	Duplicate D3	Duplicate D4	Duplicate D5	Duplicate D6
			SOIL	SOIL	SOIL	SOIL	SOIL
			17/10/2016	17/10/2016	17/10/2016	18/10/2016	18/10/2016
PARAMETER	UOM	LOR	SE158264.187	SE158264.188	SE158264.189	SE158264.190	SE158264.191
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05

			Duplicate D7
			SOIL
			- 18/10/2016
PARAMETER	UOM	LOR	SE158264.192
Mercury	mg/kg	0.05	0.08

19/01/2017 Page 20 of 34

Moisture Content [AN002] Tested: 24/10/2016

			A4 0.25-0.35	A4 0.5-0.6	A6 0.25-0.35	A6 0.5-0.6	A8 0.25-0.35
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			18/10/2016	18/10/2016	18/10/2016	18/10/2016	18/10/2016
PARAMETER	UOM	LOR	SE158264.001	SE158264.002	SE158264.003	SE158264.004	SE158264.005
% Moisture	%w/w	0.5	17	22	20	24	21

			A8 0.5-0.6	A8 1.0-1.1	A9 0.25-0.35	A9 0.5-0.6	A11 0.25-0.35
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			18/10/2016	18/10/2016	18/10/2016	18/10/2016	18/10/2016
PARAMETER	UOM	LOR	SE158264.006	SE158264.007	SE158264.008	SE158264.009	SE158264.010
% Moisture	%w/w	0.5	17	16	17	20	22

			A11 0.5-0.6	A11 1.0-1.1	A11 1.9-2.0	A13 0.25-0.35	A13 0.5-0.6
			SOIL	SOIL	SOIL	SOIL	SOIL
			18/10/2016	18/10/2016	18/10/2016	18/10/2016	18/10/2016
PARAMETER	UOM	LOR	SE158264.011	SE158264.012	SE158264.013	SE158264.014	SE158264.015
% Moisture	%w/w	0.5	30	32	34	17	16

			A15 0.2-0.3	A15 0.5-0.6	A15 1.0-1.1	A15 1.9-2.0	A16 0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			18/10/2016	18/10/2016	18/10/2016	18/10/2016	18/10/2016
PARAMETER	UOM	LOR	SE158264.016	SE158264.017	SE158264.018	SE158264.019	SE158264.020
% Moisture	%w/w	0.5	17	19	15	18	17

			A16 0.5-0.6	A16 1.0-1.1	A16 1.5-1.6	A17 0.2-0.3	A17 0.5-0.6
			SOIL	SOIL	SOIL	SOIL	SOIL
			18/10/2016	18/10/2016	18/10/2016	18/10/2016	18/10/2016
PARAMETER	UOM	LOR	SE158264.021	SE158264.022	SE158264.023	SE158264.024	SE158264.025
% Moisture	%w/w	0.5	21	20	12	24	26

			A17 1.0-1.1	A17 1.9-2.0	A18 0.2-0.3	A18 0.5-0.6	A18 1.0-1.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			18/10/2016	18/10/2016	18/10/2016	18/10/2016	18/10/2016
PARAMETER	UOM	LOR	SE158264.026	SE158264.027	SE158264.028	SE158264.029	SE158264.030
% Moisture	%w/w	0.5	29	23	16	17	16

			D101 0-0.1	D101 0.2-0.3	D101 1.0-1.1	D101 1.9-2.0	D102 0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			17/10/2016	17/10/2016	17/10/2016	17/10/2016	17/10/2016
PARAMETER	UOM	LOR	SE158264.031	SE158264.032	SE158264.033	SE158264.034	SE158264.035
% Moisture	%w/w	0.5	13	15	15	22	11

19/01/2017 Page 21 of 34

Moisture Content [AN002] Tested: 24/10/2016 (continued)

			D102 0.2-0.3	D103 0-0.1	D103 0.2-0.3	D104 0-0.1	D104 0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			17/10/2016	18/10/2016	18/10/2016	18/10/2016	18/10/2016
PARAMETER	UOM	LOR	SE158264.036	SE158264.037	SE158264.038	SE158264.039	SE158264.040
% Moisture	%w/w	0.5	9.8	15	17	16	17

			D105 0-0.1	D105 0.2-0.3	D106 0-0.1	D106 0.2-0.3	D107 0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			18/10/2016	18/10/2016	18/10/2016	18/10/2016	18/10/2016
PARAMETER	UOM	LOR	SE158264.041	SE158264.042	SE158264.043	SE158264.044	SE158264.045
% Moisture	%w/w	0.5	14	16	17	19	17

			D107 0.2-0.3	D108 0-0.1	D108 0.2-0.3	D109 0-0.1	D109 0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			18/10/2016	18/10/2016	18/10/2016	18/10/2016	18/10/2016
PARAMETER	UOM	LOR	SE158264.046	SE158264.047	SE158264.048	SE158264.049	SE158264.050
% Moisture	%w/w	0.5	17	13	18	15	14

			D110 0-0.1	D110 0.2-0.3	D111 0-0.1	D111 0.2-0.3	D112 0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			17/10/2016	17/10/2016	17/10/2016	17/10/2016	17/10/2016
PARAMETER	UOM	LOR	SE158264.051	SE158264.052	SE158264.053	SE158264.054	SE158264.055
% Moisture	%w/w	0.5	11	17	12	13	19

			D112 0.2-0.3	D113 0-0.1	D113 0.2-0.3	D114 0-0.1	D114 0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			17/10/2016	17/10/2016	17/10/2016	17/10/2016	17/10/2016
PARAMETER	UOM	LOR	SE158264.056	SE158264.057	SE158264.058	SE158264.059	SE158264.060
% Moisture	%w/w	0.5	15	13	23	14	13

			D115 0-0.1	D115 0.2-0.3	D116 0-0.1	D116 0.2-0.3	D116 1.0-1.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 17/10/2016	- 17/10/2016	- 18/10/2016	- 18/10/2016	- 18/10/2016
PARAMETER	UOM	LOR	SE158264.061	SE158264.062	SE158264.063	SE158264.064	SE158264.065
% Moisture	%w/w	0.5	14	14	16	22	21

			D116 1.4-1.5	D117 0-0.1	D117 0.2-0.3	D118 0-0.1	D118 0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			18/10/2016	18/10/2016	18/10/2016	18/10/2016	18/10/2016
PARAMETER	UOM	LOR	SE158264.066	SE158264.067	SE158264.068	SE158264.069	SE158264.070
% Moisture	%w/w	0.5	27	16	19	17	19

19/01/2017 Page 22 of 34

Moisture Content [AN002] Tested: 24/10/2016 (continued)

			D119 0-0.1	D119 0.2-0.3	D120 0-0.1	D120 0.2-0.3	D121 0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			18/10/2016	18/10/2016	18/10/2016	18/10/2016	18/10/2016
PARAMETER	UOM	LOR	SE158264.071	SE158264.072	SE158264.073	SE158264.074	SE158264.075
% Moisture	%w/w	0.5	13	16	9.9	19	11

			D121 0.2-0.3	D122 0-0.1	D122 0.2-0.3	D123 0-0.1	D123 0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			18/10/2016	18/10/2016	18/10/2016	18/10/2016	18/10/2016
PARAMETER	UOM	LOR	SE158264.076	SE158264.077	SE158264.078	SE158264.079	SE158264.080
% Moisture	%w/w	0.5	20	14	20	19	24

			D124 0-0.1	D124 0.2-0.3	D125 0-0.1	D125 0.2-0.3	D126 0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			17/10/2016	17/10/2016	17/10/2016	17/10/2016	17/10/2016
PARAMETER	UOM	LOR	SE158264.081	SE158264.082	SE158264.083	SE158264.084	SE158264.085
% Moisture	%w/w	0.5	12	16	11	12	13

			D126 0.2-0.3	D127 0-0.1	D127 0.2-0.3	D128 0-0.1	D128 0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			17/10/2016	18/10/2016	18/10/2016	18/10/2016	18/10/2016
PARAMETER	UOM	LOR	SE158264.086	SE158264.087	SE158264.088	SE158264.089	SE158264.090
% Moisture	%w/w	0.5	14	19	23	17	17

			D129 0-0.1	D129 0.2-0.3	D130 0-0.1	D130 0.2-0.3	D130 1.0-1.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			18/10/2016	18/10/2016	18/10/2016	18/10/2016	18/10/2016
PARAMETER	UOM	LOR	SE158264.091	SE158264.092	SE158264.093	SE158264.094	SE158264.095
% Moisture	%w/w	0.5	12	17	14	15	21

			D131 0-0.1	D131 0.2-0.3	D132 0-0.1	D132 0.2-0.3	D132 1.0-1.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			18/10/2016	18/10/2016	17/10/2016	17/10/2016	17/10/2016
PARAMETER	UOM	LOR	SE158264.096	SE158264.097	SE158264.098	SE158264.099	SE158264.100
% Moisture	%w/w	0.5	17	21	12	20	28

			D132 1.9-2.0	D133 0-0.1	D133 0.2-0.3	D134 0-0.1	D134 0.2-0.03
			SOIL	SOIL	SOIL	SOIL	SOIL
			17/10/2016	17/10/2016	17/10/2016	17/10/2016	17/10/2016
PARAMETER	UOM	LOR	SE158264.101	SE158264.102	SE158264.103	SE158264.104	SE158264.105
% Moisture	%w/w	0.5	29	15	13	12	23

19/01/2017 Page 23 of 34

Moisture Content [AN002] Tested: 24/10/2016 (continued)

			D135 0-0.1	D135 0.2-0.3	D136 0-0.1	D136 0.2-0.3	D137 0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			17/10/2016	17/10/2016	17/10/2016	17/10/2016	17/10/2016
PARAMETER	UOM	LOR	SE158264.106	SE158264.107	SE158264.108	SE158264.109	SE158264.110
% Moisture	%w/w	0.5	9.5	11	14	14	17

			D137 0.2-0.3	D138 0-0.1	D138 0.2-0.3	D139 0-0.1	D139 0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			17/10/2016	17/10/2016	17/10/2016	17/10/2016	17/10/2016
PARAMETER	UOM	LOR	SE158264.111	SE158264.112	SE158264.113	SE158264.114	SE158264.115
% Moisture	%w/w	0.5	18	16	15	20	30

			D139 1.0-1.1	D139 1.4-1.5	D140 0-0.1	D140 0.2-0.3	D141 0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			17/10/2016	17/10/2016	17/10/2016	17/10/2016	17/10/2016
PARAMETER	UOM	LOR	SE158264.116	SE158264.117	SE158264.118	SE158264.119	SE158264.120
% Moisture	%w/w	0.5	26	27	18	21	18

			D141 0.2-0.3	D142 0-0.1	D142 0.2-0.3	D142 1.0-1.1	D142 1.9-2.0
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			17/10/2016	17/10/2016	17/10/2016	17/10/2016	17/10/2016
PARAMETER	UOM	LOR	SE158264.121	SE158264.122	SE158264.123	SE158264.124	SE158264.125
% Moisture	%w/w	0.5	17	19	19	19	18

			D143 0-0.1	D143 0.2-0.3	D144 0-0.1	D144 0.2-0.3	D145 0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			17/10/2016	17/10/2016	17/10/2016	17/10/2016	17/10/2016
PARAMETER	UOM	LOR	SE158264.126	SE158264.127	SE158264.128	SE158264.129	SE158264.130
% Moisture	%w/w	0.5	14	13	12	24	16

			D145 0.2-0.3	D146 0-0.1	D146 0.2-0.3	D147 0-0.1	D147 0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			17/10/2016	17/10/2016	17/10/2016	17/10/2016	17/10/2016
PARAMETER	UOM	LOR	SE158264.131	SE158264.132	SE158264.133	SE158264.134	SE158264.135
% Moisture	%w/w	0.5	21	4.7	6.6	16	16

			D148 0-0.1	D148 0.2-0.3	D149 0-0.1	D149 0.2-0.3	D150 0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			17/10/2016	17/10/2016	17/10/2016	17/10/2016	17/10/2016
PARAMETER	UOM	LOR	SE158264.136	SE158264.137	SE158264.138	SE158264.139	SE158264.140
% Moisture	%w/w	0.5	11	14	17	17	12

19/01/2017 Page 24 of 34

Moisture Content [AN002] Tested: 24/10/2016 (continued)

			D150 0.2-0.3	D151 0-0.1	D151 0.2-0.3	D152 0-0.1	D152 0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			17/10/2016	17/10/2016	17/10/2016	17/10/2016	17/10/2016
PARAMETER	UOM	LOR	SE158264.141	SE158264.142	SE158264.143	SE158264.144	SE158264.145
% Moisture	%w/w	0.5	18	13	22	16	17

			D152 1.0-1.1	D152 1.9-2.0	D153 0-0.1	D153 0.2-0.3	D154 0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			17/10/2016	17/10/2016	17/10/2016	17/10/2016	17/10/2016
PARAMETER	UOM	LOR	SE158264.146	SE158264.147	SE158264.148	SE158264.149	SE158264.150
% Moisture	%w/w	0.5	22	24	14	15	16

			D154 0.2-0.3	D155 0-0.1	D155 0.2-0.3	D156 0-0.1	D156 0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			17/10/2016	17/10/2016	17/10/2016	17/10/2016	17/10/2016
PARAMETER	UOM	LOR	SE158264.151	SE158264.152	SE158264.153	SE158264.154	SE158264.155
% Moisture	%w/w	0.5	14	18	18	17	15

			D157 0-0.1	D157 0.2-0.3	D157 1.0-1.1	D157 1.9-2.0	DS11 0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			17/10/2016	17/10/2016	17/10/2016	17/10/2016	18/10/2016
PARAMETER	UOM	LOR	SE158264.156	SE158264.157	SE158264.158	SE158264.159	SE158264.160
% Moisture	%w/w	0.5	14	15	24	20	26

			DS16 0-0.1	DS18 0-0.1	DS18 0.5-0.6	DS19 0-0.1	DS19 0.5-0.6
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			18/10/2016	18/10/2016	18/10/2016	18/10/2016	18/10/2016
PARAMETER	UOM	LOR	SE158264.161	SE158264.162	SE158264.163	SE158264.164	SE158264.165
% Moisture	%w/w	0.5	15	21	16	15	17

			DS22 0-0.1	DS22 0.5-0.6	CS12-1 0-0.1	CS12-2 0-0.1	CS12-2 0.5-0.6
			SOIL	SOIL	SOIL	SOIL	SOIL
			18/10/2016	18/10/2016	18/10/2016	18/10/2016	18/10/2016
PARAMETER	UOM	LOR	SE158264.166	SE158264.167	SE158264.168	SE158264.169	SE158264.170
% Moisture	%w/w	0.5	20	21	13	15	15

			CS12-3 0-0.1	CS14-1 0-0.1	CS14-2 0-0.1	CS14-3 0-0.1	CS15-1 0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			18/10/2016	18/10/2016	18/10/2016	18/10/2016	18/10/2016
PARAMETER	UOM	LOR	SE158264.171	SE158264.172	SE158264.173	SE158264.174	SE158264.175
% Moisture	%w/w	0.5	18	15	12	15	29

19/01/2017 Page 25 of 34

SE158264 R1

Moisture Content [AN002] Tested: 24/10/2016 (continued)

			CS15-2 0-0.1	CS15-2 0.5-0.6	CS15-3 0-0.1	CS18-1 0-0.1	CS18-2 0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			18/10/2016	18/10/2016	18/10/2016	18/10/2016	18/10/2016
PARAMETER	UOM	LOR	SE158264.176	SE158264.177	SE158264.178	SE158264.179	SE158264.180
% Moisture	%w/w	0.5	13	16	14	14	18

			CS18-2 0.5-0.6	CS18-3 0-0.1	CS22-1 0-0.1	CS22-2 0-0.1	CS22-3 0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			18/10/2016	18/10/2016	18/10/2016	18/10/2016	18/10/2016
PARAMETER	UOM	LOR	SE158264.181	SE158264.182	SE158264.183	SE158264.184	SE158264.185
% Moisture	%w/w	0.5	17	12	20	19	20

			Duplicate D1	Duplicate D2	Duplicate D3	Duplicate D4	Duplicate D5
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			17/10/2016	17/10/2016	17/10/2016	17/10/2016	18/10/2016
PARAMETER	UOM	LOR	SE158264.186	SE158264.187	SE158264.188	SE158264.189	SE158264.190
% Moisture	%w/w	0.5	33	17	22	17	15

			Duplicate D6	Duplicate D7	Duplicate D8	Duplicate D9	Duplicate D10
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			18/10/2016	18/10/2016	18/10/2016	18/10/2016	18/10/2016
PARAMETER	UOM	LOR	SE158264.191	SE158264.192	SE158264.193	SE158264.194	SE158264.195
% Moisture	%w/w	0.5	15	26	27	20	19

19/01/2017 Page 26 of 34

SE158264 R1

TRH Silica Gel (Total Recoverable Hydrocarbons - Silica Gel) in Water [AN403] Tested: 21/10/2016

			Rinsate R2 WATER
PARAMETER	иом	LOR	18/10/2016 SE158264.197
TRH C10-C14-Silica	μg/L	50	<50
TRH C15-C28-Silica	μg/L	200	<200
TRH C29-C36-Silica	μg/L	200	<200
TRH C37-C40-Silica	μg/L	200	<200
TRH >C10-C16-Silica	μg/L	60	<60
TRH >C16-C34-Silica	μg/L	500	<500
TRH >C34-C40-Silica	μg/L	500	<500
TRH Sum C10-C36-Silica	μg/L	450	<450
TRH Sum C10-C40-Silica	μg/L	650	<650

19/01/2017 Page 27 of 34

SE158264 R1

Metals in Water (Dissolved) by ICPOES [AN320/AN321] Tested: 24/10/2016

			Rinsate R1	Rinsate R2
			WATER	WATER
			- 17/10/2016	18/10/2016
PARAMETER	UOM	LOR	SE158264.196	SE158264.197
Arsenic, As	mg/L	0.02	<0.02	<0.02
Cadmium, Cd	mg/L	0.001	<0.001	<0.001
Copper, Cu	mg/L	0.005	<0.005	<0.005
Lead, Pb	mg/L	0.02	<0.02	<0.02
Manganese, Mn	mg/L	0.005	<0.005	<0.005
Nickel, Ni	mg/L	0.005	<0.005	<0.005
Zinc, Zn	mg/L	0.01	<0.01	<0.01

19/01/2017 Page 28 of 34

SE158264 R1

Trace Metals (Dissolved) in Water by ICPMS [AN318] Tested: 24/10/2016

			Dam Water W1
			WATER
			- 18/10/2016
PARAMETER	UOM	LOR	SE158264.198
Arsenic, As	μg/L	1	2
Cadmium, Cd	μg/L	0.1	<0.1
Copper, Cu	μg/L	1	5
Lead, Pb	μg/L	1	2
Manganese, Mn	μg/L	1	7
Nickel, Ni	μg/L	1	2
Zinc, Zn	μg/L	5	7

19/01/2017 Page 29 of 34

SE158264 R1

Mercury (dissolved) in Water [AN311(Perth)/AN312] Tested: 26/10/2016

			Rinsate R1	Rinsate R2	Dam Water W1
			WATER	WATER	WATER
					-
			17/10/2016	18/10/2016	18/10/2016
PARAMETER	UOM	LOR	SE158264.196	SE158264.197	SE158264.198
Mercury	mg/L	0.0001	<0.0001	<0.0001	<0.0001

19/01/2017 Page 30 of 34

SE158264 R1

Trace Metals (Total) in Water by ICPMS [AN022/AN318] Tested: 24/10/2016

			Dam Water W1
			WATER
			- 18/10/2016
PARAMETER	иом	LOR	SE158264.198
Total Arsenic	μg/L	1	3
Total Cadmium	μg/L	0.1	<0.1
Total Copper	μg/L	1	6
Total Lead	μg/L	1	6
Total Manganese	μg/L	1	92
Total Nickel	μg/L	1	3
Total Zinc	μg/L	5	13

19/01/2017 Page 31 of 34

SE158264 R1

Mercury (total) in Water [AN311(Perth) /AN312] Tested: 26/10/2016

			Dam Water W1
			WATER
			-
			18/10/2016
PARAMETER	UOM	LOR	SE158264.198
Total Mercury	mg/L	0.0001	<0.0001

19/01/2017 Page 32 of 34

METHOD SUMMARY

SE158264 R1

METHOD — METHODOLOGY SUMMARY –

AN002

The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.

AN020

Unpreserved water sample is filtered through a $0.45\mu m$ membrane filter and acidified with nitric acid similar to APHA3030B.

AN022/AN318

Following acid digestion of un filtered sample, determination of elements at trace level in waters by ICP-MS technique, in accordance with USEPA 6020A.

AN022

The water sample is digested with Nitric Acid and made up to the original volume similar to APHA3030E.

AN040/AN320

A portion of sample is digested with nitric acid to decompose organic matter and hydrochloric acid to complete the digestion of metals. The digest is then analysed by ICP OES with metals results reported on the dried sample basis. Based on USEPA method 200.8 and 6010C.

AN040

A portion of sample is digested with Nitric acid to decompose organic matter and Hydrochloric acid to complete the digestion of metals and then filtered for analysis by ASS or ICP as per USEPA Method 200.8.

AN101

pH in Soil Sludge Sediment and Water: pH is measured electrometrically using a combination electrode and is calibrated against 3 buffers purchased commercially. For soils, sediments and sludges, an extract with water (or 0.01M CaCl2) is made at a ratio of 1:5 and the pH determined and reported on the extract. Reference APHA 4500-H+.

ΔN122

Exchangeable Cations, CEC and ESP: Soil sample is extracted in 1M Ammonium Acetate at pH=7 (or 1M Ammonium Chloride at pH=7) with cations (Na, K, Ca & Mg) then determined by ICP OES/ICP MS and reported as Exchangeable Cations. For saline soils, these results can be corrected for water soluble cations and reported as Exchangeable cations in meq/100g or soil can be pre-treated (aqueous ethanol/aqueous glycerol) prior to extraction. Cation Exchange Capacity (CEC) is the sum of the exchangeable cations in meq/100g.

AN122

The Exchangeable Sodium Percentage (ESP) is calculated as the exchangeable sodium divided by the CEC (all in meq/100g) times 100.

 $\ensuremath{\mathsf{ESP}}$ can be used to categorise the sodicity of the soil as below:

ESP < 6% non-sodic ESP 6-15% sodic ESP >15% strongly sodic

Method is refernced to Rayment and Higginson, 1992, sections 15D3 and 15N1.-

AN311(Perth) /AN312

Mercury by Cold Vapour AAS in Waters: Mercury ions taken from unfiltered sample are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500.

AN311(Perth)/AN312

Mercury by Cold Vapour AAS in Waters: Mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500.

AN312

Mercury by Cold Vapour AAS in Soils: After digestion with nitric acid, hydrogen peroxide and hydrochloric acid, mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500

AN318

Determination of elements at trace level in waters by ICP-MS technique, in accordance with USEPA 6020A.

AN320/AN321

Metals by ICP-OES: Samples are preserved with 10% nitric acid for a wide range of metals and some non-metals. This solution is measured by Inductively Coupled Plasma. Solutions are aspirated into an argon plasma at 8000-10000K and emit characteristic energy or light as a result of electron transitions through unique energy levels. The emitted light is focused onto a diffraction grating where it is separated into components.

AN320/AN321

Photomultipliers or CCDs are used to measure the light intensity at specific wavelengths. This intensity is directly proportional to concentration. Corrections are required to compensate for spectral overlap between elements . Reference APHA 3120 B.

AN403

Total Recoverable Hydrocarbons: Determination of Hydrocarbons by gas chromatography after a solvent extraction. Detection is by flame ionisation detector (FID) that produces an electronic signal in proportion to the combustible matter passing through it. Total Recoverable Hydrocarbons (TRH) are routinely reported as four alkane groupings based on the carbon chain length of the compounds: C6-C9, C10-C14, C15-C28 and C29-C36.

AN403

Additionally, the volatile C6-C9 fraction may be determined by a purge and trap technique and GC/MS because of the potential for volatiles loss. Total Petroleum Hydrocarbons (TPH) follows the same method of analysis after silica gel cleanup of the solvent extract. Aliphatic/Aromatic Speciation follows the same method of analysis after fractionation of the solvent extract over silica with differential polarity of the eluent solvents.

19/01/2017 Page 33 of 34

METHOD SUMMARY

SE158264 R1

AN403

The GC/FID method is not well suited to the analysis of refined high boiling point materials (ie lubricating oils or greases) but is particularly suited for measuring diesel, kerosene and petrol if care to control volatility is taken. This method will detect naturally occurring hydrocarbons, lipids, animal fats, phenols and PAHs if they are present at sufficient levels, dependent on the use of specific cleanup/fractionation techniques. Reference USEPA 3510B, 8015B

FOOTNOTES -

* NATA accreditation does not cover the performance of this service.

** Indicative data, theoretical holding time exceeded.

Not analysed.
 NVL Not validated.

IS Insufficient sample for analysis.

LNR Sample listed, but not received.

UOM Unit of Measure.

LOR Limit of Reporting.

↑↓ Raised/lowered Limit of

Reporting.

Samples analysed as received.
Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the \pm sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/en/terms-and-conditions. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein

Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full.

19/01/2017 Page 34 of 34

STATEMENT OF QA/QC **PERFORMANCE**

CLIENT DETAILS LABORATORY DETAILS

John Xu **Huong Crawford** Contact Manager

SGS Alexandria Environmental Geotechnique Laboratory Client P.O. Box 880 Unit 16, 33 Maddox St Address

Address PENRITH NSW 2751 Alexandria NSW 2015

02 4722 2700 +61 2 8594 0400 Telephone Telephone

02 4722 6161 +61 2 8594 0499 Facsimile Facsimile

john.xu@geotech.com.au au.environmental.sydney@sgs.com Fmail Email

12675-4 Googong NH1A-7 and NH2 SE158264 R1 SGS Reference Project (Not specified) 19 Oct 2016 Order Number Date Received

19 Jan 2017 198 Samples Date Reported

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document and was supplied by the Client.

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES

This QA/QC Statement must be read in conjunction with the referenced Analytical Report.

The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met with the exception of the following:

Duplicate Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES 1 item

> Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES 1 item Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES 1 item Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES 1 item Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES 1 item

Matrix Spike Mercury in Soil 1 item

Mercury in Soil 1 item

> Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES 4 items

SAMPLE SUMMARY

Sample counts by matrix 195 Soil, 3 Water Type of documentation received COC 20/10/16@12:22pm Samples received in good order Yes Date documentation received 8.3°C Samples received without headspace Sample temperature upon receipt Yes Sample container provider SGS Turnaround time requested Standard Samples received in correct containers Sufficient sample for analysis Yes Yes Sample cooling method Ice Bricks Samples clearly labelled Yes

SGS Australia Pty Ltd ABN 44 000 964 278

Complete documentation received

Environment, Health and Safety

Yes

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia Australia t +61 2 8594 0400 f+61 2 8594 0499

www.sgs.com.au

2 items

Member of the SGS Group

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Exchangeable Cations and Cation Exchange Capacity (CEC/ESP/SAR)

Method: ME-(AU)-[ENV]AN122

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
A8 0.5-0.6	SE158264.006	LB112360	18 Oct 2016	19 Oct 2016	15 Nov 2016	25 Oct 2016	15 Nov 2016	26 Oct 2016
A11 1.0-1.1	SE158264.012	LB112360	18 Oct 2016	19 Oct 2016	15 Nov 2016	25 Oct 2016	15 Nov 2016	26 Oct 2016
A15 0.5-0.6	SE158264.017	LB112360	18 Oct 2016	19 Oct 2016	15 Nov 2016	25 Oct 2016	15 Nov 2016	26 Oct 2016
A16 0.2-0.3	SE158264.020	LB112360	18 Oct 2016	19 Oct 2016	15 Nov 2016	25 Oct 2016	15 Nov 2016	26 Oct 2016
A17 1.9-2.0	SE158264.027	LB112360	18 Oct 2016	19 Oct 2016	15 Nov 2016	25 Oct 2016	15 Nov 2016	26 Oct 2016
A18 1.0-1.1	SE158264.030	LB112360	18 Oct 2016	19 Oct 2016	15 Nov 2016	25 Oct 2016	15 Nov 2016	26 Oct 2016
D101 0-0.1	SE158264.031	LB112360	17 Oct 2016	19 Oct 2016	14 Nov 2016	25 Oct 2016	14 Nov 2016	26 Oct 2016
D101 1.0-1.1	SE158264.033	LB112360	17 Oct 2016	19 Oct 2016	14 Nov 2016	25 Oct 2016	14 Nov 2016	26 Oct 2016
D116 0-0.1	SE158264.063	LB112360	18 Oct 2016	19 Oct 2016	15 Nov 2016	25 Oct 2016	15 Nov 2016	26 Oct 2016
D116 0.2-0.3	SE158264.064	LB112360	18 Oct 2016	19 Oct 2016	15 Nov 2016	25 Oct 2016	15 Nov 2016	26 Oct 2016
D119 0-0.1	SE158264.071	LB112360	18 Oct 2016	19 Oct 2016	15 Nov 2016	25 Oct 2016	15 Nov 2016	26 Oct 2016
D130 0-0.1	SE158264.093	LB112360	18 Oct 2016	19 Oct 2016	15 Nov 2016	25 Oct 2016	15 Nov 2016	26 Oct 2016
D130 1.0-1.1	SE158264.095	LB112360	18 Oct 2016	19 Oct 2016	15 Nov 2016	25 Oct 2016	15 Nov 2016	26 Oct 2016
D132 0-0.1	SE158264.098	LB112360	17 Oct 2016	19 Oct 2016	14 Nov 2016	25 Oct 2016	14 Nov 2016	26 Oct 2016
D132 0.2-0.3	SE158264.099	LB112360	17 Oct 2016	19 Oct 2016	14 Nov 2016	25 Oct 2016	14 Nov 2016	26 Oct 2016
D139 0-0.1	SE158264.114	LB112360	17 Oct 2016	19 Oct 2016	14 Nov 2016	25 Oct 2016	14 Nov 2016	26 Oct 2016
D139 1.4-1.5	SE158264.117	LB112360	17 Oct 2016	19 Oct 2016	14 Nov 2016	25 Oct 2016	14 Nov 2016	26 Oct 2016
D142 0-0.1	SE158264.122	LB112360	17 Oct 2016	19 Oct 2016	14 Nov 2016	25 Oct 2016	14 Nov 2016	26 Oct 2016
D142 1.9-2.0	SE158264.125	LB112360	17 Oct 2016	19 Oct 2016	14 Nov 2016	25 Oct 2016	14 Nov 2016	26 Oct 2016
D152 0-0.1	SE158264.144	LB112360	17 Oct 2016	19 Oct 2016	14 Nov 2016	25 Oct 2016	14 Nov 2016	26 Oct 2016
D152 0.2-0.3	SE158264.145	LB112360	17 Oct 2016	19 Oct 2016	14 Nov 2016	25 Oct 2016	14 Nov 2016	26 Oct 2016
D157 0-0.1	SE158264.156	LB112360	17 Oct 2016	19 Oct 2016	14 Nov 2016	25 Oct 2016	14 Nov 2016	26 Oct 2016
D157 1.0-1.1	SE158264.158	LB112360	17 Oct 2016	19 Oct 2016	14 Nov 2016	25 Oct 2016	14 Nov 2016	26 Oct 2016

Mercury (dissolved) in Water

Method: ME-(AU)-[ENV]AN311(Perth)/AN312

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
Rinsate R1	SE158264.196	LB112441	17 Oct 2016	19 Oct 2016	14 Nov 2016	26 Oct 2016	14 Nov 2016	27 Oct 2016
Rinsate R2	SE158264.197	LB112441	18 Oct 2016	19 Oct 2016	15 Nov 2016	26 Oct 2016	15 Nov 2016	27 Oct 2016
Dam Water W1	SE158264.198	LB112441	18 Oct 2016	19 Oct 2016	15 Nov 2016	26 Oct 2016	15 Nov 2016	27 Oct 2016

Mercury (total) in Water

Method: ME-(AU)-[ENV]AN311(Perth) /AN312

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
Dam Water W1	SE158264.198	LB112445	18 Oct 2016	19 Oct 2016	15 Nov 2016	26 Oct 2016	15 Nov 2016	26 Oct 2016

Mercury in Soil

Method: ME-(AU)-[ENV]AN312

								6 7
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
A4 0.25-0.35	SE158264.001	LB112298	18 Oct 2016	19 Oct 2016	15 Nov 2016	24 Oct 2016	15 Nov 2016	26 Oct 2016
A4 0.5-0.6	SE158264.002	LB112298	18 Oct 2016	19 Oct 2016	15 Nov 2016	24 Oct 2016	15 Nov 2016	26 Oct 2016
A6 0.25-0.35	SE158264.003	LB112298	18 Oct 2016	19 Oct 2016	15 Nov 2016	24 Oct 2016	15 Nov 2016	26 Oct 2016
A6 0.5-0.6	SE158264.004	LB112298	18 Oct 2016	19 Oct 2016	15 Nov 2016	24 Oct 2016	15 Nov 2016	26 Oct 2016
A8 0.25-0.35	SE158264.005	LB112298	18 Oct 2016	19 Oct 2016	15 Nov 2016	24 Oct 2016	15 Nov 2016	26 Oct 2016
A8 0.5-0.6	SE158264.006	LB112298	18 Oct 2016	19 Oct 2016	15 Nov 2016	24 Oct 2016	15 Nov 2016	26 Oct 2016
A8 1.0-1.1	SE158264.007	LB112298	18 Oct 2016	19 Oct 2016	15 Nov 2016	24 Oct 2016	15 Nov 2016	26 Oct 2016
A9 0.25-0.35	SE158264.008	LB112298	18 Oct 2016	19 Oct 2016	15 Nov 2016	24 Oct 2016	15 Nov 2016	26 Oct 2016
A9 0.5-0.6	SE158264.009	LB112298	18 Oct 2016	19 Oct 2016	15 Nov 2016	24 Oct 2016	15 Nov 2016	26 Oct 2016
A11 0.25-0.35	SE158264.010	LB112298	18 Oct 2016	19 Oct 2016	15 Nov 2016	24 Oct 2016	15 Nov 2016	26 Oct 2016
A11 0.5-0.6	SE158264.011	LB112298	18 Oct 2016	19 Oct 2016	15 Nov 2016	24 Oct 2016	15 Nov 2016	26 Oct 2016
A11 1.0-1.1	SE158264.012	LB112298	18 Oct 2016	19 Oct 2016	15 Nov 2016	24 Oct 2016	15 Nov 2016	26 Oct 2016
A11 1.9-2.0	SE158264.013	LB112298	18 Oct 2016	19 Oct 2016	15 Nov 2016	24 Oct 2016	15 Nov 2016	26 Oct 2016
A13 0.25-0.35	SE158264.014	LB112298	18 Oct 2016	19 Oct 2016	15 Nov 2016	24 Oct 2016	15 Nov 2016	26 Oct 2016
A13 0.5-0.6	SE158264.015	LB112298	18 Oct 2016	19 Oct 2016	15 Nov 2016	24 Oct 2016	15 Nov 2016	26 Oct 2016
A15 0.2-0.3	SE158264.016	LB112298	18 Oct 2016	19 Oct 2016	15 Nov 2016	24 Oct 2016	15 Nov 2016	26 Oct 2016
A15 0.5-0.6	SE158264.017	LB112298	18 Oct 2016	19 Oct 2016	15 Nov 2016	24 Oct 2016	15 Nov 2016	26 Oct 2016
A15 1.0-1.1	SE158264.018	LB112298	18 Oct 2016	19 Oct 2016	15 Nov 2016	24 Oct 2016	15 Nov 2016	26 Oct 2016
A15 1.9-2.0	SE158264.019	LB112298	18 Oct 2016	19 Oct 2016	15 Nov 2016	24 Oct 2016	15 Nov 2016	26 Oct 2016
A16 0.2-0.3	SE158264.020	LB112299	18 Oct 2016	19 Oct 2016	15 Nov 2016	24 Oct 2016	15 Nov 2016	26 Oct 2016
A16 0.5-0.6	SE158264.021	LB112299	18 Oct 2016	19 Oct 2016	15 Nov 2016	24 Oct 2016	15 Nov 2016	26 Oct 2016
A16 1.0-1.1	SE158264.022	LB112299	18 Oct 2016	19 Oct 2016	15 Nov 2016	24 Oct 2016	15 Nov 2016	26 Oct 2016
A16 1.5-1.6	SE158264.023	LB112299	18 Oct 2016	19 Oct 2016	15 Nov 2016	24 Oct 2016	15 Nov 2016	26 Oct 2016
A17 0.2-0.3	SE158264.024	LB112299	18 Oct 2016	19 Oct 2016	15 Nov 2016	24 Oct 2016	15 Nov 2016	26 Oct 2016

19/1/2017 Page 2 of 26

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Mercury in Soil (continued) Method: ME-(AU)-[ENV]AN312

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
A17 0.5-0.6	SE158264.025	LB112299	18 Oct 2016	19 Oct 2016	15 Nov 2016	24 Oct 2016	15 Nov 2016	26 Oct 2016
A17 1.0-1.1	SE158264.026	LB112299	18 Oct 2016	19 Oct 2016	15 Nov 2016	24 Oct 2016	15 Nov 2016	26 Oct 2016
A17 1.9-2.0	SE158264.027	LB112299	18 Oct 2016	19 Oct 2016	15 Nov 2016	24 Oct 2016	15 Nov 2016	26 Oct 2016
A18 0.2-0.3	SE158264.028	LB112299	18 Oct 2016	19 Oct 2016	15 Nov 2016	24 Oct 2016	15 Nov 2016	26 Oct 2016
A18 0.5-0.6	SE158264.029	LB112299	18 Oct 2016	19 Oct 2016	15 Nov 2016	24 Oct 2016	15 Nov 2016	26 Oct 2016
A18 1.0-1.1	SE158264.030	LB112299	18 Oct 2016	19 Oct 2016	15 Nov 2016	24 Oct 2016	15 Nov 2016	26 Oct 2016
D101 0-0.1	SE158264.031	LB112299	17 Oct 2016	19 Oct 2016	14 Nov 2016	24 Oct 2016	14 Nov 2016	26 Oct 2016
D101 0.2-0.3	SE158264.032	LB112299	17 Oct 2016	19 Oct 2016	14 Nov 2016	24 Oct 2016	14 Nov 2016	26 Oct 2016
D101 1.0-1.1	SE158264.033	LB112299	17 Oct 2016	19 Oct 2016	14 Nov 2016	24 Oct 2016	14 Nov 2016	26 Oct 2016
D101 1.9-2.0	SE158264.034	LB112299	17 Oct 2016	19 Oct 2016	14 Nov 2016	24 Oct 2016	14 Nov 2016	26 Oct 2016
D102 0-0.1	SE158264.035	LB112299	17 Oct 2016	19 Oct 2016	14 Nov 2016	24 Oct 2016	14 Nov 2016	26 Oct 2016
D102 0.2-0.3	SE158264.036	LB112299	17 Oct 2016	19 Oct 2016	14 Nov 2016	24 Oct 2016	14 Nov 2016	26 Oct 2016
D103 0-0.1	SE158264.037	LB112299	18 Oct 2016	19 Oct 2016	15 Nov 2016	24 Oct 2016	15 Nov 2016	26 Oct 2016
D103 0.2-0.3	SE158264.038	LB112299	18 Oct 2016	19 Oct 2016	15 Nov 2016	24 Oct 2016	15 Nov 2016	26 Oct 2016
D104 0-0.1	SE158264.039	LB112300	18 Oct 2016	19 Oct 2016	15 Nov 2016	24 Oct 2016	15 Nov 2016	26 Oct 2016
D104 0.2-0.3	SE158264.040	LB112300	18 Oct 2016	19 Oct 2016	15 Nov 2016	24 Oct 2016	15 Nov 2016	26 Oct 2016
D105 0-0.1	SE158264.041	LB112300	18 Oct 2016	19 Oct 2016	15 Nov 2016	24 Oct 2016	15 Nov 2016	26 Oct 2016
D105 0.2-0.3	SE158264.042	LB112300	18 Oct 2016	19 Oct 2016	15 Nov 2016	24 Oct 2016	15 Nov 2016	26 Oct 2016
D106 0-0.1	SE158264.043	LB112300	18 Oct 2016	19 Oct 2016	15 Nov 2016	24 Oct 2016	15 Nov 2016	26 Oct 2016
D106 0.2-0.3	SE158264.044	LB112300	18 Oct 2016	19 Oct 2016	15 Nov 2016	24 Oct 2016	15 Nov 2016	26 Oct 2016
D107 0-0.1	SE158264.045	LB112300	18 Oct 2016	19 Oct 2016	15 Nov 2016	24 Oct 2016	15 Nov 2016	26 Oct 2016
D107 0.2-0.3	SE158264.046	LB112300	18 Oct 2016	19 Oct 2016	15 Nov 2016	24 Oct 2016	15 Nov 2016	26 Oct 2016
D108 0-0.1	SE158264.047	LB112300	18 Oct 2016	19 Oct 2016	15 Nov 2016	24 Oct 2016	15 Nov 2016	26 Oct 2016
D108 0.2-0.3	SE158264.048	LB112300	18 Oct 2016	19 Oct 2016	15 Nov 2016	24 Oct 2016	15 Nov 2016	26 Oct 2016
D109 0-0.1	SE158264.049	LB112300	18 Oct 2016	19 Oct 2016	15 Nov 2016	24 Oct 2016	15 Nov 2016	26 Oct 2016
D109 0.2-0.3	SE158264.050	LB112300	18 Oct 2016	19 Oct 2016	15 Nov 2016	24 Oct 2016	15 Nov 2016	26 Oct 2016
D110 0-0.1	SE158264.051	LB112300	17 Oct 2016	19 Oct 2016	14 Nov 2016	24 Oct 2016	14 Nov 2016	26 Oct 2016
D110 0.2-0.3	SE158264.052	LB112300	17 Oct 2016	19 Oct 2016	14 Nov 2016	24 Oct 2016	14 Nov 2016	26 Oct 2016
D111 0-0.1	SE158264.053	LB112300	17 Oct 2016	19 Oct 2016	14 Nov 2016	24 Oct 2016	14 Nov 2016	26 Oct 2016
D111 0.2-0.3	SE158264.054	LB112300	17 Oct 2016	19 Oct 2016	14 Nov 2016	24 Oct 2016	14 Nov 2016	26 Oct 2016
D112 0-0.1	SE158264.055	LB112300	17 Oct 2016	19 Oct 2016	14 Nov 2016	24 Oct 2016	14 Nov 2016	26 Oct 2016
D112 0.2-0.3	SE158264.056	LB112300	17 Oct 2016	19 Oct 2016	14 Nov 2016	24 Oct 2016	14 Nov 2016	26 Oct 2016
D113 0-0.1	SE158264.057	LB112300	17 Oct 2016	19 Oct 2016	14 Nov 2016	24 Oct 2016	14 Nov 2016	26 Oct 2016
D113 0.2-0.3	SE158264.058	LB112301	17 Oct 2016	19 Oct 2016	14 Nov 2016	24 Oct 2016	14 Nov 2016	26 Oct 2016
D114 0-0.1	SE158264.059	LB112301	17 Oct 2016	19 Oct 2016	14 Nov 2016	24 Oct 2016	14 Nov 2016	26 Oct 2016
D114 0.2-0.3	SE158264.060	LB112301	17 Oct 2016	19 Oct 2016	14 Nov 2016	24 Oct 2016	14 Nov 2016	26 Oct 2016
D115 0-0.1	SE158264.061	LB112301	17 Oct 2016	19 Oct 2016	14 Nov 2016	24 Oct 2016	14 Nov 2016	26 Oct 2016
D115 0.2-0.3	SE158264.062	LB112301	17 Oct 2016	19 Oct 2016	14 Nov 2016	24 Oct 2016	14 Nov 2016	26 Oct 2016
D116 0-0.1	SE158264.063	LB112301	18 Oct 2016	19 Oct 2016	15 Nov 2016	24 Oct 2016	15 Nov 2016	26 Oct 2016
D116 0.2-0.3	SE158264.064	LB112301	18 Oct 2016	19 Oct 2016	15 Nov 2016	24 Oct 2016	15 Nov 2016	26 Oct 2016
D116 1.0-1.1	SE158264.065	LB112301	18 Oct 2016	19 Oct 2016	15 Nov 2016	24 Oct 2016	15 Nov 2016	26 Oct 2016
D116 1.4-1.5	SE158264.066	LB112301	18 Oct 2016	19 Oct 2016	15 Nov 2016	24 Oct 2016	15 Nov 2016	26 Oct 2016
D117 0-0.1	SE158264.067	LB112301	18 Oct 2016	19 Oct 2016	15 Nov 2016	24 Oct 2016	15 Nov 2016	26 Oct 2016
D117 0.2-0.3	SE158264.068	LB112301	18 Oct 2016	19 Oct 2016	15 Nov 2016	24 Oct 2016	15 Nov 2016	26 Oct 2016
D118 0-0.1	SE158264.069	LB112301	18 Oct 2016	19 Oct 2016	15 Nov 2016	24 Oct 2016	15 Nov 2016	26 Oct 2016
D118 0.2-0.3	SE158264.070	LB112301	18 Oct 2016	19 Oct 2016	15 Nov 2016	24 Oct 2016	15 Nov 2016	26 Oct 2016
D119 0-0.1	SE158264.071	LB112301	18 Oct 2016	19 Oct 2016	15 Nov 2016	24 Oct 2016	15 Nov 2016	26 Oct 2016
D119 0.2-0.3	SE158264.072	LB112301	18 Oct 2016	19 Oct 2016	15 Nov 2016	24 Oct 2016	15 Nov 2016	26 Oct 2016
D120 0-0.1	SE158264.073	LB112301	18 Oct 2016	19 Oct 2016	15 Nov 2016	24 Oct 2016	15 Nov 2016	26 Oct 2016
D120 0.2-0.3	SE158264.074	LB112301	18 Oct 2016	19 Oct 2016	15 Nov 2016	24 Oct 2016	15 Nov 2016	26 Oct 2016
D121 0-0.1	SE158264.075	LB112301	18 Oct 2016	19 Oct 2016	15 Nov 2016	24 Oct 2016	15 Nov 2016	26 Oct 2016
D121 0.2-0.3	SE158264.076	LB112301	18 Oct 2016	19 Oct 2016	15 Nov 2016	24 Oct 2016	15 Nov 2016	26 Oct 2016
D122 0-0.1	SE158264.077	LB112302	18 Oct 2016	19 Oct 2016	15 Nov 2016	24 Oct 2016	15 Nov 2016	26 Oct 2016
D122 0.2-0.3	SE158264.078	LB112302	18 Oct 2016	19 Oct 2016	15 Nov 2016	24 Oct 2016	15 Nov 2016	26 Oct 2016
D123 0-0.1	SE158264.079	LB112302	18 Oct 2016	19 Oct 2016	15 Nov 2016	24 Oct 2016	15 Nov 2016	26 Oct 2016
D123 0.2-0.3	SE158264.080	LB112302	18 Oct 2016	19 Oct 2016	15 Nov 2016	24 Oct 2016	15 Nov 2016	26 Oct 2016
D124 0-0.1	SE158264.081	LB112302	17 Oct 2016	19 Oct 2016	14 Nov 2016	24 Oct 2016	14 Nov 2016	26 Oct 2016
D124 0.2-0.3	SE158264.082	LB112302	17 Oct 2016	19 Oct 2016	14 Nov 2016	24 Oct 2016	14 Nov 2016	26 Oct 2016
D125 0-0.1	SE158264.083	LB112302	17 Oct 2016	19 Oct 2016	14 Nov 2016	24 Oct 2016	14 Nov 2016	26 Oct 2016
D125 0.2-0.3	SE158264.084	LB112302	17 Oct 2016	19 Oct 2016	14 Nov 2016	24 Oct 2016	14 Nov 2016	26 Oct 2016
			23,20,0					

19/1/2017 Page 3 of 26

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Mercury in Soil (continued) Method: ME-(AU)-[ENV]AN312

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
D126 0-0.1	SE158264.085	LB112302	17 Oct 2016	19 Oct 2016	14 Nov 2016	24 Oct 2016	14 Nov 2016	26 Oct 2016
D126 0.2-0.3	SE158264.086	LB112302	17 Oct 2016	19 Oct 2016	14 Nov 2016	24 Oct 2016	14 Nov 2016	26 Oct 2016
D127 0-0.1	SE158264.087	LB112302	18 Oct 2016	19 Oct 2016	15 Nov 2016	24 Oct 2016	15 Nov 2016	26 Oct 2016
D127 0.2-0.3	SE158264.088	LB112302	18 Oct 2016	19 Oct 2016	15 Nov 2016	24 Oct 2016	15 Nov 2016	26 Oct 2016
D128 0-0.1	SE158264.089	LB112302	18 Oct 2016	19 Oct 2016	15 Nov 2016	24 Oct 2016	15 Nov 2016	26 Oct 2016
D128 0.2-0.3	SE158264.090	LB112302	18 Oct 2016	19 Oct 2016	15 Nov 2016	24 Oct 2016	15 Nov 2016	26 Oct 2016
	·	LB112302		19 Oct 2016				
D129 0-0.1	SE158264.091		18 Oct 2016		15 Nov 2016	24 Oct 2016	15 Nov 2016	26 Oct 2016
D129 0.2-0.3	SE158264.092	LB112302	18 Oct 2016	19 Oct 2016	15 Nov 2016	24 Oct 2016	15 Nov 2016	26 Oct 2016
D130 0-0.1	SE158264.093	LB112302	18 Oct 2016	19 Oct 2016	15 Nov 2016	24 Oct 2016	15 Nov 2016	26 Oct 2016
D130 0.2-0.3	SE158264.094	LB112302	18 Oct 2016	19 Oct 2016	15 Nov 2016	24 Oct 2016	15 Nov 2016	26 Oct 2016
D130 1.0-1.1	SE158264.095	LB112302	18 Oct 2016	19 Oct 2016	15 Nov 2016	24 Oct 2016	15 Nov 2016	26 Oct 2016
D131 0-0.1	SE158264.096	LB112303	18 Oct 2016	19 Oct 2016	15 Nov 2016	24 Oct 2016	15 Nov 2016	26 Oct 2016
D131 0.2-0.3	SE158264.097	LB112303	18 Oct 2016	19 Oct 2016	15 Nov 2016	24 Oct 2016	15 Nov 2016	26 Oct 2016
D132 0-0.1	SE158264.098	LB112303	17 Oct 2016	19 Oct 2016	14 Nov 2016	24 Oct 2016	14 Nov 2016	26 Oct 2016
D132 0.2-0.3	SE158264.099	LB112303	17 Oct 2016	19 Oct 2016	14 Nov 2016	24 Oct 2016	14 Nov 2016	26 Oct 2016
D132 1.0-1.1	SE158264.100	LB112303	17 Oct 2016	19 Oct 2016	14 Nov 2016	24 Oct 2016	14 Nov 2016	26 Oct 2016
D132 1.9-2.0	SE158264.101	LB112303	17 Oct 2016	19 Oct 2016	14 Nov 2016	24 Oct 2016	14 Nov 2016	26 Oct 2016
D133 0-0.1	SE158264.102	LB112303	17 Oct 2016	19 Oct 2016	14 Nov 2016	24 Oct 2016	14 Nov 2016	26 Oct 2016
D133 0.2-0.3	SE158264.103	LB112303	17 Oct 2016	19 Oct 2016	14 Nov 2016	24 Oct 2016	14 Nov 2016	26 Oct 2016
D134 0-0.1	SE158264.104	LB112303	17 Oct 2016	19 Oct 2016	14 Nov 2016	24 Oct 2016	14 Nov 2016	26 Oct 2016
D134 0.2-0.03	SE158264.105	LB112303	17 Oct 2016	19 Oct 2016	14 Nov 2016	24 Oct 2016	14 Nov 2016	26 Oct 2016
D135 0-0.1	SE158264.106	LB112303	17 Oct 2016	19 Oct 2016	14 Nov 2016	24 Oct 2016	14 Nov 2016	26 Oct 2016
D135 0.2-0.3	SE158264.107	LB112303	17 Oct 2016	19 Oct 2016	14 Nov 2016	24 Oct 2016	14 Nov 2016	26 Oct 2016
D136 0-0.1	SE158264.108	LB112303	17 Oct 2016	19 Oct 2016	14 Nov 2016	24 Oct 2016	14 Nov 2016	26 Oct 2016
D136 0.2-0.3	SE158264.109	LB112303	17 Oct 2016	19 Oct 2016	14 Nov 2016	24 Oct 2016	14 Nov 2016	26 Oct 2016
D137 0-0.1	SE158264.110	LB112303	17 Oct 2016	19 Oct 2016	14 Nov 2016	24 Oct 2016	14 Nov 2016	26 Oct 2016
D137 0.2-0.3	SE158264.111	LB112303	17 Oct 2016	19 Oct 2016	14 Nov 2016	24 Oct 2016	14 Nov 2016	26 Oct 2016
D138 0-0.1	SE158264.112	LB112303	17 Oct 2016	19 Oct 2016	14 Nov 2016	24 Oct 2016	14 Nov 2016	26 Oct 2016
D138 0.2-0.3	SE158264.113	LB112303	17 Oct 2016	19 Oct 2016	14 Nov 2016	24 Oct 2016	14 Nov 2016	26 Oct 2016
D139 0-0.1	SE158264.114	LB112303	17 Oct 2016	19 Oct 2016	14 Nov 2016	24 Oct 2016	14 Nov 2016	26 Oct 2016
D139 0.2-0.3	SE158264.115	LB112304	17 Oct 2016	19 Oct 2016	14 Nov 2016	24 Oct 2016	14 Nov 2016	27 Oct 2016
D139 1.0-1.1	SE158264.116	LB112304	17 Oct 2016	19 Oct 2016	14 Nov 2016	24 Oct 2016	14 Nov 2016	27 Oct 2016
D139 1.4-1.5	SE158264.117	LB112304	17 Oct 2016	19 Oct 2016	14 Nov 2016	24 Oct 2016	14 Nov 2016	27 Oct 2016
D140 0-0.1	SE158264.118	LB112304	17 Oct 2016	19 Oct 2016	14 Nov 2016	24 Oct 2016	14 Nov 2016	27 Oct 2016
D140 0.2-0.3	SE158264.119	LB112304	17 Oct 2016	19 Oct 2016	14 Nov 2016	24 Oct 2016	14 Nov 2016	27 Oct 2016
D141 0-0.1		LB112304	17 Oct 2016	19 Oct 2016	14 Nov 2016	24 Oct 2016	14 Nov 2016	27 Oct 2016
	SE158264.120							
D141 0.2-0.3	SE158264.121	LB112304	17 Oct 2016	19 Oct 2016	14 Nov 2016	24 Oct 2016	14 Nov 2016	27 Oct 2016
D142 0-0.1	SE158264.122	LB112304	17 Oct 2016	19 Oct 2016	14 Nov 2016	24 Oct 2016	14 Nov 2016	27 Oct 2016
D142 0.2-0.3	SE158264.123	LB112304	17 Oct 2016	19 Oct 2016	14 Nov 2016	24 Oct 2016	14 Nov 2016	27 Oct 2016
D142 1.0-1.1	SE158264.124	LB112304	17 Oct 2016	19 Oct 2016	14 Nov 2016	24 Oct 2016	14 Nov 2016	27 Oct 2016
D142 1.9-2.0	SE158264.125	LB112304	17 Oct 2016	19 Oct 2016	14 Nov 2016	24 Oct 2016	14 Nov 2016	27 Oct 2016
D143 0-0.1	SE158264.126	LB112304	17 Oct 2016	19 Oct 2016	14 Nov 2016	24 Oct 2016	14 Nov 2016	27 Oct 2016
D143 0.2-0.3	SE158264.127	LB112304	17 Oct 2016	19 Oct 2016	14 Nov 2016	24 Oct 2016	14 Nov 2016	27 Oct 2016
D144 0-0.1	SE158264.128	LB112304	17 Oct 2016	19 Oct 2016	14 Nov 2016	24 Oct 2016	14 Nov 2016	27 Oct 2016
D144 0.2-0.3	SE158264.129	LB112304	17 Oct 2016	19 Oct 2016	14 Nov 2016	24 Oct 2016	14 Nov 2016	27 Oct 2016
D145 0-0.1	SE158264.130	LB112304	17 Oct 2016	19 Oct 2016	14 Nov 2016	24 Oct 2016	14 Nov 2016	27 Oct 2016
D145 0.2-0.3	SE158264.131	LB112304	17 Oct 2016	19 Oct 2016	14 Nov 2016	24 Oct 2016	14 Nov 2016	27 Oct 2016
D146 0-0.1	SE158264.132	LB112304	17 Oct 2016	19 Oct 2016	14 Nov 2016	24 Oct 2016	14 Nov 2016	27 Oct 2016
D146 0.2-0.3	SE158264.133	LB112304	17 Oct 2016	19 Oct 2016	14 Nov 2016	24 Oct 2016	14 Nov 2016	27 Oct 2016
D147 0-0.1	SE158264.134	LB112305	17 Oct 2016	19 Oct 2016	14 Nov 2016	24 Oct 2016	14 Nov 2016	27 Oct 2016
D147 0.2-0.3	SE158264.135	LB112305	17 Oct 2016	19 Oct 2016	14 Nov 2016	24 Oct 2016	14 Nov 2016	27 Oct 2016
D148 0-0.1	SE158264.136	LB112305	17 Oct 2016	19 Oct 2016	14 Nov 2016	24 Oct 2016	14 Nov 2016	27 Oct 2016
D148 0.2-0.3	SE158264.137	LB112305	17 Oct 2016	19 Oct 2016	14 Nov 2016	24 Oct 2016	14 Nov 2016	27 Oct 2016
D149 0-0.1	SE158264.138	LB112305	17 Oct 2016	19 Oct 2016	14 Nov 2016	24 Oct 2016	14 Nov 2016	27 Oct 2016
D149 0.2-0.3	SE158264.139	LB112305	17 Oct 2016	19 Oct 2016	14 Nov 2016	24 Oct 2016	14 Nov 2016	27 Oct 2016
D150 0-0.1	SE158264.140	LB112305	17 Oct 2016	19 Oct 2016	14 Nov 2016	24 Oct 2016	14 Nov 2016	27 Oct 2016
D150 0.2-0.3	SE158264.141	LB112305	17 Oct 2016	19 Oct 2016	14 Nov 2016	24 Oct 2016	14 Nov 2016	27 Oct 2016
D151 0-0.1	SE158264.142	LB112305	17 Oct 2016	19 Oct 2016	14 Nov 2016	24 Oct 2016	14 Nov 2016	27 Oct 2016
D151 0.2-0.3	SE158264.143	LB112305	17 Oct 2016	19 Oct 2016	14 Nov 2016	24 Oct 2016	14 Nov 2016	27 Oct 2016
D152 0-0.1	SE158264.144	LB112305	17 Oct 2016	19 Oct 2016	14 Nov 2016	24 Oct 2016	14 Nov 2016	27 Oct 2016
D 102 0-0.1	JL 130204.144	LD I IZ3U3	17 001 20 10	10 001 2010	17 INOV 2010	24 OUI 2010	14 140V ZU 10	21 00: 2010

19/1/2017 Page 4 of 26

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Mercury in Soil (continued) Method: ME-(AU)-[ENV]AN312

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
D152 0.2-0.3	SE158264.145	LB112305	17 Oct 2016	19 Oct 2016	14 Nov 2016	24 Oct 2016	14 Nov 2016	27 Oct 2016
D152 1.0-1.1	SE158264.146	LB112305	17 Oct 2016	19 Oct 2016	14 Nov 2016	24 Oct 2016	14 Nov 2016	27 Oct 2016
D152 1.9-2.0	SE158264.147	LB112305	17 Oct 2016	19 Oct 2016	14 Nov 2016	24 Oct 2016	14 Nov 2016	27 Oct 2016
D153 0-0.1	SE158264.148	LB112305	17 Oct 2016	19 Oct 2016	14 Nov 2016	24 Oct 2016	14 Nov 2016	27 Oct 2016
D153 0.2-0.3	SE158264.149	LB112305	17 Oct 2016	19 Oct 2016	14 Nov 2016	24 Oct 2016	14 Nov 2016	27 Oct 2016
D154 0-0.1	SE158264.150	LB112305	17 Oct 2016	19 Oct 2016	14 Nov 2016	24 Oct 2016	14 Nov 2016	27 Oct 2016
D154 0.2-0.3	SE158264.151	LB112305	17 Oct 2016	19 Oct 2016	14 Nov 2016	24 Oct 2016	14 Nov 2016	27 Oct 2016
D155 0-0.1	SE158264.152	LB112305	17 Oct 2016	19 Oct 2016	14 Nov 2016	24 Oct 2016	14 Nov 2016	27 Oct 2016
D155 0.2-0.3	SE158264.153	LB112306	17 Oct 2016	19 Oct 2016	14 Nov 2016	24 Oct 2016	14 Nov 2016	27 Oct 2016
D156 0-0.1	SE158264.154	LB112306	17 Oct 2016	19 Oct 2016	14 Nov 2016	24 Oct 2016	14 Nov 2016	27 Oct 2016
D156 0.2-0.3	SE158264.155	LB112306	17 Oct 2016	19 Oct 2016	14 Nov 2016	24 Oct 2016	14 Nov 2016	27 Oct 2016
D157 0-0.1	SE158264.156	LB112306	17 Oct 2016	19 Oct 2016	14 Nov 2016	24 Oct 2016	14 Nov 2016	27 Oct 2016
D157 0.2-0.3	SE158264.157	LB112306	17 Oct 2016	19 Oct 2016	14 Nov 2016	24 Oct 2016	14 Nov 2016	27 Oct 2016
D157 1.0-1.1	SE158264.158	LB112306	17 Oct 2016	19 Oct 2016	14 Nov 2016	24 Oct 2016	14 Nov 2016	27 Oct 2016
D157 1.9-2.0	SE158264.159	LB112306	17 Oct 2016	19 Oct 2016	14 Nov 2016	24 Oct 2016	14 Nov 2016	27 Oct 2016
Duplicate D1	SE158264.186	LB112306	17 Oct 2016	19 Oct 2016	14 Nov 2016	24 Oct 2016	14 Nov 2016	27 Oct 2016
Duplicate D2	SE158264.187	LB112306	17 Oct 2016	19 Oct 2016	14 Nov 2016	24 Oct 2016	14 Nov 2016	27 Oct 2016
Duplicate D3	SE158264.188	LB112306	17 Oct 2016	19 Oct 2016	14 Nov 2016	24 Oct 2016	14 Nov 2016	27 Oct 2016
Duplicate D4	SE158264.189	LB112306	17 Oct 2016	19 Oct 2016	14 Nov 2016	24 Oct 2016	14 Nov 2016	27 Oct 2016
Duplicate D5	SE158264.190	LB112306	18 Oct 2016	19 Oct 2016	15 Nov 2016	24 Oct 2016	15 Nov 2016	27 Oct 2016
Duplicate D6	SE158264.191	LB112306	18 Oct 2016	19 Oct 2016	15 Nov 2016	24 Oct 2016	15 Nov 2016	27 Oct 2016
Duplicate D7	SE158264.192	LB112306	18 Oct 2016	19 Oct 2016	15 Nov 2016	24 Oct 2016	15 Nov 2016	27 Oct 2016

Metals in Water (Dissolved) by ICPOES

Metals in Water (Dissolve	ed) by ICPOES						Method: ME-(AU)-[ENV]AN320/AN32
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
Rinsate R1	SE158264.196	LB112223	17 Oct 2016	19 Oct 2016	15 Apr 2017	24 Oct 2016	15 Apr 2017	24 Oct 2016
Rinsate R2	SE158264.197	LB112223	18 Oct 2016	19 Oct 2016	16 Apr 2017	24 Oct 2016	16 Apr 2017	24 Oct 2016

Moisture Content

Method: ME-(AU)-[ENV]AN002

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
A4 0.25-0.35	SE158264.001	LB112237	18 Oct 2016	19 Oct 2016	01 Nov 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
A4 0.5-0.6	SE158264.002	LB112237	18 Oct 2016	19 Oct 2016	01 Nov 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
A6 0.25-0.35	SE158264.003	LB112237	18 Oct 2016	19 Oct 2016	01 Nov 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
A6 0.5-0.6	SE158264.004	LB112237	18 Oct 2016	19 Oct 2016	01 Nov 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
A8 0.25-0.35	SE158264.005	LB112237	18 Oct 2016	19 Oct 2016	01 Nov 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
A8 0.5-0.6	SE158264.006	LB112237	18 Oct 2016	19 Oct 2016	01 Nov 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
A8 1.0-1.1	SE158264.007	LB112237	18 Oct 2016	19 Oct 2016	01 Nov 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
A9 0.25-0.35	SE158264.008	LB112237	18 Oct 2016	19 Oct 2016	01 Nov 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
A9 0.5-0.6	SE158264.009	LB112237	18 Oct 2016	19 Oct 2016	01 Nov 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
A11 0.25-0.35	SE158264.010	LB112237	18 Oct 2016	19 Oct 2016	01 Nov 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
A11 0.5-0.6	SE158264.011	LB112237	18 Oct 2016	19 Oct 2016	01 Nov 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
A11 1.0-1.1	SE158264.012	LB112237	18 Oct 2016	19 Oct 2016	01 Nov 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
A11 1.9-2.0	SE158264.013	LB112237	18 Oct 2016	19 Oct 2016	01 Nov 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
A13 0.25-0.35	SE158264.014	LB112237	18 Oct 2016	19 Oct 2016	01 Nov 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
A13 0.5-0.6	SE158264.015	LB112237	18 Oct 2016	19 Oct 2016	01 Nov 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
A15 0.2-0.3	SE158264.016	LB112237	18 Oct 2016	19 Oct 2016	01 Nov 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
A15 0.5-0.6	SE158264.017	LB112237	18 Oct 2016	19 Oct 2016	01 Nov 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
A15 1.0-1.1	SE158264.018	LB112237	18 Oct 2016	19 Oct 2016	01 Nov 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
A15 1.9-2.0	SE158264.019	LB112237	18 Oct 2016	19 Oct 2016	01 Nov 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
A16 0.2-0.3	SE158264.020	LB112237	18 Oct 2016	19 Oct 2016	01 Nov 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
A16 0.5-0.6	SE158264.021	LB112237	18 Oct 2016	19 Oct 2016	01 Nov 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
A16 1.0-1.1	SE158264.022	LB112237	18 Oct 2016	19 Oct 2016	01 Nov 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
A16 1.5-1.6	SE158264.023	LB112237	18 Oct 2016	19 Oct 2016	01 Nov 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
A17 0.2-0.3	SE158264.024	LB112237	18 Oct 2016	19 Oct 2016	01 Nov 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
A17 0.5-0.6	SE158264.025	LB112237	18 Oct 2016	19 Oct 2016	01 Nov 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
A17 1.0-1.1	SE158264.026	LB112237	18 Oct 2016	19 Oct 2016	01 Nov 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
A17 1.9-2.0	SE158264.027	LB112237	18 Oct 2016	19 Oct 2016	01 Nov 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
A18 0.2-0.3	SE158264.028	LB112237	18 Oct 2016	19 Oct 2016	01 Nov 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
A18 0.5-0.6	SE158264.029	LB112237	18 Oct 2016	19 Oct 2016	01 Nov 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
A18 1.0-1.1	SE158264.030	LB112237	18 Oct 2016	19 Oct 2016	01 Nov 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
D101 0-0.1	SE158264.031	LB112237	17 Oct 2016	19 Oct 2016	31 Oct 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016

19/1/2017 Page 5 of 26

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Moisture Content (continued) Method: ME-(AU)-[ENV]AN002

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
D101 0.2-0.3	SE158264.032	LB112237	17 Oct 2016	19 Oct 2016	31 Oct 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
					31 Oct 2016			25 Oct 2016
D101 1.0-1.1	SE158264.033	LB112237	17 Oct 2016	19 Oct 2016 19 Oct 2016		24 Oct 2016	29 Oct 2016	
D101 1.9-2.0 D102 0-0.1	SE158264.034 SE158264.035	LB112237 LB112237	17 Oct 2016 17 Oct 2016	19 Oct 2016	31 Oct 2016 31 Oct 2016	24 Oct 2016 24 Oct 2016	29 Oct 2016 29 Oct 2016	25 Oct 2016 25 Oct 2016
D102 0-0.1	SE158264.036	LB112237						25 Oct 2016
D102 0.2-0.3	SE158264.037	LB112237	17 Oct 2016 18 Oct 2016	19 Oct 2016 19 Oct 2016	31 Oct 2016 01 Nov 2016	24 Oct 2016 24 Oct 2016	29 Oct 2016 29 Oct 2016	25 Oct 2016
	·	•						
D103 0.2-0.3	SE158264.038 SE158264.039	LB112237 LB112237	18 Oct 2016	19 Oct 2016	01 Nov 2016 01 Nov 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
D104 0-0.1 D104 0.2-0.3	SE158264.040	LB112237	18 Oct 2016 18 Oct 2016	19 Oct 2016 19 Oct 2016	01 Nov 2016	24 Oct 2016 24 Oct 2016	29 Oct 2016 29 Oct 2016	25 Oct 2016 25 Oct 2016
D104 0.2-0.3	SE158264.041	LB112237	18 Oct 2016	19 Oct 2016	01 Nov 2016		29 Oct 2016	25 Oct 2016
D105 0.2-0.3	SE158264.042	LB112237	18 Oct 2016	19 Oct 2016	01 Nov 2016	24 Oct 2016 24 Oct 2016	29 Oct 2016	25 Oct 2016
D106 0-0.1	SE158264.043	LB112237	18 Oct 2016	19 Oct 2016	01 Nov 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
D106 0.2-0.3	SE158264.044	LB112237	18 Oct 2016	19 Oct 2016	01 Nov 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
D107 0-0.1	SE158264.045	LB112237	18 Oct 2016	19 Oct 2016	01 Nov 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
D107 0-0.1	SE158264.046	LB112237	18 Oct 2016	19 Oct 2016	01 Nov 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
D107 0.2-0.3	SE158264.047	LB112237	18 Oct 2016	19 Oct 2016	01 Nov 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
D108 0-0.1	SE158264.048	LB112237	18 Oct 2016	19 Oct 2016	01 Nov 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
D108 0.2-0.3	SE158264.049	LB112237	18 Oct 2016	19 Oct 2016	01 Nov 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
D109 0-0.1	SE158264.049 SE158264.050	LB112237	18 Oct 2016	19 Oct 2016	01 Nov 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
D109 0.2-0.3	SE158264.050	LB112237	17 Oct 2016	19 Oct 2016	31 Oct 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
D110 0-0.1	SE158264.051	LB112237	17 Oct 2016	19 Oct 2016	31 Oct 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
D111 0-0.1	SE158264.053	LB112237	17 Oct 2016	19 Oct 2016	31 Oct 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
D111 0-0.1	SE158264.054	LB112237	17 Oct 2016	19 Oct 2016	31 Oct 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
D112 0-0.1	SE158264.055	LB112237	17 Oct 2016	19 Oct 2016	31 Oct 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
D112 0.2-0.3	SE158264.056	LB112237	17 Oct 2016	19 Oct 2016	31 Oct 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
D113 0-0.1	SE158264.057	LB112237	17 Oct 2016	19 Oct 2016	31 Oct 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
D113 0.2-0.3	SE158264.058	LB112237	17 Oct 2016	19 Oct 2016	31 Oct 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
D114 0-0.1	SE158264.059	LB112237	17 Oct 2016	19 Oct 2016	31 Oct 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
D114 0.2-0.3	SE158264.060	LB112237	17 Oct 2016	19 Oct 2016	31 Oct 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
D115 0-0.1	SE158264.061	LB112237	17 Oct 2016	19 Oct 2016	31 Oct 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
D115 0.2-0.3	SE158264.062	LB112237	17 Oct 2016	19 Oct 2016	31 Oct 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
D116 0-0.1	SE158264.063	LB112237	18 Oct 2016	19 Oct 2016	01 Nov 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
D116 0.2-0.3	SE158264.064	LB112237	18 Oct 2016	19 Oct 2016	01 Nov 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
D116 1.0-1.1	SE158264.065	LB112237	18 Oct 2016	19 Oct 2016	01 Nov 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
D116 1.4-1.5	SE158264.066	LB112237	18 Oct 2016	19 Oct 2016	01 Nov 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
D117 0-0.1	SE158264.067	LB112237	18 Oct 2016	19 Oct 2016	01 Nov 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
D117 0.2-0.3	SE158264.068	LB112237	18 Oct 2016	19 Oct 2016	01 Nov 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
D118 0-0.1	SE158264.069	LB112237	18 Oct 2016	19 Oct 2016	01 Nov 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
D118 0.2-0.3	SE158264.070	LB112237	18 Oct 2016	19 Oct 2016	01 Nov 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
D119 0-0.1	SE158264.071	LB112237	18 Oct 2016	19 Oct 2016	01 Nov 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
D119 0.2-0.3	SE158264.072	LB112237	18 Oct 2016	19 Oct 2016	01 Nov 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
D120 0-0.1	SE158264.073	LB112237	18 Oct 2016	19 Oct 2016	01 Nov 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
D120 0.2-0.3	SE158264.074	LB112237	18 Oct 2016	19 Oct 2016	01 Nov 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
D121 0-0.1	SE158264.075	LB112237	18 Oct 2016	19 Oct 2016	01 Nov 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
D121 0.2-0.3	SE158264.076	LB112237	18 Oct 2016	19 Oct 2016	01 Nov 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
D122 0-0.1	SE158264.077	LB112237	18 Oct 2016	19 Oct 2016	01 Nov 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
D122 0.2-0.3	SE158264.078	LB112237	18 Oct 2016	19 Oct 2016	01 Nov 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
D123 0-0.1	SE158264.079	LB112237	18 Oct 2016	19 Oct 2016	01 Nov 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
D123 0.2-0.3	SE158264.080	LB112237	18 Oct 2016	19 Oct 2016	01 Nov 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
D124 0-0.1	SE158264.081	LB112237	17 Oct 2016	19 Oct 2016	31 Oct 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
D124 0.2-0.3	SE158264.082	LB112237	17 Oct 2016	19 Oct 2016	31 Oct 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
D125 0-0.1	SE158264.083	LB112237	17 Oct 2016	19 Oct 2016	31 Oct 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
D125 0.2-0.3	SE158264.084	LB112237	17 Oct 2016	19 Oct 2016	31 Oct 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
D126 0-0.1	SE158264.085	LB112237	17 Oct 2016	19 Oct 2016	31 Oct 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
D126 0.2-0.3	SE158264.086	LB112237	17 Oct 2016	19 Oct 2016	31 Oct 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
D127 0-0.1	SE158264.087	LB112237	18 Oct 2016	19 Oct 2016	01 Nov 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
D127 0.2-0.3	SE158264.088	LB112237	18 Oct 2016	19 Oct 2016	01 Nov 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
D128 0-0.1	SE158264.089	LB112237	18 Oct 2016	19 Oct 2016	01 Nov 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
D128 0.2-0.3	SE158264.090	LB112237	18 Oct 2016	19 Oct 2016	01 Nov 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
D129 0-0.1	SE158264.091	LB112237	18 Oct 2016	19 Oct 2016	01 Nov 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016

19/1/2017 Page 6 of 26

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Moisture Content (continued) Method: ME-(AU)-[ENV]AN002

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
D129 0.2-0.3	SE158264.092	LB112237	18 Oct 2016	19 Oct 2016	01 Nov 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
D130 0-0.1	SE158264.093	LB112237	18 Oct 2016	19 Oct 2016	01 Nov 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
D130 0.2-0.3	SE158264.094	LB112237	18 Oct 2016	19 Oct 2016	01 Nov 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
D130 1.0-1.1	SE158264.095	LB112237	18 Oct 2016	19 Oct 2016	01 Nov 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
D131 0-0.1	SE158264.096	LB112237	18 Oct 2016	19 Oct 2016	01 Nov 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
D131 0.2-0.3	SE158264.097	LB112237	18 Oct 2016	19 Oct 2016	01 Nov 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
D132 0-0.1	SE158264.098	LB112237	17 Oct 2016	19 Oct 2016	31 Oct 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
D132 0.2-0.3	SE158264.099	LB112237	17 Oct 2016	19 Oct 2016	31 Oct 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
D132 1.0-1.1	SE158264.100	LB112237	17 Oct 2016	19 Oct 2016	31 Oct 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
D132 1.9-2.0	SE158264.101	LB112237	17 Oct 2016	19 Oct 2016	31 Oct 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
D133 0-0.1	SE158264.102	LB112237	17 Oct 2016	19 Oct 2016	31 Oct 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
D133 0.2-0.3	SE158264.103	LB112237	17 Oct 2016	19 Oct 2016	31 Oct 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
D134 0-0.1	SE158264.104	LB112237	17 Oct 2016	19 Oct 2016	31 Oct 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
D134 0.2-0.03	SE158264.105	LB112237	17 Oct 2016	19 Oct 2016	31 Oct 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
D135 0-0.1	SE158264.106	LB112237	17 Oct 2016	19 Oct 2016	31 Oct 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
D135 0.2-0.3	SE158264.107	LB112237	17 Oct 2016	19 Oct 2016	31 Oct 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
D136 0-0.1	SE158264.108	LB112237	17 Oct 2016	19 Oct 2016	31 Oct 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
D136 0.2-0.3	SE158264.109	LB112237	17 Oct 2016	19 Oct 2016	31 Oct 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
D137 0-0.1	SE158264.110	LB112237	17 Oct 2016	19 Oct 2016	31 Oct 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
D137 0.2-0.3	SE158264.111	LB112237	17 Oct 2016	19 Oct 2016	31 Oct 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
D138 0-0.1	SE158264.112	LB112237	17 Oct 2016	19 Oct 2016	31 Oct 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
D138 0.2-0.3	SE158264.113	LB112237	17 Oct 2016	19 Oct 2016	31 Oct 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
D139 0-0.1	SE158264.114	LB112237	17 Oct 2016	19 Oct 2016	31 Oct 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
D139 0.2-0.3	SE158264.115	LB112237	17 Oct 2016	19 Oct 2016	31 Oct 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
D139 1.0-1.1	SE158264.116	LB112237	17 Oct 2016	19 Oct 2016	31 Oct 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
D139 1.4-1.5	SE158264.117	LB112237	17 Oct 2016	19 Oct 2016	31 Oct 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
D140 0-0.1	SE158264.118	LB112237	17 Oct 2016	19 Oct 2016	31 Oct 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
D140 0.2-0.3	SE158264.119	LB112237	17 Oct 2016	19 Oct 2016	31 Oct 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
D141 0-0.1	SE158264.120	LB112237	17 Oct 2016	19 Oct 2016	31 Oct 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
D141 0.2-0.3	SE158264.121	LB112237	17 Oct 2016	19 Oct 2016	31 Oct 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
D142 0-0.1	SE158264.122	LB112237	17 Oct 2016	19 Oct 2016	31 Oct 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
D142 0.2-0.3	SE158264.123	LB112237	17 Oct 2016	19 Oct 2016	31 Oct 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
D142 1.0-1.1	SE158264.124	LB112237	17 Oct 2016	19 Oct 2016	31 Oct 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
D142 1.9-2.0	SE158264.125	LB112237	17 Oct 2016	19 Oct 2016	31 Oct 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
D143 0-0.1	SE158264.126	LB112237	17 Oct 2016	19 Oct 2016	31 Oct 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
D143 0.2-0.3	SE158264.127	LB112237	17 Oct 2016	19 Oct 2016	31 Oct 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
D144 0-0.1	SE158264.128	LB112237	17 Oct 2016	19 Oct 2016	31 Oct 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
D144 0.2-0.3	SE158264.129	LB112237	17 Oct 2016	19 Oct 2016	31 Oct 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
D145 0-0.1	SE158264.130	LB112237	17 Oct 2016	19 Oct 2016	31 Oct 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
D145 0.2-0.3	SE158264.131	LB112237	17 Oct 2016	19 Oct 2016	31 Oct 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
D146 0-0.1	SE158264.132	LB112237	17 Oct 2016	19 Oct 2016	31 Oct 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
D146 0.2-0.3	SE158264.133	LB112237	17 Oct 2016	19 Oct 2016	31 Oct 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
D147 0-0.1	SE158264.134	LB112237	17 Oct 2016	19 Oct 2016	31 Oct 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
D147 0.2-0.3	SE158264.135	LB112237	17 Oct 2016	19 Oct 2016	31 Oct 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
D148 0-0.1	SE158264.136	LB112237	17 Oct 2016	19 Oct 2016	31 Oct 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
D148 0.2-0.3	SE158264.137	LB112237	17 Oct 2016	19 Oct 2016	31 Oct 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
D149 0-0.1	SE158264.138	LB112237	17 Oct 2016	19 Oct 2016	31 Oct 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
D149 0.2-0.3	SE158264.139	LB112237	17 Oct 2016	19 Oct 2016	31 Oct 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
D150 0-0.1	SE158264.140	LB112237	17 Oct 2016	19 Oct 2016	31 Oct 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
D150 0.2-0.3	SE158264.141	LB112237	17 Oct 2016	19 Oct 2016	31 Oct 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
D151 0-0.1	SE158264.142	LB112237	17 Oct 2016	19 Oct 2016	31 Oct 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
D151 0.2-0.3	SE158264.143	LB112237	17 Oct 2016	19 Oct 2016	31 Oct 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
D152 0-0.1	SE158264.144	LB112237	17 Oct 2016	19 Oct 2016	31 Oct 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
D152 0.2-0.3	SE158264.145	LB112237	17 Oct 2016	19 Oct 2016	31 Oct 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
D152 1.0-1.1	SE158264.146	LB112237	17 Oct 2016	19 Oct 2016	31 Oct 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
D152 1.9-2.0	SE158264.147	LB112237	17 Oct 2016	19 Oct 2016	31 Oct 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
D153 0-0.1	SE158264.148	LB112237	17 Oct 2016	19 Oct 2016	31 Oct 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
D153 0.2-0.3	SE158264.149	LB112237	17 Oct 2016	19 Oct 2016	31 Oct 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
D154 0-0.1	SE158264.150	LB112237	17 Oct 2016	19 Oct 2016	31 Oct 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
D154 0.2-0.3	SE158264.151	LB112237	17 Oct 2016	19 Oct 2016	31 Oct 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016

19/1/2017 Page 7 of 26

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Moisture Content (continued) Method: ME-(AU)-[ENV]AN002

Moisture Content (Continued	4)						Meniod.	ME-(AU)-[ENV]ANOUZ
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
D155 0-0.1	SE158264.152	LB112237	17 Oct 2016	19 Oct 2016	31 Oct 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
D155 0.2-0.3	SE158264.153	LB112237	17 Oct 2016	19 Oct 2016	31 Oct 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
D156 0-0.1	SE158264.154	LB112237	17 Oct 2016	19 Oct 2016	31 Oct 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
D156 0.2-0.3	SE158264.155	LB112237	17 Oct 2016	19 Oct 2016	31 Oct 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
D157 0-0.1	SE158264.156	LB112237	17 Oct 2016	19 Oct 2016	31 Oct 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
D157 0.2-0.3	SE158264.157	LB112237	17 Oct 2016	19 Oct 2016	31 Oct 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
D157 1.0-1.1	SE158264.158	LB112237	17 Oct 2016	19 Oct 2016	31 Oct 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
D157 1.9-2.0	SE158264.159	LB112237	17 Oct 2016	19 Oct 2016	31 Oct 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
DS11 0-0.1	SE158264.160	LB112237	18 Oct 2016	19 Oct 2016	01 Nov 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
DS16 0-0.1	SE158264.161	LB112237	18 Oct 2016	19 Oct 2016	01 Nov 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
DS18 0-0.1	SE158264.162	LB112237	18 Oct 2016	19 Oct 2016	01 Nov 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
DS18 0.5-0.6	SE158264.163	LB112237	18 Oct 2016	19 Oct 2016	01 Nov 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
DS19 0-0.1	SE158264.164	LB112237	18 Oct 2016	19 Oct 2016	01 Nov 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
DS19 0.5-0.6	SE158264.165	LB112237	18 Oct 2016	19 Oct 2016	01 Nov 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
DS22 0-0.1	SE158264.166	LB112237	18 Oct 2016	19 Oct 2016	01 Nov 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
DS22 0.5-0.6	SE158264.167	LB112237	18 Oct 2016	19 Oct 2016	01 Nov 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
CS12-1 0-0.1	SE158264.168	LB112237	18 Oct 2016	19 Oct 2016	01 Nov 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
CS12-2 0-0.1	SE158264.169	LB112237	18 Oct 2016	19 Oct 2016	01 Nov 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
CS12-2 0.5-0.6	SE158264.170	LB112237	18 Oct 2016	19 Oct 2016	01 Nov 2016	24 Oct 2016	29 Oct 2016	25 Oct 2016
CS12-3 0-0.1	SE158264.171	LB112237	18 Oct 2016	19 Oct 2016	01 Nov 2016	24 Oct 2016	29 Oct 2016	26 Oct 2016
CS14-1 0-0.1	SE158264.172	LB112237	18 Oct 2016	19 Oct 2016	01 Nov 2016	24 Oct 2016	29 Oct 2016	26 Oct 2016
CS14-2 0-0.1	SE158264.173	LB112237	18 Oct 2016	19 Oct 2016	01 Nov 2016	24 Oct 2016	29 Oct 2016	26 Oct 2016
CS14-3 0-0.1	SE158264.174	LB112237	18 Oct 2016	19 Oct 2016	01 Nov 2016	24 Oct 2016	29 Oct 2016	26 Oct 2016
CS15-1 0-0.1	SE158264.175	LB112237	18 Oct 2016	19 Oct 2016	01 Nov 2016	24 Oct 2016	29 Oct 2016	26 Oct 2016
CS15-2 0-0.1	SE158264.176	LB112237	18 Oct 2016	19 Oct 2016	01 Nov 2016	24 Oct 2016	29 Oct 2016	26 Oct 2016
CS15-2 0.5-0.6	SE158264.177	LB112237	18 Oct 2016	19 Oct 2016	01 Nov 2016	24 Oct 2016	29 Oct 2016	26 Oct 2016
CS15-3 0-0.1	SE158264.178	LB112237	18 Oct 2016	19 Oct 2016	01 Nov 2016	24 Oct 2016	29 Oct 2016	26 Oct 2016
CS18-1 0-0.1	SE158264.179	LB112237	18 Oct 2016	19 Oct 2016	01 Nov 2016	24 Oct 2016	29 Oct 2016	26 Oct 2016
CS18-2 0-0.1	SE158264.180	LB112237	18 Oct 2016	19 Oct 2016	01 Nov 2016	24 Oct 2016	29 Oct 2016	26 Oct 2016
CS18-2 0.5-0.6	SE158264.181	LB112237	18 Oct 2016	19 Oct 2016	01 Nov 2016	24 Oct 2016	29 Oct 2016	26 Oct 2016
CS18-3 0-0.1	SE158264.182	LB112237	18 Oct 2016	19 Oct 2016	01 Nov 2016	24 Oct 2016	29 Oct 2016	26 Oct 2016
CS22-1 0-0.1	SE158264.183	LB112237	18 Oct 2016	19 Oct 2016	01 Nov 2016	24 Oct 2016	29 Oct 2016	26 Oct 2016
CS22-2 0-0.1	SE158264.184	LB112237	18 Oct 2016	19 Oct 2016	01 Nov 2016	24 Oct 2016	29 Oct 2016	26 Oct 2016
CS22-3 0-0.1	SE158264.185	LB112237	18 Oct 2016	19 Oct 2016	01 Nov 2016	24 Oct 2016	29 Oct 2016	26 Oct 2016
Duplicate D1	SE158264.186	LB112237	17 Oct 2016	19 Oct 2016	31 Oct 2016	24 Oct 2016	29 Oct 2016	26 Oct 2016
Duplicate D2	SE158264.187	LB112237	17 Oct 2016	19 Oct 2016	31 Oct 2016	24 Oct 2016	29 Oct 2016	26 Oct 2016
Duplicate D3	SE158264.188	LB112237	17 Oct 2016	19 Oct 2016	31 Oct 2016	24 Oct 2016	29 Oct 2016	26 Oct 2016
Duplicate D4	SE158264.189	LB112237	17 Oct 2016	19 Oct 2016	31 Oct 2016	24 Oct 2016	29 Oct 2016	26 Oct 2016
Duplicate D5	SE158264.190	LB112237	18 Oct 2016	19 Oct 2016	01 Nov 2016	24 Oct 2016	29 Oct 2016	26 Oct 2016
Duplicate D6	SE158264.191	LB112237	18 Oct 2016	19 Oct 2016	01 Nov 2016	24 Oct 2016	29 Oct 2016	26 Oct 2016
Duplicate D7	SE158264.192	LB112237	18 Oct 2016	19 Oct 2016	01 Nov 2016	24 Oct 2016	29 Oct 2016	26 Oct 2016
Duplicate D8	SE158264.193	LB112237	18 Oct 2016	19 Oct 2016	01 Nov 2016	24 Oct 2016	29 Oct 2016	26 Oct 2016
Duplicate D9	SE158264.194	LB112237	18 Oct 2016	19 Oct 2016	01 Nov 2016	24 Oct 2016	29 Oct 2016	26 Oct 2016
Duplicate D10	SE158264.195	LB112237	18 Oct 2016	19 Oct 2016	01 Nov 2016	24 Oct 2016	29 Oct 2016	26 Oct 2016

pH in soil (1:5)

Method: ME-(AU)-[ENV]AN101

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
A8 0.5-0.6	SE158264.006	LB112209	18 Oct 2016	19 Oct 2016	25 Oct 2016	21 Oct 2016	22 Oct 2016	21 Oct 2016
A11 1.0-1.1	SE158264.012	LB112209	18 Oct 2016	19 Oct 2016	25 Oct 2016	21 Oct 2016	22 Oct 2016	21 Oct 2016
A15 0.5-0.6	SE158264.017	LB112209	18 Oct 2016	19 Oct 2016	25 Oct 2016	21 Oct 2016	22 Oct 2016	21 Oct 2016
A16 0.2-0.3	SE158264.020	LB112209	18 Oct 2016	19 Oct 2016	25 Oct 2016	21 Oct 2016	22 Oct 2016	21 Oct 2016
A17 1.9-2.0	SE158264.027	LB112209	18 Oct 2016	19 Oct 2016	25 Oct 2016	21 Oct 2016	22 Oct 2016	21 Oct 2016
A18 1.0-1.1	SE158264.030	LB112209	18 Oct 2016	19 Oct 2016	25 Oct 2016	21 Oct 2016	22 Oct 2016	21 Oct 2016
D101 0-0.1	SE158264.031	LB112209	17 Oct 2016	19 Oct 2016	24 Oct 2016	21 Oct 2016	22 Oct 2016	21 Oct 2016
D101 1.0-1.1	SE158264.033	LB112209	17 Oct 2016	19 Oct 2016	24 Oct 2016	21 Oct 2016	22 Oct 2016	21 Oct 2016
D116 0-0.1	SE158264.063	LB112210	18 Oct 2016	19 Oct 2016	25 Oct 2016	24 Oct 2016	25 Oct 2016	24 Oct 2016
D116 0.2-0.3	SE158264.064	LB112210	18 Oct 2016	19 Oct 2016	25 Oct 2016	24 Oct 2016	25 Oct 2016	24 Oct 2016
D119 0-0.1	SE158264.071	LB112210	18 Oct 2016	19 Oct 2016	25 Oct 2016	24 Oct 2016	25 Oct 2016	24 Oct 2016
D130 0-0.1	SE158264.093	LB112210	18 Oct 2016	19 Oct 2016	25 Oct 2016	24 Oct 2016	25 Oct 2016	24 Oct 2016
D130 1.0-1.1	SE158264.095	LB112210	18 Oct 2016	19 Oct 2016	25 Oct 2016	24 Oct 2016	25 Oct 2016	24 Oct 2016

19/1/2017 Page 8 of 26

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

pH in soil (1:5) (continued) Method: ME-(AU)-[ENV]AN101

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
D132 0-0.1	SE158264.098	LB112210	17 Oct 2016	19 Oct 2016	24 Oct 2016	24 Oct 2016	25 Oct 2016	24 Oct 2016
D132 0.2-0.3	SE158264.099	LB112210	17 Oct 2016	19 Oct 2016	24 Oct 2016	24 Oct 2016	25 Oct 2016	24 Oct 2016
D139 0-0.1	SE158264.114	LB112210	17 Oct 2016	19 Oct 2016	24 Oct 2016	24 Oct 2016	25 Oct 2016	24 Oct 2016
D139 1.4-1.5	SE158264.117	LB112210	17 Oct 2016	19 Oct 2016	24 Oct 2016	24 Oct 2016	25 Oct 2016	24 Oct 2016
D142 0-0.1	SE158264.122	LB112210	17 Oct 2016	19 Oct 2016	24 Oct 2016	24 Oct 2016	25 Oct 2016	24 Oct 2016
D142 1.9-2.0	SE158264.125	LB112210	17 Oct 2016	19 Oct 2016	24 Oct 2016	24 Oct 2016	25 Oct 2016	24 Oct 2016
D152 0-0.1	SE158264.144	LB112210	17 Oct 2016	19 Oct 2016	24 Oct 2016	24 Oct 2016	25 Oct 2016	24 Oct 2016
D152 0.2-0.3	SE158264.145	LB112210	17 Oct 2016	19 Oct 2016	24 Oct 2016	24 Oct 2016	25 Oct 2016	24 Oct 2016
D157 0-0.1	SE158264.156	LB112210	17 Oct 2016	19 Oct 2016	24 Oct 2016	24 Oct 2016	25 Oct 2016	24 Oct 2016
D157 1.0-1.1	SE158264.158	LB112210	17 Oct 2016	19 Oct 2016	24 Oct 2016	24 Oct 2016	25 Oct 2016	24 Oct 2016

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES

Method: ME-(AU)-[ENV]AN040/AN320

Total Recoverable Metals in	Soll/waste Solids/Materi	ials by ICPOES					Method: ME-(AU)-[ENV]AN040/AN320
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
A4 0.25-0.35	SE158264.001	LB112405	18 Oct 2016	19 Oct 2016	16 Apr 2017	25 Oct 2016	16 Apr 2017	28 Oct 2016
A4 0.5-0.6	SE158264.002	LB112405	18 Oct 2016	19 Oct 2016	16 Apr 2017	25 Oct 2016	16 Apr 2017	28 Oct 2016
A6 0.25-0.35	SE158264.003	LB112405	18 Oct 2016	19 Oct 2016	16 Apr 2017	25 Oct 2016	16 Apr 2017	28 Oct 2016
A6 0.5-0.6	SE158264.004	LB112405	18 Oct 2016	19 Oct 2016	16 Apr 2017	25 Oct 2016	16 Apr 2017	28 Oct 2016
A8 0.25-0.35	SE158264.005	LB112405	18 Oct 2016	19 Oct 2016	16 Apr 2017	25 Oct 2016	16 Apr 2017	28 Oct 2016
A8 0.5-0.6	SE158264.006	LB112407	18 Oct 2016	19 Oct 2016	16 Apr 2017	25 Oct 2016	16 Apr 2017	28 Oct 2016
A8 1.0-1.1	SE158264.007	LB112407	18 Oct 2016	19 Oct 2016	16 Apr 2017	25 Oct 2016	16 Apr 2017	28 Oct 2016
A9 0.25-0.35	SE158264.008	LB112407	18 Oct 2016	19 Oct 2016	16 Apr 2017	25 Oct 2016	16 Apr 2017	28 Oct 2016
A9 0.5-0.6	SE158264.009	LB112407	18 Oct 2016	19 Oct 2016	16 Apr 2017	25 Oct 2016	16 Apr 2017	28 Oct 2016
A11 0.25-0.35	SE158264.010	LB112407	18 Oct 2016	19 Oct 2016	16 Apr 2017	25 Oct 2016	16 Apr 2017	28 Oct 2016
A11 0.5-0.6	SE158264.011	LB112407	18 Oct 2016	19 Oct 2016	16 Apr 2017	25 Oct 2016	16 Apr 2017	28 Oct 2016
A11 1.0-1.1	SE158264.012	LB112407	18 Oct 2016	19 Oct 2016	16 Apr 2017	25 Oct 2016	16 Apr 2017	28 Oct 2016
A11 1.9-2.0	SE158264.013	LB112407	18 Oct 2016	19 Oct 2016	16 Apr 2017	25 Oct 2016	16 Apr 2017	28 Oct 2016
A13 0.25-0.35	SE158264.014	LB112407	18 Oct 2016	19 Oct 2016	16 Apr 2017	25 Oct 2016	16 Apr 2017	28 Oct 2016
A13 0.5-0.6	SE158264.015	LB112407	18 Oct 2016	19 Oct 2016	16 Apr 2017	25 Oct 2016	16 Apr 2017	28 Oct 2016
A15 0.2-0.3	SE158264.016	LB112407	18 Oct 2016	19 Oct 2016	16 Apr 2017	25 Oct 2016	16 Apr 2017	27 Oct 2016
A15 0.5-0.6	SE158264.017	LB112407	18 Oct 2016	19 Oct 2016	16 Apr 2017	25 Oct 2016	16 Apr 2017	27 Oct 2016
A15 1.0-1.1	SE158264.018	LB112407	18 Oct 2016	19 Oct 2016	16 Apr 2017	25 Oct 2016	16 Apr 2017	27 Oct 2016
A15 1.9-2.0	SE158264.019	LB112407	18 Oct 2016	19 Oct 2016	16 Apr 2017	25 Oct 2016	16 Apr 2017	27 Oct 2016
A16 0.2-0.3	SE158264.020	LB112407	18 Oct 2016	19 Oct 2016	16 Apr 2017	25 Oct 2016	16 Apr 2017	27 Oct 2016
A16 0.5-0.6	SE158264.021	LB112407	18 Oct 2016	19 Oct 2016	16 Apr 2017	25 Oct 2016	16 Apr 2017	27 Oct 2016
A16 1.0-1.1	SE158264.022	LB112407	18 Oct 2016	19 Oct 2016	16 Apr 2017	25 Oct 2016	16 Apr 2017	27 Oct 2016
A16 1.5-1.6	SE158264.023	LB112407	18 Oct 2016	19 Oct 2016	16 Apr 2017	25 Oct 2016	16 Apr 2017	27 Oct 2016
A17 0.2-0.3	SE158264.024	LB112407	18 Oct 2016	19 Oct 2016	16 Apr 2017	25 Oct 2016	16 Apr 2017	27 Oct 2016
A17 0.5-0.6	SE158264.025	LB112409	18 Oct 2016	19 Oct 2016	16 Apr 2017	25 Oct 2016	16 Apr 2017	28 Oct 2016
A17 1.0-1.1	SE158264.026	LB112409	18 Oct 2016	19 Oct 2016	16 Apr 2017	25 Oct 2016	16 Apr 2017	28 Oct 2016
A17 1.9-2.0	SE158264.027	LB112409	18 Oct 2016	19 Oct 2016	16 Apr 2017	25 Oct 2016	16 Apr 2017	28 Oct 2016
A18 0.2-0.3	SE158264.028	LB112409	18 Oct 2016	19 Oct 2016	16 Apr 2017	25 Oct 2016	16 Apr 2017	28 Oct 2016
A18 0.5-0.6	SE158264.029	LB112409	18 Oct 2016	19 Oct 2016	16 Apr 2017	25 Oct 2016	16 Apr 2017	28 Oct 2016
A18 1.0-1.1	SE158264.030	LB112409	18 Oct 2016	19 Oct 2016	16 Apr 2017	25 Oct 2016	16 Apr 2017	28 Oct 2016
D101 0-0.1	SE158264.031	LB112409	17 Oct 2016	19 Oct 2016	15 Apr 2017	25 Oct 2016	15 Apr 2017	28 Oct 2016
D101 0.2-0.3	SE158264.032	LB112409	17 Oct 2016	19 Oct 2016	15 Apr 2017	25 Oct 2016	15 Apr 2017	28 Oct 2016
D101 1.0-1.1	SE158264.033	LB112409	17 Oct 2016	19 Oct 2016	15 Apr 2017	25 Oct 2016	15 Apr 2017	28 Oct 2016
D101 1.9-2.0	SE158264.034	LB112409	17 Oct 2016	19 Oct 2016	15 Apr 2017	25 Oct 2016	15 Apr 2017	28 Oct 2016
D102 0-0.1	SE158264.035	LB112409	17 Oct 2016	19 Oct 2016	15 Apr 2017	25 Oct 2016	15 Apr 2017	28 Oct 2016
D102 0.2-0.3	SE158264.036	LB112409	17 Oct 2016	19 Oct 2016	15 Apr 2017	25 Oct 2016	15 Apr 2017	28 Oct 2016
D103 0-0.1	SE158264.037	LB112409	18 Oct 2016	19 Oct 2016	16 Apr 2017	25 Oct 2016	16 Apr 2017	28 Oct 2016
D103 0.2-0.3	SE158264.038	LB112409	18 Oct 2016	19 Oct 2016	16 Apr 2017	25 Oct 2016	16 Apr 2017	28 Oct 2016
D104 0-0.1	SE158264.039	LB112409	18 Oct 2016	19 Oct 2016	16 Apr 2017	25 Oct 2016	16 Apr 2017	28 Oct 2016
D104 0.2-0.3	SE158264.040	LB112409	18 Oct 2016	19 Oct 2016	16 Apr 2017	25 Oct 2016	16 Apr 2017	28 Oct 2016
D105 0-0.1	SE158264.041	LB112409	18 Oct 2016	19 Oct 2016	16 Apr 2017	25 Oct 2016	16 Apr 2017	28 Oct 2016
D105 0.2-0.3	SE158264.042	LB112409	18 Oct 2016	19 Oct 2016	16 Apr 2017	25 Oct 2016	16 Apr 2017	28 Oct 2016
D106 0-0.1	SE158264.043	LB112409	18 Oct 2016	19 Oct 2016	16 Apr 2017	25 Oct 2016	16 Apr 2017	28 Oct 2016
D106 0.2-0.3	SE158264.044	LB112410	18 Oct 2016	19 Oct 2016	16 Apr 2017	25 Oct 2016	16 Apr 2017	28 Oct 2016
D107 0-0.1	SE158264.045	LB112410	18 Oct 2016	19 Oct 2016	16 Apr 2017	25 Oct 2016	16 Apr 2017	28 Oct 2016
D107 0.2-0.3	SE158264.046	LB112410	18 Oct 2016	19 Oct 2016	16 Apr 2017	25 Oct 2016	16 Apr 2017	28 Oct 2016
D108 0-0.1	SE158264.047	LB112410	18 Oct 2016	19 Oct 2016	16 Apr 2017	25 Oct 2016	16 Apr 2017	28 Oct 2016

19/1/2017 Page 9 of 26

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES (continued)

Method: ME-(AU)-[ENV]AN040/AN320

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
D108 0.2-0.3	SE158264.048	LB112410	18 Oct 2016	19 Oct 2016	16 Apr 2017	25 Oct 2016	16 Apr 2017	28 Oct 2016
D109 0-0.1	SE158264.049	LB112410	18 Oct 2016	19 Oct 2016	16 Apr 2017	25 Oct 2016	16 Apr 2017	28 Oct 2016
D109 0.2-0.3	SE158264.050	LB112410	18 Oct 2016	19 Oct 2016	16 Apr 2017	25 Oct 2016	16 Apr 2017	28 Oct 2016
D110 0-0.1	SE158264.051	LB112410	17 Oct 2016	19 Oct 2016	15 Apr 2017	25 Oct 2016	15 Apr 2017	28 Oct 2016
D110 0.2-0.3	SE158264.052	LB112410	17 Oct 2016	19 Oct 2016	15 Apr 2017	25 Oct 2016	15 Apr 2017	28 Oct 2016
D111 0-0.1	SE158264.053	LB112410	17 Oct 2016	19 Oct 2016	15 Apr 2017	25 Oct 2016	15 Apr 2017	28 Oct 2016
D111 0.2-0.3	SE158264.054	LB112410	17 Oct 2016	19 Oct 2016	15 Apr 2017	25 Oct 2016	15 Apr 2017	28 Oct 2016
D112 0-0.1	SE158264.055	LB112410	17 Oct 2016	19 Oct 2016	15 Apr 2017	25 Oct 2016	15 Apr 2017	28 Oct 2016
D112 0.2-0.3	SE158264.056	LB112410	17 Oct 2016	19 Oct 2016	15 Apr 2017	25 Oct 2016	15 Apr 2017	28 Oct 2016
D113 0-0.1	SE158264.057	LB112410	17 Oct 2016	19 Oct 2016	15 Apr 2017	25 Oct 2016	15 Apr 2017	28 Oct 2016
D113 0.2-0.3	SE158264.058	LB112410	17 Oct 2016	19 Oct 2016	15 Apr 2017	25 Oct 2016	15 Apr 2017	28 Oct 2016
D114 0-0.1	SE158264.059	LB112410	17 Oct 2016	19 Oct 2016	15 Apr 2017	25 Oct 2016	15 Apr 2017	28 Oct 2016
D114 0.2-0.3	SE158264.060	LB112410	17 Oct 2016	19 Oct 2016	15 Apr 2017	25 Oct 2016	15 Apr 2017	28 Oct 2016
D115 0-0.1	SE158264.061	LB112410	17 Oct 2016	19 Oct 2016	15 Apr 2017	25 Oct 2016	15 Apr 2017	28 Oct 2016
D115 0.2-0.3	SE158264.062	LB112410	17 Oct 2016	19 Oct 2016	15 Apr 2017	25 Oct 2016	15 Apr 2017	28 Oct 2016
D116 0-0.1	SE158264.063	LB112411	18 Oct 2016	19 Oct 2016	16 Apr 2017	25 Oct 2016	16 Apr 2017	28 Oct 2016
D116 0.2-0.3	SE158264.064	LB112411	18 Oct 2016	19 Oct 2016	16 Apr 2017	25 Oct 2016	16 Apr 2017	28 Oct 2016
D116 1.0-1.1	SE158264.065	LB112411	18 Oct 2016	19 Oct 2016	16 Apr 2017	25 Oct 2016	16 Apr 2017	28 Oct 2016
D116 1.4-1.5	SE158264.066	LB112411	18 Oct 2016	19 Oct 2016	16 Apr 2017	25 Oct 2016	16 Apr 2017	28 Oct 2016
D117 0-0.1	SE158264.067	LB112411	18 Oct 2016	19 Oct 2016	16 Apr 2017	25 Oct 2016	16 Apr 2017	28 Oct 2016
D117 0.2-0.3	SE158264.068	LB112411	18 Oct 2016	19 Oct 2016	16 Apr 2017	25 Oct 2016	16 Apr 2017	28 Oct 2016
D118 0-0.1	SE158264.069	LB112411	18 Oct 2016	19 Oct 2016	16 Apr 2017	25 Oct 2016	16 Apr 2017	28 Oct 2016
D118 0.2-0.3	SE158264.070	LB112411	18 Oct 2016	19 Oct 2016	16 Apr 2017	25 Oct 2016	16 Apr 2017	28 Oct 2016
D119 0-0.1	SE158264.071	LB112411	18 Oct 2016	19 Oct 2016	16 Apr 2017	25 Oct 2016	16 Apr 2017	28 Oct 2016
D119 0.2-0.3	SE158264.072	LB112411	18 Oct 2016	19 Oct 2016	16 Apr 2017	25 Oct 2016	16 Apr 2017	28 Oct 2016
D120 0-0.1	SE158264.073	LB112411	18 Oct 2016	19 Oct 2016	16 Apr 2017	25 Oct 2016	16 Apr 2017	28 Oct 2016
D120 0.2-0.3	SE158264.074	LB112411	18 Oct 2016	19 Oct 2016	16 Apr 2017	25 Oct 2016	16 Apr 2017	28 Oct 2016
D121 0-0.1	SE158264.075	LB112411	18 Oct 2016	19 Oct 2016	16 Apr 2017	25 Oct 2016	16 Apr 2017	28 Oct 2016
D121 0.2-0.3	SE158264.076	LB112411	18 Oct 2016	19 Oct 2016	16 Apr 2017	25 Oct 2016	16 Apr 2017	28 Oct 2016
D122 0-0.1	SE158264.077	LB112411	18 Oct 2016	19 Oct 2016	16 Apr 2017	25 Oct 2016	16 Apr 2017	28 Oct 2016
D122 0.2-0.3	SE158264.078	LB112411	18 Oct 2016	19 Oct 2016	16 Apr 2017	25 Oct 2016	16 Apr 2017	28 Oct 2016
D123 0-0.1	SE158264.079	LB112411	18 Oct 2016	19 Oct 2016	16 Apr 2017	25 Oct 2016	16 Apr 2017	28 Oct 2016
D123 0.2-0.3	SE158264.080	LB112411	18 Oct 2016	19 Oct 2016	16 Apr 2017	25 Oct 2016	16 Apr 2017	28 Oct 2016
D124 0-0.1	SE158264.081	LB112411	17 Oct 2016	19 Oct 2016	15 Apr 2017	25 Oct 2016	15 Apr 2017	28 Oct 2016
D124 0.2-0.3	SE158264.082	LB112412	17 Oct 2016	19 Oct 2016	15 Apr 2017	25 Oct 2016	15 Apr 2017	28 Oct 2016
D125 0-0.1	SE158264.083	LB112412	17 Oct 2016	19 Oct 2016	15 Apr 2017	25 Oct 2016	15 Apr 2017	28 Oct 2016
D125 0.2-0.3	SE158264.084	LB112412	17 Oct 2016	19 Oct 2016	15 Apr 2017	25 Oct 2016	15 Apr 2017	28 Oct 2016
D126 0-0.1	SE158264.085	LB112412	17 Oct 2016	19 Oct 2016	15 Apr 2017	25 Oct 2016	15 Apr 2017	28 Oct 2016
D126 0.2-0.3	SE158264.086	LB112412	17 Oct 2016	19 Oct 2016	15 Apr 2017	25 Oct 2016		28 Oct 2016
D127 0-0.1	SE158264.087		18 Oct 2016				15 Apr 2017	28 Oct 2016
D127 0.2-0.3		LB112412		19 Oct 2016 19 Oct 2016	16 Apr 2017 16 Apr 2017	25 Oct 2016	16 Apr 2017	28 Oct 2016
	SE158264.088	LB112412	18 Oct 2016		•	25 Oct 2016 25 Oct 2016	16 Apr 2017	
D128 0-0.1 D128 0.2-0.3	SE158264.089	LB112412	18 Oct 2016	19 Oct 2016	16 Apr 2017		16 Apr 2017	28 Oct 2016
D128 0.2-0.3 D129 0-0.1	SE158264.090 SE158264.091	LB112412 LB112412	18 Oct 2016 18 Oct 2016	19 Oct 2016	16 Apr 2017 16 Apr 2017	25 Oct 2016 25 Oct 2016	16 Apr 2017 16 Apr 2017	28 Oct 2016 28 Oct 2016
D129 0-0.1	SE158264.091	LB112412	18 Oct 2016	19 Oct 2016 19 Oct 2016	16 Apr 2017	25 Oct 2016	16 Apr 2017	28 Oct 2016
D130 0-0.1			18 Oct 2016	19 Oct 2016	16 Apr 2017	25 Oct 2016	16 Apr 2017	28 Oct 2016
	SE158264.093 SE158264.094	LB112412 LB112412			16 Apr 2017		•	28 Oct 2016 28 Oct 2016
D130 0.2-0.3 D130 1.0-1.1	SE158264.094	LB112412	18 Oct 2016 18 Oct 2016	19 Oct 2016 19 Oct 2016	16 Apr 2017	25 Oct 2016 25 Oct 2016	16 Apr 2017 16 Apr 2017	28 Oct 2016
D130 1.0-1.1	SE158264.095	LB112412 LB112412	18 Oct 2016	19 Oct 2016	16 Apr 2017	25 Oct 2016	16 Apr 2017	28 Oct 2016
D131 0-0.1 D131 0.2-0.3	SE158264.096 SE158264.097	LB112412 LB112412	18 Oct 2016	19 Oct 2016	16 Apr 2017 16 Apr 2017	25 Oct 2016 25 Oct 2016	16 Apr 2017 16 Apr 2017	28 Oct 2016 28 Oct 2016
	·			19 Oct 2016	•		•	
D132 0-0.1 D132 0.2-0.3	SE158264.098	LB112412	17 Oct 2016 17 Oct 2016		15 Apr 2017	25 Oct 2016	15 Apr 2017	28 Oct 2016
	SE158264.099 SE158264.100	LB112412		19 Oct 2016	15 Apr 2017	25 Oct 2016	15 Apr 2017	28 Oct 2016
D132 1.0-1.1	SE158264.100	LB112412	17 Oct 2016	19 Oct 2016	15 Apr 2017	25 Oct 2016	15 Apr 2017	28 Oct 2016
D132 1.9-2.0	SE158264.101	LB112413	17 Oct 2016	19 Oct 2016	15 Apr 2017	25 Oct 2016	15 Apr 2017	28 Oct 2016
D133 0-0.1	SE158264.102	LB112413	17 Oct 2016	19 Oct 2016	15 Apr 2017	25 Oct 2016	15 Apr 2017	28 Oct 2016
D133 0.2-0.3	SE158264.103	LB112413	17 Oct 2016	19 Oct 2016	15 Apr 2017	25 Oct 2016	15 Apr 2017	28 Oct 2016
D134 0-0.1	SE158264.104	LB112413	17 Oct 2016	19 Oct 2016	15 Apr 2017	25 Oct 2016	15 Apr 2017	28 Oct 2016
D134 0.2-0.03	SE158264.105	LB112413	17 Oct 2016	19 Oct 2016	15 Apr 2017	25 Oct 2016	15 Apr 2017	28 Oct 2016
D135 0-0.1	SE158264.106	LB112413	17 Oct 2016	19 Oct 2016	15 Apr 2017	25 Oct 2016	15 Apr 2017	28 Oct 2016
D135 0.2-0.3	SE158264.107	LB112413	17 Oct 2016	19 Oct 2016	15 Apr 2017	25 Oct 2016	15 Apr 2017	28 Oct 2016

19/1/2017 Page 10 of 26

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES (continued)

Method: ME-(AU)-[ENV]AN040/AN320

1918/02-20	Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
DESTRUCT DESTRUCT	D136 0-0.1	SE158264.108	LB112413	17 Oct 2016	19 Oct 2016	15 Apr 2017	25 Oct 2016	15 Apr 2017	28 Oct 2016
DISPORT DISP	D136 0.2-0.3	SE158264.109	LB112413	17 Oct 2016	19 Oct 2016	15 Apr 2017	25 Oct 2016	15 Apr 2017	28 Oct 2016
DISSO 0.61	D137 0-0.1	SE158264.110	LB112413	17 Oct 2016	19 Oct 2016	15 Apr 2017	25 Oct 2016	15 Apr 2017	28 Oct 2016
1938 0.2.0.3 SE182844 114 LB114413 17 0.2016 19 0.42016 15 Apr. 2017 25 0.4 2016 15 Apr. 2017 25	D137 0.2-0.3	SE158264.111	LB112413	17 Oct 2016	19 Oct 2016	15 Apr 2017	25 Oct 2016	15 Apr 2017	28 Oct 2016
1938 0.2-0.3 SE168264 113 LB112413 17 0-0.2016 19 0-0.2016 15 Apr. 2017 20 0-0.2016 15 Apr. 2017 20 0-0.2016 19 0-0.2016 19 0-0.2016 15 Apr. 2017 20 0-0.2016 15 Apr. 2017 20 0-0.2016 19 0-0.2016 15 Apr. 2017 20 0-0.2016 19 0-0.2016 15 Apr. 2017 20 0-0.2016 15 Apr. 2017 20 0-0.2016 19 0-0.2016 15 Apr. 2017 20 0-0.2016 19 Apr. 2017 20 0-0.2016 19 0-0.2016 15 Apr. 2017 20 0-0.2016 19 Apr. 2017 20	D138 0-0.1	SE158264.112	LB112413	17 Oct 2016	19 Oct 2016	15 Apr 2017	25 Oct 2016	15 Apr 2017	28 Oct 2016
1958 0.6.1 SE16204.115 LB112415 17.0 c2016 19.0 c2016 15.4 p. 2017 25.0 c1.0016 15.4 p. 2017 20.0 c2016 19.0 c201									28 Oct 2016
1938 0.2-0.3 SE16204.116 LB112413 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2									
1938 14-15 SE158284-19 LB12413 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 25 Oct 2016 19 Apr 2017 25 Oct 2016 19 Apr 2017 25 Oct 2016 15 Apr 2017 25 Oct 2016 19 Apr 2017 25 Oct 2016 15 Apr 2017 25 Oct 2016								· · · · · · · · · · · · · · · · · · ·	
1938 14-15									
D140 0-0.1 SE158204.118									
Description Description								· · · · · · · · · · · · · · · · · · ·	
Ditt Ditt									
Dit4 Dit4									
Di42 0.0 SE198264.122						· · · · · · · · · · · · · · · · · · ·			
Did 20 2-0.3 SE159264.123 LB112414 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 26 Oct 2016 15 Apr 2017 26 Oct 2016 15 Apr 2017 26 Oct 2016 15 Apr 2017 26 Oct 2016 15 Apr 2017 26 Oct 2016 15 Apr 2017 26 Oct 2016 15 Apr 2017 26 Oct 2016 15 Apr 2017 26 Oct 2016 15 Apr 2017 26 Oct 2016 15 Apr 2017 26 Oct 2016 15 Apr 2017 26 Oct 2016 15 Apr 2017 26 Oct 2016 15 Apr 2017 26 Oct 2016 15 Apr 2017 26 Oct 2016 15 Apr 2017 28 Oct 2016 15 Apr 2017 2									
D142 19-11 SE158264 124									
Did Did									
D143 0.0.1 SE198264.128 LB112414 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 10 Apr 2017 28 Oct 2016 10 Apr 2017 28 Oct 2016 10 Apr 2017 28 Oct 2016 10 Apr 2017 28 Oct 2016 10 Apr 2017 28 Oct 2016 10 Apr 2017 28 Oct 2016 10 Apr 2017 28 Oct 2016 10 Apr 2017 28 Oct 2016 10 Apr 2017 28 Oct 2016 10 Apr 2017 28 Oct 2016 10 Apr 2017 28 Oct 2016 10 Apr 2017 28 Oct 2016 10 Apr 2017 28 Oct 2016 10 Apr 2017 28 Oct 2016 10 Apr 2017 28 Oct 2016 10 Apr 2017 28 Oct 2016 15 Apr 2017 28 Oct 2016 10 Apr 2017 28									
D143 Q.2.0.3 SE158284.127 LB112414 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 10 Apr 2017 28 Oct 2016 15 Apr 2017 2			•						
D144 0-0.1 SE158284.128 LB112414									
D144 0.2-0.3 SE158264.129									
D145 0-0.1 SE158284.130									
D145 0.2-0.3 SE158284.131									
D146 0-0.1 SE158264.132		· · · · · · · · · · · · · · · · · · ·							
D146 0.2-0.3 SE158264.133 LB112414 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 26 Oct 2016 10 147 0.2-0.3 SE158264.135 LB112414 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 26 Oct 2016 10 148 0-0.1 SE158264.136 LB112414 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 26 Oct									
D147 0-0.1 SE158264.134									
D147 0.2-0.3 SE158264.135 LB112414 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 1048 0.2-0.3 SE158264.136 LB112414 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 1048 0.2-0.3 SE158264.138 LB112414 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 1049 0.0-1 SE158264.139 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 1049 0.0-1 SE158264.139 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 105 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 105 Apr 2017 28 Oct 2016 105 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 105 Apr 2017 28 O		· · · · · · · · · · · · · · · · · · ·							
D148 0-0.1 SE158264.136 LB112414 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2010 D148 0.2-0.3 SE158264.137 LB112414 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2010 D149 0.0-1 SE158264.138 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2010 D149 0.2-0.3 SE158264.139 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2010 D150 0.0-1 SE158264.140 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2010 D150 0.2-0.3 SE158264.141 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2010 D150 0.2-0.3 SE158264.142 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2010 D151 0.0-1 SE158264.142 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2010 D151 0.2-0.3 SE158264.143 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2010 D152 0.2-0.3 SE158264.144 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2010 D152 0.2-0.3 SE158264.144 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2010 D152 0.2-0.3 SE158264.144 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2010 D152 0.2-0.3 SE158264.145 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2010 D152 1.0-1.1 SE158264.146 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2010 D152 1.0-1.1 SE158264.146 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2010 D153 0.2-0.3 SE158264.149 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2010 D153 0.2-0.3 SE158264.149 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2010 D154 0.2-0.3 SE158264.150 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2010 D154 0.2-0.3 SE158264.151 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2010 D155 0.2-0.3 SE158264									
D148 0.2-0.3 SE158264.137 LB112414 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D149 0.0.1 SE158264.138 LB112414 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D149 0.2-0.3 SE158264.139 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D150 0.0.1 SE158264.140 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D150 0.0.1 SE158264.141 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D151 0.0.1 SE158264.142 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D151 0.2-0.3 SE158264.143 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D151 0.2-0.3 SE158264.143 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D152 0.2-0.3 SE158264.144 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D152 0.2-0.3 SE158264.145 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D152 0.2-0.3 SE158264.146 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D152 0.2-0.3 SE158264.146 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D152 0.0-1 SE158264.148 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D153 0.0-1 SE158264.148 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D153 0.0-1 SE158264.149 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D153 0.0-1 SE158264.150 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D154 0.0-1 SE158264.150 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D154 0.0-1 SE158264.150 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D154 0.0-1 SE158264.150 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D155 0.0-1 SE158264.150 LB112415 17									
D149 0-0.1 SE158264.138 LB112414 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D149 0.2-0.3 SE158264.139 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D150 0-0.1 SE158264.140 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D150 0.2-0.3 SE158264.141 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D151 0.0-1 SE158264.142 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D151 0.0-1 SE158264.142 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D152 0.0-1 SE158264.144 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D152 0.0-1 SE158264.144 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D152 0.2-0.3 SE158264.145 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D152 0.2-0.3 SE158264.146 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D152 1.0-1.1 SE158264.147 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D152 1.9-2.0 SE158264.148 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D153 0.0-1 SE158264.149 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D153 0.0-1 SE158264.149 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D154 0.0-1 SE158264.150 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D154 0.0-1 SE158264.150 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D154 0.0-0.1 SE158264.150 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D155 0.0-0.1 SE158264.151 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D155 0.0-0.1 SE158264.152 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D156 0.0-0.1 SE158264.155 LB11241		· · · · · · · · · · · · · · · · · · ·							
D149 0.2-0.3 SE158264.139 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D150 0-0.1 SE158264.140 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D150 0.2-0.3 SE158264.141 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D151 0-0.1 SE158264.142 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D151 0-0.1 SE158264.143 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D151 0-0.1 SE158264.144 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D152 0-0.1 SE158264.144 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D152 0.2-0.3 SE158264.145 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D152 1.0-1.1 SE158264.146 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D152 1.0-1.1 SE158264.146 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D152 0.0-1 SE158264.148 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D153 0-0.1 SE158264.149 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D153 0-0.1 SE158264.149 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D153 0-0.1 SE158264.150 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D154 0-0.1 SE158264.150 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D155 0-0.1 SE158264.151 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D155 0-0.1 SE158264.153 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D155 0-0.1 SE158264.153 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D156 0-0.1 SE158264.155 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D156 0-0.0 SE158264.155 LB112415 17 Oct 2									
D150 0-0.1 SE158264.140 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D150 0.2-0.3 SE158264.141 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D151 0.2-0.3 SE158264.142 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D151 0.2-0.3 SE158264.143 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D152 0-0.1 SE158264.144 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D152 0.2-0.3 SE158264.144 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D152 0.2-0.3 SE158264.145 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D152 1.0-1.1 SE158264.146 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D152 1.9-2.0 SE158264.147 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D153 0-0.1 SE158264.148 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D153 0-0.1 SE158264.149 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D154 0-0.1 SE158264.150 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D154 0-0.1 SE158264.151 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D154 0-0.1 SE158264.151 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D154 0-0.1 SE158264.151 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D155 0-0.1 SE158264.153 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D156 0-0.1 SE158264.153 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D156 0-0.1 SE158264.154 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D156 0-0.1 SE158264.155 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D156 0-0.1 SE158264.155 LB112415 17 O									
D150 0.2-0.3 SE158264.141 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D151 0-0.1 SE158264.142 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D151 0.2-0.3 SE158264.143 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D152 0-0.1 SE158264.144 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D152 0.2-0.3 SE158264.145 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D152 0.2-0.3 SE158264.146 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D152 1.9-2.0 SE158264.147 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D152 1.9-2.0 SE158264.148 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D153 0-0.1 SE158264.148 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D153 0.2-0.3 SE158264.149 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D154 0-0.1 SE158264.150 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D154 0-0.1 SE158264.151 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D155 0-0.1 SE158264.151 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D155 0-0.1 SE158264.153 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D155 0-0.1 SE158264.153 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D156 0-0.1 SE158264.153 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D156 0-0.1 SE158264.153 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D156 0-0.1 SE158264.155 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D156 0-0.1 SE158264.155 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D156 0-0.1 SE158264.155 LB112415 17 O									
D151 0-0.1 SE158264.142 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D151 0.2-0.3 SE158264.143 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D152 0-0.1 SE158264.144 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D152 0.2-0.3 SE158264.145 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D152 1.0-1.1 SE158264.146 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D152 1.9-2.0 SE158264.147 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D153 0-0.1 SE158264.148 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D153 0-0.1 SE158264.149 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D153 0.2-0.3 SE158264.149 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D154 0-0.1 SE158264.150 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D154 0-0.1 SE158264.151 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D156 0-0.1 SE158264.152 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D156 0-0.1 SE158264.153 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D156 0-0.1 SE158264.153 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D156 0-0.1 SE158264.153 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D156 0-0.1 SE158264.154 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D156 0-0.1 SE158264.155 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D156 0-0.1 SE158264.155 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D156 0-0.1 SE158264.155 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D156 0-0.1 SE158264.155 LB112415 17 Oct 2									
D151 0.2-0.3 SE158264.143 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D152 0-0.1 SE158264.144 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D152 0.2-0.3 SE158264.145 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D152 1.0-1.1 SE158264.146 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D152 1.9-2.0 SE158264.147 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 201 D153 0-0.1 SE158264.148 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 201 D153 0-0.1 SE158264.149 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 201 D154 0-0.1 SE158264.150 LB112415									
D152 0-0.1 SE158264.144 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D152 0.2-0.3 SE158264.145 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D152 1.0-1.1 SE158264.146 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D152 1.9-2.0 SE158264.147 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D153 0-0.1 SE158264.148 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D153 0.2-0.3 SE158264.149 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D154 0-0.1 SE158264.150 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D154 0.2-0.3 SE158264.151 LB112415									
D152 0.2-0.3 SE158264.145 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D152 1.0-1.1 SE158264.146 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D152 1.9-2.0 SE158264.147 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D153 0-0.1 SE158264.148 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D153 0.2-0.3 SE158264.149 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D154 0-0.1 SE158264.150 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D154 0.2-0.3 SE158264.151 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D155 0-0.1 SE158264.152 LB112415									
D152 1.0-1.1 SE158264.146 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D152 1.9-2.0 SE158264.147 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D153 0-0.1 SE158264.148 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D153 0.2-0.3 SE158264.149 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D154 0-0.1 SE158264.150 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D154 0.2-0.3 SE158264.151 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D155 0-0.1 SE158264.152 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D155 0.2-0.3 SE158264.153 LB112415									
D152 1.9-2.0 SE158264.147 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D153 0-0.1 SE158264.148 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D153 0.2-0.3 SE158264.149 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D154 0-0.1 SE158264.150 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D154 0.2-0.3 SE158264.151 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D155 0-0.1 SE158264.152 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D155 0.2-0.3 SE158264.153 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D156 0-0.1 SE158264.154 LB112415									
D153 0-0.1 SE158264.148 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D153 0.2-0.3 SE158264.149 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D154 0-0.1 SE158264.150 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D154 0.2-0.3 SE158264.151 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D155 0-0.1 SE158264.152 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D155 0.2-0.3 SE158264.153 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D156 0-0.1 SE158264.154 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D156 0-0.1 SE158264.155 LB112415									
D153 0.2-0.3 SE158264.149 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D154 0-0.1 SE158264.150 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D154 0.2-0.3 SE158264.151 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D155 0-0.1 SE158264.152 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D155 0.2-0.3 SE158264.153 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D156 0-0.1 SE158264.154 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D156 0-2-0.3 SE158264.155 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D156 0-2-0.3 SE158264.155 LB112415									
D154 0-0.1 SE158264.150 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D154 0.2-0.3 SE158264.151 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2010 D155 0-0.1 SE158264.152 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2010 D155 0.2-0.3 SE158264.153 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2010 D156 0-0.1 SE158264.154 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2010 D156 0.2-0.3 SE158264.155 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2010 D157 0-0.1 SE158264.156 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016			·						
D154 0.2-0.3 SE158264.151 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D155 0-0.1 SE158264.152 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D155 0.2-0.3 SE158264.153 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D156 0-0.1 SE158264.154 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D156 0.2-0.3 SE158264.155 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D157 0-0.1 SE158264.156 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016									
D155 0-0.1 SE158264.152 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D155 0.2-0.3 SE158264.153 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D156 0-0.1 SE158264.154 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 201 D156 0.2-0.3 SE158264.155 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D157 0-0.1 SE158264.156 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016									
D155 0.2-0.3 SE158264.153 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D156 0-0.1 SE158264.154 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D156 0.2-0.3 SE158264.155 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D157 0-0.1 SE158264.156 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016									
D156 0-0.1 SE158264.154 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D156 0.2-0.3 SE158264.155 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D157 0-0.1 SE158264.156 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016									28 Oct 2016
D156 0.2-0.3 SE158264.155 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016 D157 0-0.1 SE158264.156 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016									
D157 0-0.1 SE158264.156 LB112415 17 Oct 2016 19 Oct 2016 15 Apr 2017 25 Oct 2016 15 Apr 2017 28 Oct 2016									
									28 Oct 2016
									28 Oct 2016
									28 Oct 2016
									28 Oct 2016
									28 Oct 2016
									28 Oct 2016
						· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	28 Oct 2016
									28 Oct 2016
									28 Oct 2016
	· ·					· · · · · · · · · · · · · · · · · · ·			28 Oct 2016
	· ·								28 Oct 2016
Duplicate D7 SE158264.192 LB112416 18 Oct 2016 19 Oct 2016 16 Apr 2017 25 Oct 2016 16 Apr 2017 28 Oct 2016	Duplicate D7	SE158264.192	LB112416	18 Oct 2016	19 Oct 2016	16 Apr 2017	25 Oct 2016	16 Apr 2017	28 Oct 2016

19/1/2017 Page 11 of 26

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Trace Metals (Dissolved) in Water by ICPMS

Method: ME-(AU)-[ENV]AN318

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
Dam Water W1	SE158264.198	LB112231	18 Oct 2016	19 Oct 2016	16 Apr 2017	24 Oct 2016	16 Apr 2017	24 Oct 2016

Trace Metals (Total) in Water by ICPMS

Method: ME-(AU)-[ENV]AN022/AN318

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
Dam Water W1	SE158264.198	LB112227	18 Oct 2016	19 Oct 2016	16 Apr 2017	24 Oct 2016	16 Apr 2017	24 Oct 2016

TRH Silica Gel (Total Recoverable Hydrocarbons - Silica Gel) in Soil

Method: ME-(AU)-[ENV]AN403

Tra r Olliou Cor (Total rtoc	oronable rijarocarbene G							are (10) fertable
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
DS11 0-0.1	SE158264.160	LB112192	18 Oct 2016	19 Oct 2016	01 Nov 2016	21 Oct 2016	30 Nov 2016	27 Oct 2016
DS16 0-0.1	SE158264.161	LB112192	18 Oct 2016	19 Oct 2016	01 Nov 2016	21 Oct 2016	30 Nov 2016	27 Oct 2016
DS18 0-0.1	SE158264.162	LB112192	18 Oct 2016	19 Oct 2016	01 Nov 2016	21 Oct 2016	30 Nov 2016	27 Oct 2016
DS18 0.5-0.6	SE158264.163	LB112192	18 Oct 2016	19 Oct 2016	01 Nov 2016	21 Oct 2016	30 Nov 2016	27 Oct 2016
DS19 0-0.1	SE158264.164	LB112192	18 Oct 2016	19 Oct 2016	01 Nov 2016	21 Oct 2016	30 Nov 2016	27 Oct 2016
DS19 0.5-0.6	SE158264.165	LB112192	18 Oct 2016	19 Oct 2016	01 Nov 2016	21 Oct 2016	30 Nov 2016	27 Oct 2016
DS22 0-0.1	SE158264.166	LB112192	18 Oct 2016	19 Oct 2016	01 Nov 2016	21 Oct 2016	30 Nov 2016	27 Oct 2016
DS22 0.5-0.6	SE158264.167	LB112192	18 Oct 2016	19 Oct 2016	01 Nov 2016	21 Oct 2016	30 Nov 2016	27 Oct 2016
CS12-1 0-0.1	SE158264.168	LB112192	18 Oct 2016	19 Oct 2016	01 Nov 2016	21 Oct 2016	30 Nov 2016	27 Oct 2016
CS12-2 0-0.1	SE158264.169	LB112192	18 Oct 2016	19 Oct 2016	01 Nov 2016	21 Oct 2016	30 Nov 2016	27 Oct 2016
CS12-2 0.5-0.6	SE158264.170	LB112192	18 Oct 2016	19 Oct 2016	01 Nov 2016	21 Oct 2016	30 Nov 2016	27 Oct 2016
CS12-3 0-0.1	SE158264.171	LB112192	18 Oct 2016	19 Oct 2016	01 Nov 2016	21 Oct 2016	30 Nov 2016	27 Oct 2016
CS14-1 0-0.1	SE158264.172	LB112192	18 Oct 2016	19 Oct 2016	01 Nov 2016	21 Oct 2016	30 Nov 2016	27 Oct 2016
CS14-2 0-0.1	SE158264.173	LB112192	18 Oct 2016	19 Oct 2016	01 Nov 2016	21 Oct 2016	30 Nov 2016	27 Oct 2016
CS14-3 0-0.1	SE158264.174	LB112192	18 Oct 2016	19 Oct 2016	01 Nov 2016	21 Oct 2016	30 Nov 2016	27 Oct 2016
CS15-1 0-0.1	SE158264.175	LB112192	18 Oct 2016	19 Oct 2016	01 Nov 2016	21 Oct 2016	30 Nov 2016	27 Oct 2016
CS15-2 0-0.1	SE158264.176	LB112192	18 Oct 2016	19 Oct 2016	01 Nov 2016	21 Oct 2016	30 Nov 2016	27 Oct 2016
CS15-2 0.5-0.6	SE158264.177	LB112192	18 Oct 2016	19 Oct 2016	01 Nov 2016	21 Oct 2016	30 Nov 2016	27 Oct 2016
CS15-3 0-0.1	SE158264.178	LB112192	18 Oct 2016	19 Oct 2016	01 Nov 2016	21 Oct 2016	30 Nov 2016	27 Oct 2016
CS18-1 0-0.1	SE158264.179	LB112192	18 Oct 2016	19 Oct 2016	01 Nov 2016	21 Oct 2016	30 Nov 2016	27 Oct 2016
CS18-2 0-0.1	SE158264.180	LB112193	18 Oct 2016	19 Oct 2016	01 Nov 2016	21 Oct 2016	30 Nov 2016	27 Oct 2016
CS18-2 0.5-0.6	SE158264.181	LB112193	18 Oct 2016	19 Oct 2016	01 Nov 2016	21 Oct 2016	30 Nov 2016	27 Oct 2016
CS18-3 0-0.1	SE158264.182	LB112193	18 Oct 2016	19 Oct 2016	01 Nov 2016	21 Oct 2016	30 Nov 2016	27 Oct 2016
CS22-1 0-0.1	SE158264.183	LB112193	18 Oct 2016	19 Oct 2016	01 Nov 2016	21 Oct 2016	30 Nov 2016	27 Oct 2016
CS22-2 0-0.1	SE158264.184	LB112193	18 Oct 2016	19 Oct 2016	01 Nov 2016	21 Oct 2016	30 Nov 2016	27 Oct 2016
CS22-3 0-0.1	SE158264.185	LB112193	18 Oct 2016	19 Oct 2016	01 Nov 2016	21 Oct 2016	30 Nov 2016	27 Oct 2016
Duplicate D8	SE158264.193	LB112193	18 Oct 2016	19 Oct 2016	01 Nov 2016	21 Oct 2016	30 Nov 2016	27 Oct 2016
Duplicate D9	SE158264.194	LB112193	18 Oct 2016	19 Oct 2016	01 Nov 2016	21 Oct 2016	30 Nov 2016	27 Oct 2016
Duplicate D10	SE158264.195	LB112193	18 Oct 2016	19 Oct 2016	01 Nov 2016	21 Oct 2016	30 Nov 2016	27 Oct 2016

TRH Silica Gel (Total Recoverable Hydrocarbons - Silica Gel) in Water

Method: ME-(AU)-[ENV]AN403

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
Rinsate R2	SE158264.197	LB112212	18 Oct 2016	19 Oct 2016	25 Oct 2016	21 Oct 2016	30 Nov 2016	27 Oct 2016

19/1/2017 Page 12 of 26

SURROGATES

SE158264 R1

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No surrogates were required for this job.

19/1/2017 Page 13 of 26

METHOD BLANKS

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Exchangeable Cations and Cation Exchange Capacity (CEC/ESP/SAR)

Method: ME-(AU)-[ENV]AN122

Sample Number	Parameter	Units	LOR

Mercury (dissolved) in Water

Method: ME-(AU)-[ENV]AN311(Perth)/AN312

Sample Number	Parameter	Units	LOR	Result
LB112441.001	Mercury	mg/L	0.0001	<0.0001

Mercury in Soil

Method: ME-(AU)-[ENV]AN312

Sample Number	Parameter	Units	LOR	Result
LB112298.001	Mercury	mg/kg	0.05	<0.05
LB112299.001	Mercury	mg/kg	0.05	<0.05
LB112300.001	Mercury	mg/kg	0.05	<0.05
LB112301.001	Mercury	mg/kg	0.05	<0.05
LB112302.001	Mercury	mg/kg	0.05	<0.05
LB112303.001	Mercury	mg/kg	0.05	<0.05
LB112304.001	Mercury	mg/kg	0.05	<0.05
LB112305.001	Mercury	mg/kg	0.05	<0.05
LB112306.001	Mercury	mg/kg	0.05	<0.05

Metals in Water (Dissolved) by ICPOES

Method: ME-(AU)-[ENV]AN320/AN321

Sample Number	Parameter	Units	LOR	Result
LB112223.001	Arsenic, As	mg/L	0.02	<0.02
	Cadmium, Cd	mg/L	0.001	<0.001
	Copper, Cu	mg/L	0.005	<0.005
	Lead, Pb	mg/L	0.02	<0.02
	Manganese, Mn	mg/L	0.005	<0.005
	Nickel, Ni	mg/L	0.005	<0.005
	Zinc, Zn	mg/L	0.01	<0.01

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES

Method: ME-(AU)-[ENV]AN040/AN320

Sample Number	Parameter	Units	LOR	Result	
LB112405.001	Arsenic, As	mg/kg	3	<3	
	Cadmium, Cd	mg/kg	0.3	<0.3	
	Copper, Cu	mg/kg	0.5	<0.5	
	Lead, Pb	mg/kg	1	<1	
	Manganese, Mn	mg/kg	1	<1	
	Nickel, Ni	mg/kg	0.5	<0.5	
	Zinc, Zn	mg/kg	0.5	<0.5	
LB112407.001	Arsenic, As	mg/kg	3	<3	
	Cadmium, Cd	mg/kg	0.3	<0.3	
	Copper, Cu	mg/kg	0.5	<0.5	
	Lead, Pb	mg/kg	1	<1	
	Manganese, Mn	mg/kg	1	<1	
	Nickel, Ni	mg/kg	0.5	<0.5	
	Zinc, Zn	mg/kg	0.5	<0.5	
LB112409.001	Arsenic, As	mg/kg	3	<3	
	Cadmium, Cd	mg/kg	0.3	<0.3	
	Copper, Cu	mg/kg	0.5	<0.5	
	Lead, Pb	mg/kg	1	<1	
	Manganese, Mn	mg/kg	1	<1	
	Nickel, Ni	mg/kg	0.5	<0.5	
	Zinc, Zn	mg/kg	0.5	<0.5	
LB112410.001	Arsenic, As	mg/kg	3	<3	
	Cadmium, Cd	mg/kg	0.3	<0.3	
	Copper, Cu	mg/kg	0.5	<0.5	
	Lead, Pb	mg/kg	1	<1	
	Manganese, Mn	mg/kg	1	<1	
	Nickel, Ni	mg/kg	0.5	<0.5	
	Zinc, Zn	mg/kg	0.5	<0.5	
LB112411.001	Arsenic, As	mg/kg	3	<3	

19/1/2017 Page 14 of 26

METHOD BLANKS

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES (continued) Method: ME-(AU)-[ENV]AN040/AN320 Sample Number Parameter Units LOR Result LB112411.001 Cadmium, Cd mg/kg 0.3 <0.3</td>

Cample Humber	i didilictei	Office	LOIL	Result
LB112411.001	Cadmium, Cd	mg/kg	0.3	<0.3
	Copper, Cu	mg/kg	0.5	<0.5
	Lead, Pb	mg/kg	1	<1
	Manganese, Mn	mg/kg	1	<1
	Nickel, Ni	mg/kg	0.5	<0.5
	Zinc, Zn	mg/kg	0.5	<0.5
LB112412.001	Arsenic, As	mg/kg	3	<3
	Cadmium, Cd	mg/kg	0.3	<0.3
	Copper, Cu	mg/kg	0.5	<0.5
	Lead, Pb	mg/kg	1	<1
	Manganese, Mn	mg/kg	1	<1
	Nickel, Ni	mg/kg	0.5	<0.5
	Zinc, Zn	mg/kg	0.5	<0.5
LB112413.001	Arsenic, As	mg/kg	3	<3
	Cadmium, Cd	mg/kg	0.3	<0.3
	Copper, Cu	mg/kg	0.5	<0.5
	Lead, Pb	mg/kg	1	<1
	Manganese, Mn	mg/kg	1	<1
	Nickel, Ni	mg/kg	0.5	<0.5
	Zinc, Zn	mg/kg	0.5	<0.5
LB112414.001	Arsenic, As	mg/kg	3	<3
	Cadmium, Cd	mg/kg	0.3	<0.3
	Copper, Cu	mg/kg	0.5	<0.5
	Lead, Pb	mg/kg	1	<1
	Manganese, Mn	mg/kg	1	<1
	Nickel, Ni	mg/kg	0.5	<0.5
	Zinc, Zn	mg/kg	0.5	<0.5
LB112415.001	Arsenic, As	mg/kg	3	<3
	Cadmium, Cd	mg/kg	0.3	<0.3
	Copper, Cu	mg/kg	0.5	<0.5
	Lead, Pb	mg/kg	1	<1
	Manganese, Mn	mg/kg	1	<1
	Nickel, Ni	mg/kg	0.5	<0.5
	Zinc, Zn	mg/kg	0.5	<0.5
LB112416.001	Arsenic, As	mg/kg	3	<3
	Cadmium, Cd	mg/kg	0.3	<0.3
	Copper, Cu	mg/kg	0.5	<0.5
	Lead, Pb	mg/kg	1	<1
	Manganese, Mn	mg/kg	1	<1
	Nickel, Ni	mg/kg	0.5	<0.5
	Zinc, Zn	mg/kg	0.5	<0.5

Trace Metals (Dissolved) in Water by ICPMS

Method: ME-(AU)-[ENV]AN318

Sample Number	Parameter	Units	LOR	Result
LB112231.001	Arsenic, As	μg/L	1	<1
	Cadmium, Cd	μg/L	0.1	<0.1
	Copper, Cu	μg/L	1	<1
	Lead, Pb	μg/L	1	<1
	Manganese, Mn	μg/L	1	<1
	Nickel, Ni	μg/L	1	<1
	Zinc, Zn	μg/L	5	<5

Trace Metals (Total) in Water by ICPMS

Method: ME-(AU)-[ENV]AN022/AN318

Sample Number	Parameter	Units	LOR	Result
LB112227.001	Total Arsenic	μg/L	1	<1
	Total Cadmium	μg/L	0.1	<0.1
	Total Copper	μg/L	1	<1
	Total Lead	μg/L	1	<1
	Total Manganese	μg/L	1	<1
	Total Nickel	μg/L	1	<1
	Total Zinc	μg/L	5	<5

19/1/2017 Page 15 of 26

METHOD BLANKS

SE158264 R1

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

TRH Silica Gel (Total Recoverable Hydrocarbons - Silica Gel) in Soil

Method: ME-(AU)-[ENV]AN403

The contract of the contract o				sarinia (vio) [arropatrio
Sample Number	Parameter	Units	LOR	Result
LB112192.001	TRH C10-C14-Silica	mg/kg	20	<20
	TRH C15-C28-Silica	mg/kg	45	<45
	TRH C29-C36-Silica	mg/kg	45	<45
	TRH C37-C40-Silica	mg/kg	100	<100
	TRH >C10-C16-Silica (F2)	mg/kg	25	<25
	TRH >C16-C34-Silica (F3)	mg/kg	90	<90
	TRH >C34-C40-Silica (F4)	mg/kg	120	<120
LB112193.001	TRH C10-C14-Silica	mg/kg	20	<20
	TRH C15-C28-Silica	mg/kg	45	<45
	TRH C29-C36-Silica	mg/kg	45	<45
	TRH C37-C40-Silica	mg/kg	100	<100
	TRH >C10-C16-Silica (F2)	mg/kg	25	<25
	TRH >C16-C34-Silica (F3)	mg/kg	90	<90
	TRH >C34-C40-Silica (F4)	mg/kg	120	<120

TRH Silica Gel (Total Recoverable Hydrocarbons - Silica Gel) in Water

Method: ME-(AU)-[ENV]AN403

Sample Number	Parameter	Units	LOR	Result
LB112212.001	TRH C10-C14-Silica	μg/L	50	<50
	TRH C15-C28-Silica	μg/L	200	<200
	TRH C29-C36-Silica	μg/L	200	<200
	TRH C37-C40-Silica	μg/L	200	<200

19/1/2017 Page 16 of 26

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury (dissolved) in Water

Method: ME-(AU)-[ENV]AN311(Perth)/AN312

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE158259.007	LB112441.014	Mercury	μg/L	0.0001	<0.0001	<0.0001	200	0

Mercury (total) in Water

Method: ME-(AU)-[ENV]AN311(Perth) /AN312

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE158264.198	LB112445.004	Total Mercury	μg/L	0.0001	< 0.0001	0.0000	200	13

Mercury in Soil

Method: ME-(AU)-[ENV]AN312

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE158264.010	LB112298.014	Mercury	mg/kg	0.05	0.11	0.10	78	13
SE158264.019	LB112298.024	Mercury	mg/kg	0.05	<0.05	<0.05	200	0
SE158264.029	LB112299.014	Mercury	mg/kg	0.05	<0.05	<0.05	200	0
SE158264.038	LB112299.024	Mercury	mg/kg	0.05	<0.05	<0.05	157	0
SE158264.048	LB112300.014	Mercury	mg/kg	0.05	<0.05	<0.05	200	0
SE158264.057	LB112300.024	Mercury	mg/kg	0.05	<0.05	<0.05	148	0
SE158264.067	LB112301.014	Mercury	mg/kg	0.05	<0.05	<0.05	183	0
SE158264.076	LB112301.024	Mercury	mg/kg	0.05	<0.05	<0.05	200	0
SE158264.086	LB112302.014	Mercury	mg/kg	0.05	<0.05	<0.05	200	0
SE158264.095	LB112302.024	Mercury	mg/kg	0.05	<0.05	<0.05	200	0
SE158264.105	LB112303.014	Mercury	mg/kg	0.05	<0.05	<0.05	200	0
SE158264.114	LB112303.024	Mercury	mg/kg	0.05	<0.05	<0.05	159	0
SE158264.124	LB112304.014	Mercury	mg/kg	0.05	<0.05	<0.05	147	0
SE158264.133	LB112304.024	Mercury	mg/kg	0.05	<0.05	<0.05	200	0
SE158264.143	LB112305.014	Mercury	mg/kg	0.05	0.08	0.08	93	9
SE158264.152	LB112305.024	Mercury	mg/kg	0.05	0.05	<0.05	131	0
SE158264.188	LB112306.014	Mercury	mg/kg	0.05	<0.05	<0.05	145	0
SE158264.192	LB112306.019	Mercury	mg/kg	0.05	0.08	0.09	88	4

Moisture Content

Method: ME-(AU)-[ENV]AN002

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE158264.010	LB112237.011	% Moisture	%w/w	0.5	22	20	35	7
SE158264.020	LB112237.022	% Moisture	%w/w	0.5	17	17	36	3
SE158264.030	LB112237.033	% Moisture	%w/w	0.5	16	15	36	3
SE158264.040	LB112237.044	% Moisture	%w/w	0.5	17	15	36	12
SE158264.050	LB112237.055	% Moisture	%w/w	0.5	14	15	37	4
SE158264.060	LB112237.066	% Moisture	%w/w	0.5	13	14	37	7
SE158264.070	LB112237.077	% Moisture	%w/w	0.5	19	18	35	2
SE158264.080	LB112237.088	% Moisture	%w/w	0.5	24	25	34	5
SE158264.090	LB112237.099	% Moisture	%w/w	0.5	17	16	36	5
SE158264.100	LB112237.110	% Moisture	%w/w	0.5	28	28	34	0
SE158264.110	LB112237.121	% Moisture	%w/w	0.5	17	16	36	3
SE158264.120	LB112237.132	% Moisture	%w/w	0.5	18	18	36	0
SE158264.130	LB112237.143	% Moisture	%w/w	0.5	16	16	36	0
SE158264.140	LB112237.154	% Moisture	%w/w	0.5	12	15	38	19
SE158264.150	LB112237.165	% Moisture	%w/w	0.5	16	16	36	1
SE158264.160	LB112237.176	% Moisture	%w/w	0.5	26	27	34	4
SE158264.170	LB112237.187	% Moisture	%w/w	0.5	15	20	36	25
SE158264.180	LB112237.198	% Moisture	%w/w	0.5	18	19	35	7
SE158264.190	LB112237.209	% Moisture	%w/w	0.5	15	16	36	6
SE158264.195	LB112237.215	% Moisture	%w/w	0.5	19	18	35	4

pH in soil (1:5)

Method: ME-(AU)-[ENV]AN101

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE158264.122	LB112210.014	рН	pH Units	-	6.9	7.0	31	1
SE158273.003	LB112210.025	рН	pH Units	-	8.9	8.8	31	1
SE158285.082	LB112209.014	pH	pH Units	-	6.1	6.4	32	4
SE158285.092	LB112209.025	pH	pH Units	-	6.0	5.9	32	0

19/1/2017 Page 17 of 26

DUPLICATES

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES

Method: ME-(AU)-[ENV]AN040/AN320

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE158246.011	LB112405.014	Arsenic, As	mg/kg	3	<3	<3	200	0
		Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	200	0
		Copper, Cu	mg/kg	0.5	4.9	8.2	38	49 ②
		Lead, Pb						
			mg/kg	1	19	25	34	26
		Nickel, Ni	mg/kg	0.5	<0.5	0.8	108	48
		Zinc, Zn	mg/kg	0.5	54	74	33	31
SE158264.015	LB112407.014	Arsenic, As	mg/kg	3	200	190	31	1
		Cadmium, Cd	mg/kg	0.3	2.7	2.6	41	2
		Copper, Cu	mg/kg	0.5	160	200	30	23
		Lead, Pb	mg/kg	1	290	280	30	3
		Manganese, Mn	mg/kg	1	3200	2800	30	11
		Nickel, Ni	mg/kg	0.5	15	15	33	1
		Zinc, Zn	mg/kg	0.5	810	830	30	3
SE158264.043	LB112409.024	Arsenic, As	mg/kg	3	72	71	31	1
		Cadmium, Cd	mg/kg	0.3	0.5	0.5	90	4
		Copper, Cu	mg/kg	0.5	57	56	31	1
		Lead, Pb	mg/kg	1	110	110	31	4
		Manganese, Mn	mg/kg	1	270	340	30	25
					20	19	33	5
		Nickel, Ni	mg/kg	0.5				
		Zinc, Zn	mg/kg	0.5	150	140	31	8
SE158264.053	LB112410.014	Arsenic, As	mg/kg	3	87	90	31	3
		Cadmium, Cd	mg/kg	0.3	0.9	0.9	63	2
		Copper, Cu	mg/kg	0.5	41	41	31	2
		Lead, Pb	mg/kg	1	310	330	30	5
		Manganese, Mn	mg/kg	1	3100	3100	30	3
		Nickel, Ni	mg/kg	0.5	9.5	9.4	35	1
		Zinc, Zn	mg/kg	0.5	280	300	31	7
SE158264.062	LB112410.024	Arsenic, As	mg/kg	3	88	80	31	10
		Cadmium, Cd	mg/kg	0.3	1.6	1.9	47	16
		Copper, Cu	mg/kg	0.5	43	47	31	9
		Lead, Pb	mg/kg	1	320	410	30	23
		Manganese, Mn	mg/kg	1	2400	5500	30	77 ②
		Nickel, Ni	mg/kg	0.5	12	12	34	1
		Zinc, Zn	mg/kg	0.5	550	630	30	13
25450264.072	L D440444 044						40	8
SE158264.072	LB112411.014	Arsenic, As	mg/kg	3	10	11		
		Cadmium, Cd	mg/kg	0.3	0.3	0.4	115	8
		Copper, Cu	mg/kg	0.5	18	20	33	10
		Lead, Pb	mg/kg	1	40	78	32	64 ②
		Manganese, Mn	mg/kg	1	450	530	30	16
		Nickel, Ni	mg/kg	0.5	21	18	33	15
		Zinc, Zn	mg/kg	0.5	65	67	33	2
SE158264.081	LB112411.024	Arsenic, As	mg/kg	3	59	62	32	6
		Cadmium, Cd	mg/kg	0.3	0.8	0.8	68	4
		Copper, Cu	mg/kg	0.5	30	32	32	8
		Lead, Pb	mg/kg	1	300	350	30	14
		Manganese, Mn	mg/kg	1	2300	2400	30	4
		Nickel, Ni	mg/kg	0.5	8.5	9.0	36	6
		Zinc, Zn	mg/kg	0.5	380	350	31	8
E158264.091	LB112412.014	Arsenic, As	mg/kg	3	7	7	44	3
SE 136204.091	LB112412.014	Cadmium, Cd						0
			mg/kg	0.3	<0.3	<0.3	152	
		Copper, Cu	mg/kg	0.5	9.6	11	35	16
		Lead, Pb	mg/kg	1	31	47	33	39 ②
		Manganese, Mn	mg/kg	1	150	170	31	10
		Nickel, Ni	mg/kg	0.5	12	13	34	11
		Zinc, Zn	mg/kg	0.5	56	66	33	17
E158264.100	LB112412.024	Arsenic, As	mg/kg	3	940	840	30	11
		Cadmium, Cd	mg/kg	0.3	1.2	1.2	55	7
		Copper, Cu	mg/kg	0.5	99	85	31	16
				1	79	78	31	1
		Lead, Pb Manganese, Mn	mg/kg mg/kg	_	79 2300	78 2200	31 30	1

19/1/2017 Page 18 of 26

DUPLICATES

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES (continued)

Method: ME-(AU)-[ENV]AN040/AN320

SE158284.100	14 19 16 9 14 10 7 12 20 21
Cadmium, Cd	16 9 14 10 7 12 20 21
Copper, Cu	9 14 10 7 12 20 21
Lead, Pb	14 10 7 12 20 21 17
Manganese, Mn	10 7 12 20 21 17
Nickel, Ni	7 12 20 21 17
Zinc, Zn	12 20 21 17
SE158264.119	20 21 17
Cadmium, Cd	21 17
Capper, Cu	17
Lead, Pb	
Manganese, Mn	
Nickel, Ni	22
Zinc, Zn	23
SE158264.129	7
Cadmium, Cd	19
Copper, Cu	10
Lead, Pb mg/kg 1 75 74 31 Manganese, Mn mg/kg 1 80 76 31 Nickel, Ni mg/kg 0.5 15 15 33 Zinc, Zn mg/kg 0.5 200 200 31 SE158264.138 LB112414.024 Arsenic, As mg/kg 3 190 180 31 Cadmium, Cd mg/kg 0.3 1.5 1.4 51 Copper, Cu mg/kg 0.5 42 41 31 Lead, Pb mg/kg 1 310 330 30 Manganese, Mn mg/kg 1 4200 4500 30 Mickel, Ni mg/kg 0.5 20 21 32 Zinc, Zn mg/kg 0.5 520 490 30 SE158264.148 LB112415.014 Arsenic, As mg/kg 3 140 150 31 Cadmium, Cd mg/kg 0.5 61	2
Manganese, Mn mg/kg 1 80 76 31 Nickel, Ni mg/kg 0.5 15 15 33 Zinc, Zn mg/kg 0.5 200 200 31 SE158264.138 LB112414.024 Arsenic, As mg/kg 3 190 180 31 Cadmium, Cd mg/kg 0.3 1.5 1.4 51 Copper, Cu mg/kg 0.5 42 41 31 Lead, Pb mg/kg 1 310 330 30 Manganese, Mn mg/kg 1 310 330 30 Manganese, Mn mg/kg 1 4200 4500 30 Nickel, Ni mg/kg 0.5 20 21 32 Zinc, Zn mg/kg 0.5 520 490 30 SE158264.148 LB112415.014 Arsenic, As mg/kg 3 140 150 31 Cadmium, Cd mg/kg 0.5 61 <td>1</td>	1
Nickel, Ni mg/kg 0.5 15 15 33 Zinc, Zn mg/kg 0.5 200 200 31 SE158264.138 LB112414.024 Arsenic, As mg/kg 3 190 180 31 Cadmium, Cd mg/kg 0.3 1.5 1.4 51 Copper, Cu mg/kg 0.5 42 41 31 Lead, Pb mg/kg 1 310 330 30 Manganese, Mn mg/kg 1 4200 4500 30 Mickel, Ni mg/kg 0.5 20 21 32 Zinc, Zn mg/kg 0.5 520 490 33 SE158264.148 LB112415.014 Arsenic, As mg/kg 3 140 150 31 Cadmium, Cd mg/kg 0.3 1.5 1.4 51 Cadmium, Cd mg/kg 0.5 61 55 31 Lead, Pb mg/kg 0.5 61 55 31 Lead, Pb mg/kg 0.5 61 55 31 Lead, Pb mg/kg 1 460 440 30 Copper, Cu mg/kg 0.5 61 55 31 Lead, Pb mg/kg 1 460 440 30 Copper, Cu mg/kg 1 460 440 30	2
Zinc, Zn	5
SE158264.138 LB112414.024 Arsenic, As mg/kg 3 190 180 31 Cadmium, Cd mg/kg 0.3 1.5 1.4 51 Copper, Cu mg/kg 0.5 42 41 31 Lead, Pb mg/kg 1 310 330 30 Manganese, Mn mg/kg 1 4200 4500 30 Nickel, Ni mg/kg 0.5 20 21 32 Zinc, Zn mg/kg 0.5 520 490 30 SE158264.148 LB112415.014 Arsenic, As mg/kg 3 140 150 31 Cadmium, Cd mg/kg 0.3 1.5 1.4 51 Copper, Cu mg/kg 0.5 61 55 31 Lead, Pb mg/kg 1 460 440 30	2
Cadmium, Cd mg/kg 0.3 1.5 1.4 51 Copper, Cu mg/kg 0.5 42 41 31 Lead, Pb mg/kg 1 310 330 30 Manganese, Mn mg/kg 1 4200 4500 30 Nickel, Ni mg/kg 0.5 20 21 32 Zinc, Zn mg/kg 0.5 520 490 30 SE158264.148 LB112415.014 Arsenic, As mg/kg 3 140 150 31 Cadmium, Cd mg/kg 0.3 1.5 1.4 51 Copper, Cu mg/kg 0.5 61 55 31 Lead, Pb mg/kg 1 460 440 30	1
Copper, Cu mg/kg 0.5 42 41 31	8
Lead, Pb mg/kg 1 310 330 30 Manganese, Mn mg/kg 1 4200 4500 30 Nickel, Ni mg/kg 0.5 20 21 32 Zinc, Zn mg/kg 0.5 520 490 30 SE158264.148 LB112415.014 Arsenic, As mg/kg 3 140 150 31 Cadmium, Cd mg/kg 0.3 1.5 1.4 51 Copper, Cu mg/kg 0.5 61 55 31 Lead, Pb mg/kg 1 460 440 30	8
Manganese, Mn mg/kg 1 4200 4500 30 Nickel, Ni mg/kg 0.5 20 21 32 Zinc, Zn mg/kg 0.5 520 490 30 SE158264.148 LB112415.014 Arsenic, As mg/kg 3 140 150 31 Cadmium, Cd mg/kg 0.3 1.5 1.4 51 Copper, Cu mg/kg 0.5 61 55 31 Lead, Pb mg/kg 1 460 440 30	1
Nickel, Ni mg/kg 0.5 20 21 32 Zinc, Zn mg/kg 0.5 520 490 30 SE158264.148 LB112415.014 Arsenic, As mg/kg 3 140 150 31 Cadmium, Cd mg/kg 0.3 1.5 1.4 51 Copper, Cu mg/kg 0.5 61 55 31 Lead, Pb mg/kg 1 460 440 30	6
Zinc, Zn mg/kg 0.5 520 490 30 SE158264.148 LB112415.014 Arsenic, As mg/kg 3 140 150 31 Cadmium, Cd mg/kg 0.3 1.5 1.4 51 Copper, Cu mg/kg 0.5 61 55 31 Lead, Pb mg/kg 1 460 440 30	8
SE158264.148 LB112415.014 Arsenic, As mg/kg 3 140 150 31 Cadmium, Cd mg/kg 0.3 1.5 1.4 51 Copper, Cu mg/kg 0.5 61 55 31 Lead, Pb mg/kg 1 460 440 30	5
Cadmium, Cd mg/kg 0.3 1.5 1.4 51 Copper, Cu mg/kg 0.5 61 55 31 Lead, Pb mg/kg 1 460 440 30	6
Copper, Cu mg/kg 0.5 61 55 31 Lead, Pb mg/kg 1 460 440 30	5
Lead, Pb mg/kg 1 460 440 30	5
	11
Managere Ma 2400 2400 26	5
Manganese, Mn mg/kg 1 3400 3100 30	8
Nickel, Ni mg/kg 0.5 17 16 33	4
Zinc, Zn mg/kg 0.5 400 430 30	6
SE158264.157 LB112415.024 Arsenic, As mg/kg 3 47 48 32	3
Cadmium, Cd mg/kg 0.3 0.6 0.6 79	5
Copper, Cu mg/kg 0.5 23 21 32	11
Lead, Pb mg/kg 1 110 120 31	6
Manganese, Mn mg/kg 1 680 930 30	32 ②
Nickel, Ni mg/kg 0.5 21 19 32	11
Zinc, Zn mg/kg 0.5 73 72 33	
SE158266.001 LB112416.014 Lead, Pb mg/kg 1 12 12 38	2
SE158266.010 LB112416.024 Lead, Pb mg/kg 1 160 210 31	

Trace Metals (Dissolved) in Water by ICPMS

Method: ME-(AU)-[ENV]AN318

0::1	- · · ·		11.74	1.00	0111	D 11 1	0 14 1 04	DDD 0/
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE158259.005	LB112231.014	Arsenic, As	μg/L	1	5	5	37	0
		Cadmium, Cd	μg/L	0.1	<0.1	<0.1	200	0
		Copper, Cu	μg/L	1	<1	<1	200	0
		Lead, Pb	μg/L	1	<1	<1	200	0
		Nickel, Ni	μg/L	1	86	86	16	1
		Zinc, Zn	μg/L	5	14	14	51	2
SE158325.001	LB112231.028	Arsenic, As	μg/L	1	<1	<1	149	0
		Cadmium, Cd	μg/L	0.1	<0.1	<0.1	200	0
		Copper, Cu	μg/L	1	<1	<1	160	0
		Lead, Pb	μg/L	1	<1	<1	157	0
		Nickel, Ni	μg/L	1	4	4	39	2
		Zinc, Zn	μg/L	5	17	12	49	34
SE158338.017	LB112231.029	Arsenic, As	μg/L	1	<1	<1	200	0

19/1/2017 Page 19 of 26

DUPLICATES

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Trace Metals (Dissolved) in Water by ICPMS (continued)

Method: ME-(AU)-[ENV]AN318

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE158338.017	LB112231.029	Cadmium, Cd	μg/L	0.1	<0.1	<0.1	200	0
		Copper, Cu	μg/L	1	<1	<1	200	0
		Lead, Pb	μg/L	1	<1	<1	200	0
		Nickel, Ni	μg/L	1	<1	<1	200	0
		Zinc, Zn	μg/L	5	<5	<5	200	0

Trace Metals (Total) in Water by ICPMS

Method: ME-(AU)-[ENV]AN022/AN318

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE158293.002	LB112227.012	Total Arsenic	μg/L	1	71	71	16	1
		Total Cadmium	μg/L	0.1	<0.1	<0.1	200	0
		Total Copper	μg/L	1	<1	<1	200	0
		Total Lead	μg/L	1	<1	<1	200	0
		Total Nickel	μg/L	1	8	7	29	9
		Total Zinc	μg/L	5	16	16	46	1

TRH Silica Gel (To	otal Recoverable Hydrocarbon	s - Silica Gel) in Soil				Meth	od: ME-(AU)-	[ENV]AN403
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE158264.169	LB112192.014	TRH C10-C14-Silica	mg/kg	20	<20	<20	200	0
		TRH C15-C28-Silica	mg/kg	45	<45	<45	200	0
		TRH C29-C36-Silica	mg/kg	45	<45	<45	200	0
		TRH C37-C40-Silica	mg/kg	100	<100	<100	200	0
		TRH >C10-C16-Silica (F2)	mg/kg	25	<25	<25	200	0
		TRH C10-C36-Silica	mg/kg	110	<110	<110	200	0
		TRH >C16-C34-Silica (F3)	mg/kg	90	<90	<90	200	0
		TRH >C34-C40-Silica (F4)	mg/kg	120	<120	<120	200	0
SE158264.179	LB112192.025	TRH C10-C14-Silica	mg/kg	20	<20	<20	200	0
		TRH C15-C28-Silica	mg/kg	45	<45	<45	200	0
		TRH C29-C36-Silica	mg/kg	45	<45	<45	200	0
		TRH C37-C40-Silica	mg/kg	100	<100	<100	200	0
		TRH >C10-C16-Silica (F2)	mg/kg	25	<25	<25	200	0
		TRH C10-C36-Silica	mg/kg	110	<110	<110	200	0
		TRH >C16-C34-Silica (F3)	mg/kg	90	<90	<90	200	0
		TRH >C34-C40-Silica (F4)	mg/kg	120	<120	<120	200	0
SE158264.182	LB112193.024	TRH C10-C14-Silica	mg/kg	20	<20	<20	200	0
		TRH C15-C28-Silica	mg/kg	45	<45	<45	200	0
		TRH C29-C36-Silica	mg/kg	45	<45	<45	200	0
		TRH C37-C40-Silica	mg/kg	100	<100	<100	200	0
		TRH >C10-C16-Silica (F2)	mg/kg	25	<25	<25	200	0
		TRH C10-C36-Silica	mg/kg	110	<110	<110	200	0
		TRH >C16-C34-Silica (F3)	mg/kg	90	<90	<90	200	0
		TRH >C34-C40-Silica (F4)	mg/kg	120	<120	<120	200	0

19/1/2017 Page 20 of 26

LABORATORY CONTROL SAMPLES

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Exchangeable Cations and Cation Exchange Capacity (CEC/ESP/SAR)

Method: ME-(AU)-[ENV]AN122

Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB112360.002	Exchangeable Sodium, Na	mg/kg	2	NA	390	80 - 120	96
	Exchangeable Potassium, K	mg/kg	2	NA	343	80 - 120	91
	Exchangeable Calcium, Ca	mg/kg	2	NA	2570	80 - 120	90
	Exchangeable Magnesium, Mg	mg/kg	2	NA	635	80 - 120	90

Mercury in Soil

Method: ME-(AU)-[ENV]AN312

Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB112298.002	Mercury	mg/kg	0.05	0.21	0.2	70 - 130	105
LB112299.002	Mercury	mg/kg	0.05	0.21	0.2	70 - 130	103
LB112300.002	Mercury	mg/kg	0.05	0.21	0.2	70 - 130	105
LB112301.002	Mercury	mg/kg	0.05	0.20	0.2	70 - 130	100
LB112302.002	Mercury	mg/kg	0.05	0.21	0.2	70 - 130	104
LB112303.002	Mercury	mg/kg	0.05	0.20	0.2	70 - 130	100
LB112304.002	Mercury	mg/kg	0.05	0.20	0.2	70 - 130	101
LB112305.002	Mercury	mg/kg	0.05	0.20	0.2	70 - 130	100
LB112306.002	Mercury	mg/kg	0.05	0.20	0.2	70 - 130	100

Metals in Water (Dissolved) by ICPOES

Method: ME-(AU)-[ENV]AN320/AN321

Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB112223.002	Arsenic, As	mg/L	0.02	2.1	2	80 - 120	104
	Cadmium, Cd	mg/L	0.001	2.0	2	80 - 120	101
	Copper, Cu	mg/L	0.005	2.1	2	80 - 120	103
	Lead, Pb	mg/L	0.02	2.1	2	80 - 120	103
	Manganese, Mn	mg/L	0.005	2.0	2	80 - 120	99
	Nickel, Ni	mg/L	0.005	2.0	2	80 - 120	102
	Zinc, Zn	mg/L	0.01	2.1	2	80 - 120	104

pH in soil (1:5)

Method: ME-(AU)-[ENV]AN101

Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB112209.003	pH	pH Units	-	7.4	7.415	98 - 102	100
LB112210.003	рН	pH Units	-	7.4	7.415	98 - 102	100

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES

Method: ME-(AU)-[ENV]AN040/AN320

Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB112405.002	Arsenic, As	mg/kg	3	48	50	80 - 120	97
	Cadmium, Cd	mg/kg	0.3	49	50	80 - 120	98
	Copper, Cu	mg/kg	0.5	48	50	80 - 120	97
	Lead, Pb	mg/kg	1	48	50	80 - 120	97
	Manganese, Mn	mg/kg	1	48	50	80 - 120	95
	Nickel, Ni	mg/kg	0.5	49	50	80 - 120	98
	Zinc, Zn	mg/kg	0.5	49	50	80 - 120	98
LB112407.002	Arsenic, As	mg/kg	3	49	50	80 - 120	99
	Cadmium, Cd	mg/kg	0.3	50	50	80 - 120	100
	Copper, Cu	mg/kg	0.5	50	50	80 - 120	100
	Lead, Pb	mg/kg	1	49	50	80 - 120	99
	Manganese, Mn	mg/kg	1	50	50	80 - 120	99
	Nickel, Ni	mg/kg	0.5	51	50	80 - 120	102
	Zinc, Zn	mg/kg	0.5	50	50	80 - 120	100
LB112409.002	Arsenic, As	mg/kg	3	50	50	80 - 120	101
	Cadmium, Cd	mg/kg	0.3	51	50	80 - 120	102
	Copper, Cu	mg/kg	0.5	51	50	80 - 120	101
	Lead, Pb	mg/kg	1	51	50	80 - 120	102
	Manganese, Mn	mg/kg	1	50	50	80 - 120	100
	Nickel, Ni	mg/kg	0.5	51	50	80 - 120	102
	Zinc, Zn	mg/kg	0.5	52	50	80 - 120	103
LB112410.002	Arsenic, As	mg/kg	3	51	50	80 - 120	102
	Cadmium, Cd	mg/kg	0.3	51	50	80 - 120	103
	Copper, Cu	mg/kg	0.5	51	50	80 - 120	102
	Lead, Pb	mg/kg	1	51	50	80 - 120	102
	Manganese, Mn	mg/kg	1	51	50	80 - 120	101
	Nickel, Ni	mg/kg	0.5	50	50	80 - 120	101
	Zinc, Zn	mg/kg	0.5	52	50	80 - 120	104

19/1/2017 Page 21 of 26

LABORATORY CONTROL SAMPLES

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES (continued)

Method: ME-(AU)-[ENV]AN040/AN320

Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB112411.002	Arsenic, As	mg/kg	3	51	50	80 - 120	102
	Cadmium, Cd	mg/kg	0.3	52	50	80 - 120	103
	Copper, Cu	mg/kg	0.5	52	50	80 - 120	104
	Lead, Pb	mg/kg	1	52	50	80 - 120	103
	Manganese, Mn	mg/kg	1	51	50	80 - 120	102
	Nickel, Ni	mg/kg	0.5	51	50	80 - 120	101
	Zinc, Zn	mg/kg	0.5	52	50	80 - 120	104
LB112412.002	Arsenic, As	mg/kg	3	49	50	80 - 120	97
	Cadmium, Cd	mg/kg	0.3	49	50	80 - 120	98
	Copper, Cu	mg/kg	0.5	49	50	80 - 120	99
	Lead, Pb	mg/kg	1	49	50	80 - 120	97
	Manganese, Mn	mg/kg	1	49	50	80 - 120	97
	Nickel, Ni	mg/kg	0.5	49	50	80 - 120	97
	Zinc, Zn	mg/kg	0.5	49	50	80 - 120	98
LB112413.002	Arsenic, As	mg/kg	3	50	50	80 - 120	100
	Cadmium, Cd	mg/kg	0.3	50	50	80 - 120	100
	Copper, Cu	mg/kg	0.5	50	50	80 - 120	100
	Lead, Pb	mg/kg	1	50	50	80 - 120	100
	Manganese, Mn	mg/kg	1	49	50	80 - 120	98
	Nickel, Ni	mg/kg	0.5	49	50	80 - 120	99
	Zinc, Zn	mg/kg	0.5	51	50	80 - 120	101
LB112414.002	Arsenic, As	mg/kg	3	51	50	80 - 120	102
	Cadmium, Cd	mg/kg	0.3	52	50	80 - 120	103
	Copper, Cu	mg/kg	0.5	51	50	80 - 120	103
	Lead, Pb	mg/kg	1	51	50	80 - 120	102
	Manganese, Mn	mg/kg	1	50	50	80 - 120	100
	Nickel, Ni	mg/kg	0.5	51	50	80 - 120	103
	Zinc, Zn	mg/kg	0.5	52	50	80 - 120	104
LB112415.002	Arsenic, As	mg/kg	3	51	50	80 - 120	101
	Cadmium, Cd	mg/kg	0.3	51	50	80 - 120	102
	Copper, Cu	mg/kg	0.5	51	50	80 - 120	103
	Lead, Pb	mg/kg	1	51	50	80 - 120	102
	Manganese, Mn	mg/kg	1	49	50	80 - 120	98
	Nickel, Ni	mg/kg	0.5	51	50	80 - 120	101
	Zinc, Zn	mg/kg	0.5	51	50	80 - 120	103
LB112416.002	Arsenic, As	mg/kg	3	51	50	80 - 120	102
	Cadmium, Cd	mg/kg	0.3	51	50	80 - 120	103
	Copper, Cu	mg/kg	0.5	52	50	80 - 120	104
	Lead, Pb	mg/kg	1	51	50	80 - 120	102
	Manganese, Mn	mg/kg	1	50	50	80 - 120	100
	Nickel, Ni	mg/kg	0.5	51	50	80 - 120	102
	Zinc, Zn	mg/kg	0.5	52	50	80 - 120	104

Trace Metals (Dissolved) in Water by ICPMS

Method: ME-(AU)-[ENV]AN318

Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB112231.002	Arsenic, As	μg/L	1	20	20	80 - 120	98
	Cadmium, Cd	μg/L	0.1	20	20	80 - 120	102
	Copper, Cu	μg/L	1	21	20	80 - 120	105
	Lead, Pb	μg/L	1	21	20	80 - 120	107
	Manganese, Mn	μg/L	1	20	20	80 - 120	102
	Nickel, Ni	μg/L	1	20	20	80 - 120	102
	Zinc, Zn	μg/L	5	20	20	80 - 120	100

Trace Metals (Total) in Water by ICPMS

Method: ME-(AU)-[ENV]AN022/AN318

Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB112227.002	Total Arsenic	μg/L	1	19	20	80 - 120	96
	Total Cadmium	μg/L	0.1	20	20	80 - 120	100
	Total Copper	μg/L	1	21	20	80 - 120	104
	Total Lead	μg/L	1	21	20	80 - 120	106
	Total Manganese	μg/L	1	20	20	80 - 120	100
	Total Nickel	μg/L	1	20	20	80 - 120	101
	Total Zinc	μg/L	5	19	20	80 - 120	97

19/1/2017 Page 22 of 26

LABORATORY CONTROL SAMPLES

SE158264 R1

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

TRH Silica Gel (Total Recoverable Hydrocarbons - Silica Gel) in Soil

Method: ME-(AU)-[ENV]AN403

Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
Sample Number LB112192.002 LB112193.002	TRH C10-C14-Silica	mg/kg	20	37	40	70 - 130	93
	TRH C15-C28-Silica	mg/kg	45	<45	40	70 - 130	103
	TRH C29-C36-Silica	mg/kg	45	<45	40	70 - 130	108
	TRH >C10-C16-Silica (F2)	mg/kg	25	38	40	70 - 130	95
	TRH >C16-C34-Silica (F3)	mg/kg	90	<90	40	70 - 130	108
	TRH >C34-C40-Silica (F4)	mg/kg	120	<120	20	70 - 130	125
LB112193.002	TRH C10-C14-Silica	mg/kg	20	37	40	70 - 130	93
	TRH C15-C28-Silica	mg/kg	45	<45	40	70 - 130	103
	TRH C29-C36-Silica	mg/kg	45	<45	40	70 - 130	108
	TRH >C10-C16-Silica (F2)	mg/kg	25	38	40	70 - 130	95
	TRH >C16-C34-Silica (F3)	mg/kg	90	<90	40	70 - 130	108
	TRH >C34-C40-Silica (F4)	mg/kg	120	<120	20	70 - 130	125

TRH Silica Gel (Total Recoverable Hydrocarbons - Silica Gel) in Water

Method: ME-(AU)-[ENV]AN403

TRH Silica Gel (Total Recove	nable riyulocalbons - Silica Gel) ili vvalei				IN.	neulou. IVIE-(A	O)-[E14V]/-14403
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB112212.002	TRH C10-C14-Silica	μg/L	50	1100	1200	60 - 140	88
	TRH C15-C28-Silica	μg/L	200	1200	1200	60 - 140	103
	TRH C29-C36-Silica	μg/L	200	1400	1200	60 - 140	117
	TRH >C10-C16-Silica	μg/L	60	1100	1200	60 - 140	94
	TRH >C16-C34-Silica	μg/L	500	1300	1200	60 - 140	108
	TRH >C34-C40-Silica	μg/L	500	770	600	60 - 140	128

19/1/2017 Page 23 of 26

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury (dissolved) in Water

Method: ME-(AU)-[ENV]AN311(Perth)/AN312

QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE158239.001	LB112441.004	Mercury	mg/L	0.0001	0.0080	<0.0001	0.008	100

Mercury (total) in Water

Method: ME-(AU)-[ENV]AN311(Perth) /AN312

QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE158264.198	LB112445.005	Total Mercury	mg/L	0.0001	0.0084	<0.0001	-	-

Mercury in Soil

Method: ME-(AU)-[ENV]AN312

QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE158264.001	LB112298.004	Mercury	mg/kg	0.05	0.19	0.05	0.2	67 ④
SE158264.020	LB112299.004	Mercury	mg/kg	0.05	0.21	<0.05	0.2	96
SE158264.039	LB112300.004	Mercury	mg/kg	0.05	0.15	<0.05	0.2	66 ④
SE158264.058	LB112301.004	Mercury	mg/kg	0.05	0.19	<0.05	0.2	75
SE158264.077	LB112302.004	Mercury	mg/kg	0.05	0.21	<0.05	0.2	88
SE158264.096	LB112303.004	Mercury	mg/kg	0.05	0.18	<0.05	0.2	77
SE158264.115	LB112304.004	Mercury	mg/kg	0.05	0.23	<0.05	0.2	90
SE158264.134	LB112305.004	Mercury	mg/kg	0.05	0.18	<0.05	0.2	79
SE158264.153	LB112306.004	Mercury	mg/kg	0.05	0.22	0.05	0.2	84

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES

Method: ME-(AU)-[ENV]AN040/AN320

QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE158264.063	LB112411.004	Arsenic, As	mg/kg	3	150	120	50	67 ⑨
		Cadmium, Cd	mg/kg	0.3	40	4.0	50	72
		Copper, Cu	mg/kg	0.5	120	66	50	101
		Lead, Pb	mg/kg	1	590	620	50	-56 ⑨
		Manganese, Mn	mg/kg	1	3600	3700	50	-280 ⑨
		Nickel, Ni	mg/kg	0.5	64	27	50	73
		Zinc, Zn	mg/kg	0.5	1300	1200	50	16 ⑨
SE158264.082	LB112412.004	Arsenic, As	mg/kg	3	100	66	50	72
		Cadmium, Cd	mg/kg	0.3	41	0.7	50	81
		Copper, Cu	mg/kg	0.5	77	33	50	87
		Lead, Pb	mg/kg	1	500	310	50	391 ⑨
		Manganese, Mn	mg/kg	1	2200	1600	50	1164 ⑨
		Nickel, Ni	mg/kg	0.5	50	8.2	50	83
		Zinc, Zn	mg/kg	0.5	360	310	50	103

Trace Metals (Total) in Water by ICPMS

Method: ME-(AU)-[ENV]AN022/AN318

QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
BA000040.001	LB112227.004	Total Arsenic	μg/L	1	20	-0.00516513	20	102
		Total Cadmium	μg/L	0.1	21	-0.00082962	20	106
		Total Copper	μg/L	1	22	-0.01048987	20	108
		Total Lead	μg/L	1	22	0.01887509	20	111
		Total Manganese	μg/L	1	21	0.05684833	20	105
		Total Nickel	μg/L	1	21	-0.0002369	20	105
		Total Zinc	μg/L	5	20	0.37529506	20	100

19/1/2017 Page 24 of 26

MATRIX SPIKE DUPLICATES

SE158264 R1

Matrix spike duplicates are calculated as Relative Percent Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spike duplicates were required for this job.

19/1/2017 Page 25 of 26

SE158264 R1

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover tthe performance of this service .
- Sample not analysed for this analyte.

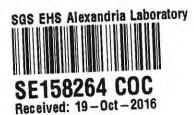
IS Insufficient sample for analysis.

LNR Sample listed, but not received.

LOR Limit of reporting.

QFH QC result is above the upper tolerance.
QFL QC result is below the lower tolerance.

- ① At least 2 of 3 surrogates are within acceptance criteria.
- ② RPD failed acceptance criteria due to sample heterogeneity.
- 3 Results less than 5 times LOR preclude acceptance criteria for RPD.
- Recovery failed acceptance criteria due to matrix interference.
- ® Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- © LOR was raised due to sample matrix interference.
- ① LOR was raised due to dilution of significantly high concentration of analyte in sample.
- ® Reanalysis of sample in duplicate confirmed sample heterogeneity and inconsistency of results.
- Recovery failed acceptance criteria due to sample heterogeneity.
- © LOR was raised due to high conductivity of the sample (required dilution).
- † Refer to Analytical Report comments for further information.


This document is issued, on the Client's behalf, by the Company under its General Conditions of Service, available on request and accessible at http://www.sqs.com/en/terms-and-conditions. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained herein reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This test report shall not be reproduced, except in full.

19/1/2017 Page 26 of 26

Laboratory Test Request / Chain of Custody Record

Tel: (02) 4722 2700 Lemko Place P O Box 880 Fax: (02) 4722 6161 PENRITH NSW 2750 email: info@geotech.com.au Page of PENRITH NSW 2751 16 SGS ENVIRONMENTAL SERVICES Sampling By: LY/JH Job No: 12675/4 UNIT 16 33 MADDOX STREET Project: **ALEXANDRIA NSW 2015** PH: 02 8594 0400 FAX: 02 8594 0499 Project Manager: JX Location: Googong NH1A-7 & NH2 ATTN: MS EMILY YIN Sampling details Sample type Results required by: Normal TAT Location Depth (m) Date Time Soil Water **Heavy Metals TPH F2 & F3 & Hq** KEEP As, Cd, Cu, Pb, with silica gel CEC SAMPLE Mn, Hg, Ni and Zn clean-up A4 0.25-0.35 18/10/2016 SG 4 YES A4 0.5-0.6 18/10/2016 SG YES A6 0.25-0.35 18/10/2016 SG 7 YES A6 0.5-0.6 18/10/2016 SG YES **A8** 18/10/2016 0.25-0.35 SG YES **A8** 0.5-0.6 18/10/2016 SG 6 YES **A8** 18/10/2016 SG 1.0-1.1 YES A9 0.25-0.35 18/10/2016 SG YES A9 SG 0.5-0.6 18/10/2016 YES A11 0.25-0.35 18/10/2016 SG 10 YES A11 0.5-0.6 18/10/2016 SG YES A11 1.0-1.1 18/10/2016 SG YES 12 A11 1.9-2.0 18/10/2016 SG YES Relinguished by Received by Name Signature Date Name Signature Date JOHN XU 20/10/2016 19/10/16 @ 2100000 Legend: WG Water sample, glass bottle SG Soil sample (glass jar) SP Soil sample (plastic bag) * Purge & Trap WP Water sample, plastic bottle Test required

Laboratory Test Request / Chain of Custody Record

Test required

Tel: (02) 4722 2700 Lemko Place P O Box 880 Fax: (02) 4722 6161 PENRITH NSW 2751 email: info@geotech.com.au Page of PENRITH NSW 2750 16 SGS ENVIRONMENTAL SERVICES Sampling By: LY/JH 12675/4 Job No: UNIT 16 33 MADDOX STREET Project: **ALEXANDRIA NSW 2015** PH: 02 8594 0400 FAX: 02 8594 0499 Project Manager: JX Googong NH1A-7 & NH2 Location: ATTN: MS EMILY YIN Sampling details Sample type Results required by: Normal TAT Location Depth (m) Date Time Water **Heavy Metals** TPH F2 & F3 KEEP **pH &** As, Cd, Cu, Pb, with silica gel CEC SAMPLE Mn, Hg, Ni and Zn clean-up 0.25-0.35 18/10/2016 A13 SG YES A13 0.5-0.6 18/10/2016 SG YES A15 0.2-0.3 18/10/2016 SG YES A15 0.5-0.6 18/10/2016 SG YES A15 1.0-1.1 18/10/2016 SG YES A15 1.9-2.0 18/10/2016 SG 1 YES A16 0.2-0.3 18/10/2016 SG YES A16 0.5-0.6 18/10/2016 SG YES A16 1.0-1.1 18/10/2016 SG YES A16 18/10/2016 SG YES 1.5-1.6 A17 0.2-0.3 18/10/2016 SG YES A17 0.5-0.6 18/10/2016 SG YES . A17 1.0-1.1 18/10/2016 SG YES Relinquished by Received by Name Signature Date Name Signature Date wer JOHN XU 20/10/2016 Legend: WG Water sample, glass bottle Soil sample (glass jar) SP Soil sample (plastic bag) * Purge & Trap

Water sample, plastic bottle

WP

Laboratory Test Request / Chain of Custody Record

Tel: (02) 4722 2700 Lemko Place P O Box 880 Fax: (02) 4722 6161 PENRITH NSW 2750 PENRITH NSW 2751 Page of email: info@geotech.com.au 16 SGS ENVIRONMENTAL SERVICES Sampling By: LY/JH 12675/4 Job No: UNIT 16 33 MADDOX STREET Project: **ALEXANDRIA NSW 2015** PH: 02 8594 0400 FAX: 02 8594 0499 Project Manager: JX Location: Googong NH1A-7 & NH2 ATTN: MS EMILY YIN Sampling details Sample type Results required by: Normal TAT Location Depth (m) Date Time Soil Water **Heavy Metals** TPH F2 & F3 & Hq KEEP As, Cd, Cu, Pb, with silica gel CEC SAMPLE Mn, Hg, Ni and Zn clean-up A17 1.9-2.0 18/10/2016 1 SG YES A18 0.2-0.3 18/10/2016 SG YES A18 0.5-0.6 18/10/2016 SG YES A18 1.0-1.1 18/10/2016 SG YES D101 17/10/2016 SG 0-0.1 YES 32 D101 0.2-0.3 17/10/2016 SG 1 YES 33 D101 1.0-1.1 17/10/2016 SG YES 1 D101 1.9-2.0 17/10/2016 SG YES D102 0-0.1 17/10/2016 SG YES D102 0.2-0.3 17/10/2016 SG YES D103 0-0.1 18/10/2016 SG 1 YES D103 0.2-0.3 18/10/2016 SG YES D104 18/10/2016 SG 0-0.1 YES Relinquished by Received by Name Signature Date Name Signature Date JOHN XU 20/10/2016 @ 7:0D Legend: WG Water sample, glass bottle SG Soil sample (glass jar) SP Soil sample (plastic bag) * Purge & Trap WP Water sample, plastic bottle Test required

Laboratory Test Request / Chain of Custody Record

Test required

Tel: (02) 4722 2700 Lemko Place P O Box 880 Fax: (02) 4722 6161 Page of PENRITH NSW 2750 PENRITH NSW 2751 16 email: info@geotech.com.au SGS ENVIRONMENTAL SERVICES LY/JH 12675/4 Sampling By: Job No: **UNIT 16** 33 MADDOX STREET Project: **ALEXANDRIA NSW 2015** PH: 02 8594 0400 FAX: 02 8594 0499 Project Manager: JX Googong NH1A-7 & NH2 Location: ATTN: MS EMILY YIN Sampling details Sample type Results required by: Normal TAT Location Depth (m) Date Time Soil Water **Heavy Metals** TPH F2 & F3 pH & KEEP As, Cd, Cu, Pb, with silica gel CEC SAMPLE Mn, Hg, Ni and Zn clean-up D104 0.2-0.3 18/10/2016 SG YES D105 0-0.1 18/10/2016 SG YES D105 V 0.2-0.3 18/10/2016 SG YES D106 0-0.1 18/10/2016 SG YES D106 0.2-0.3 18/10/2016 SG YES 45 D107 0-0.1 18/10/2016 SG ~ YES 40 D107 0.2-0.3 18/10/2016 SG YES V D108 0-0.1 18/10/2016 SG YES D108 0.2-0.3 18/10/2016 SG YES D109 0-0.1 18/10/2016 SG YES V D109 0.2-0.3 18/10/2016 SG YES D110 0-0.1 17/10/2016 SG YES D110 0.2-0.3 17/10/2016 SG YES Relinquished by Received by Name Signature Date Signature Name Date JOHN XU 20/10/2016 19/10/16 @ 7:00 Legend: WG Water sample, glass bottle SG Soil sample (glass jar) SP Soil sample (plastic bag) * Purge & Trap

Water sample, plastic bottle

WP

Laboratory Test Request / Chain of Custody Record

Tel: (02) 4722 2700 Lemko Place P O Box 880 Fax: (02) 4722 6161 Page of PENRITH NSW 2750 PENRITH NSW 2751 email: info@geotech.com.au 16 TO: SGS ENVIRONMENTAL SERVICES Sampling By: LY/JH Job No: 12675/4 UNIT 16 33 MADDOX STREET Project: **ALEXANDRIA NSW 2015** PH: 02 8594 0400 FAX: 02 8594 0499 Project Manager: JX Location: Googong NH1A-7 & NH2 ATTN: MS EMILY YIN Sampling details Sample type Results required by: Normal TAT Location Depth (m) Date Water Time Soil **Heavy Metals** TPH F2 & F3 **pH &** KEEP As, Cd, Cu, Pb, with silica gel CEC SAMPLE Mn, Hg, Ni and Zn clean-up D111 0-0.1 17/10/2016 SG YES D111 0.2-0.3 17/10/2016 SG YES V D112 0-0.1 17/10/2016 SG YES D112 0.2-0.3 17/10/2016 SG YES D113 17/10/2016 SG 0-0.1 YES D113 17/10/2016 SG ~ 0.2-0.3 YES D114 0-0.1 17/10/2016 SG YES 51 D114 0.2-0.3 17/10/2016 SG YES D115 0-0.1 17/10/2016 SG YES

SG D115 17/10/2016 0.2-0.3 YES D116 0-0.1 18/10/2016 SG 1 YES D116 0.2-0.3 18/10/2016 SG YES -SG D116 1.0-1.1 18/10/2016 YES Relinquished by Received by Name Signature Date Name Signature JOHN XU 20/10/2016 aren 19/10/16 Legend: Soil sample (plastic bag) WG Water sample, glass bottle SG Soil sample (glass jar) SP * Purge & Trap WP Water sample, plastic bottle Test required

Laboratory Test Request / Chain of Custody Record

Test required

Tel: (02) 4722 2700 Lemko Place P O Box 880 Fax: (02) 4722 6161 Page of 6 16 PENRITH NSW 2750 PENRITH NSW 2751 email: info@geotech.com.au SGS ENVIRONMENTAL SERVICES Sampling By: LY/JH Job No: 12675/4 TO: UNIT 16 33 MADDOX STREET Project: **ALEXANDRIA NSW 2015** Project Manager: JX PH: 02 8594 0400 FAX: 02 8594 0499 Location: Googong NH1A-7 & NH2 ATTN: MS EMILY YIN Sampling details Sample type Results required by: Normal TAT Depth (m) Soil Water Location Date Time **Heavy Metals** TPH F2 & F3 KEEP **& Hq** As, Cd, Cu, Pb, with silica gel CEC SAMPLE Mn, Hg, Ni and Zn clean-up D116 18/10/2016 SG YES 1.4-1.5 D117 0-0.1 18/10/2016 SG YES 1 YES D117 0.2-0.3 18/10/2016 SG SG YES D118 0-0.1 18/10/2016 70 71 72 74 SG YES D118 0.2-0.3 18/10/2016 D119 SG V YES 0-0.1 18/10/2016 D119 0.2-0.3 18/10/2016 SG YES ~ D120 0-0.1 18/10/2016 SG YES D120 0.2-0.3 18/10/2016 SG YES YES 18/10/2016 SG D121 0-0.1 1 D121 0.2-0.3 18/10/2016 SG YES D122 0-0.1 18/10/2016 SG YES -YES D122 0.2-0.3 18/10/2016 SG Relinquished by Received by Signature Date Name Signature Name anus-JOHN XU 20/10/2016 2:000 Legend: WG Water sample, glass bottle Soil sample (glass jar) SP Soil sample (plastic bag) * Purge & Trap SG

Water sample, plastic bottle

WP

Laboratory Test Request / Chain of Custody Record

Test required

Tel: (02) 4722 2700 P O Box 880 Fax: (02) 4722 6161 Lemko Place Page of PENRITH NSW 2750 PENRITH NSW 2751 email: info@geotech.com.au 16 SGS ENVIRONMENTAL SERVICES 12675/4 Sampling By: LY/JH Job No: UNIT 16 33 MADDOX STREET Project: **ALEXANDRIA NSW 2015** Project Manager: PH: 02 8594 0400 FAX: 02 8594 0499 JX Location: Googong NH1A-7 & NH2 ATTN: MS EMILY YIN Sampling details Sample type Results required by: Normal TAT Depth (m) Water Location Date Time **Heavy Metals** TPH F2 & F3 **pH &** KEEP As, Cd, Cu, Pb, with silica gel CEC SAMPLE Mn, Hg, Ni and Zn clean-up D123 0-0.1 18/10/2016 SG YES 18/10/2016 SG D123 0.2-0.3 YES 1 D124 0-0.1 17/10/2016 SG YES D124 0.2-0.3 17/10/2016 SG YES D125 0-0.1 17/10/2016 SG YES D125 0.2-0.3 17/10/2016 SG YES D126 0-0.1 17/10/2016 SG YES D126 17/10/2016 SG 0.2-0.3 YES D127 SG 0-0.1 18/10/2016 YES D127 0.2-0.3 18/10/2016 SG YES D128 0-0.1 18/10/2016 SG YES D128 0.2-0.3 18/10/2016 SG YES SG D129 0-0.1 18/10/2016 YES Relinquished by Received by Signature Name Signature Date Name Date JOHN XU 20/10/2016 107 Legend: WG SP Soil sample (plastic bag) Water sample, glass bottle SG Soil sample (glass jar) * Purge & Trap

Water sample, plastic bottle

WP

Laboratory Test Request / Chain of Custody Record

Tel: (02) 4722 2700 P O Box 880 Lemko Place Fax: (02) 4722 6161 Page of PENRITH NSW 2750 8 16 PENRITH NSW 2751 email: info@geotech.com.au SGS ENVIRONMENTAL SERVICES LY/JH Sampling By: Job No: 12675/4 UNIT 16 33 MADDOX STREET Project: **ALEXANDRIA NSW 2015** PH: 02 8594 0400 FAX: 02 8594 0499 Project Manager: JX Location: Googong NH1A-7 & NH2 ATTN: MS EMILY YIN Sample type Sampling details Results required by: Normal TAT Depth (m) Location Date Time Soil Water **Heavy Metals TPH F2 & F3 pH &** KEEP As, Cd, Cu, Pb, with silica gel CEC SAMPLE Mn, Hg, Ni and Zn clean-up D129 0.2-0.03 18/10/2016 SG YES D130 0-0.1 18/10/2016 SG YES D130 0.2-0.3 18/10/2016 SG YES D130 1.0-1.1 18/10/2016 SG YES 18/10/2016 D131 0-0.1 SG YES D131 0.2-0.3 18/10/2016 SG YES 2 D132 0-0.1 17/10/2016 SG YES D132 0.2-0.3 17/10/2016 SG YES D132 1.0-1.1 17/10/2016 SG YES D132 1.9-2.0 17/10/2016 SG YES D133 0-0.1 17/10/2016 SG YES 107 D133 0.2-0.3 17/10/2016 SG YES los D134 0-0.1 17/10/2016 SG YES Relinquished by Received by Name Signature Date Name Signature Date JOHN XU 0,00 20/10/2016 ix Legend: WG Water sample, glass bottle Soil sample (glass jar) SP Soil sample (plastic bag) * Purge & Trap WP Water sample, plastic bottle Test required

Laboratory Test Request / Chain of Custody Record

Test required

Tel: (02) 4722 2700 Lemko Place P O Box 880 Fax: (02) 4722 6161 Page of PENRITH NSW 2750 9 PENRITH NSW 2751 email: info@geotech.com.au 16 SGS ENVIRONMENTAL SERVICES Sampling By: LY/JH Job No: 12675/4 UNIT 16 33 MADDOX STREET Project: **ALEXANDRIA NSW 2015** PH: Project Manager: 02 8594 0400 FAX: 02 8594 0499 JX Location: Googong NH1A-7 & NH2 ATTN: MS EMILY YIN Sampling details Sample type Results required by: Normal TAT Location Depth (m) Date Time Water Soil **Heavy Metals** TPH F2 & F3 **pH &** KEEP As, Cd, Cu, Pb, with silica gel CEC SAMPLE Mn, Hg, Ni and Zn clean-up D134 17/10/2016 0.2-0.03 SG YES D135 0-0.1 17/10/2016 SG YES D135 17/10/2016 0.2-0.3 SG YES 109 D136 SG 0-0.1 17/10/2016 YES D136 17/10/2016 SG 0.2-0.3 YES D137 SG 1 0-0.1 17/10/2016 YES D137 0.2-0.3 17/10/2016 SG YES D138 0-0.1 17/10/2016 SG YES D138 0.2-0.3 17/10/2016 SG YES D139 17/10/2016 SG 0-0.1 YES D139 0.2-0.3 17/10/2016 SG YES D139 1.0-1.1 17/10/2016 SG YES -D139 1.4-1.5 17/10/2016 SG YES Relinquished by Received by Name Signature Date Name Signature Date JOHN XU 20/10/2016 Legend: Soil sample (plastic bag) WG Water sample, glass bottle Soil sample (glass jar) SP SG * Purge & Trap

Water sample, plastic bottle

WP

Laboratory Test Request / Chain of Custody Record

Soil sample (plastic bag)

Test required

* Purge & Trap

SP

Tel: (02) 4722 2700 Lemko Place P O Box 880 Fax: (02) 4722 6161 Page of PENRITH NSW 2750 email: info@geotech.com.au 10 16 PENRITH NSW 2751 SGS ENVIRONMENTAL SERVICES 12675/4 Sampling By: LY/JH Job No: UNIT 16 33 MADDOX STREET Project: **ALEXANDRIA NSW 2015** Project Manager: PH: 02 8594 0400 FAX: 02 8594 0499 JX Location: Googong NH1A-7 & NH2 ATTN: MS EMILY YIN Sampling details Sample type Results required by: Normal TAT Location Depth (m) Date Time Soil Water **Heavy Metals** TPH F2 & F3 **pH &** KEEP As, Cd, Cu, Pb. with silica gel CEC SAMPLE Mn, Hg, Ni and Zn clean-up D140 0-0.1 17/10/2016 SG YES D140 0.2-0.3 17/10/2016 SG YES 1 D141 0-0.1 17/10/2016 SG YES 1 D141 0.2-0.3 17/10/2016 SG YES D142 17/10/2016 SG YES 0-0.1 **√** D142 0.2-0.3 17/10/2016 SG YES D142 1.0-1.1 17/10/2016 SG YES -D142 1.9-2.0 17/10/2016 SG YES D143 0-0.1 17/10/2016 SG YES D143 0.2-0.3 17/10/2016 SG YES D144 0-0.1 17/10/2016 SG YES D144 0.2-0.3 17/10/2016 SG YES D145 0-0.1 17/10/2016 SG YES Relinquished by Received by Name Signature Date Name Signature Date JOHN XU 20/10/2016 Per Legend:

Soil sample (glass jar)

Water sample, glass bottle

Water sample, plastic bottle

WG

WP

Laboratory Test Request / Chain of Custody Record

YES

YES

Tel: (02) 4722 2700 Lemko Place P O Box 880 Fax: (02) 4722 6161 Page of PENRITH NSW 2750 PENRITH NSW 2751 email: info@geotech.com.au 11 16 SGS ENVIRONMENTAL SERVICES TO: Sampling By: LY/JH Job No: 12675/4 UNIT 16 33 MADDOX STREET Project: **ALEXANDRIA NSW 2015** PH: 02 8594 0400 FAX: 02 8594 0499 Project Manager: JX Location: Googong NH1A-7 & NH2 ATTN: MS EMILY YIN Sampling details Sample type Results required by: Normal TAT Depth (m) Water Location Date Time Soil **Heavy Metals TPH F2 & F3 & Hq** KEEP As, Cd, Cu, Pb, with silica gel CEC SAMPLE Mn, Hg, Ni and Zn clean-up D145 17/10/2016 0.2-0.3 SG YES D146 17/10/2016 SG 0-0.1 YES ~ D146 0.2-0.3 17/10/2016 SG YES D147 0-0.1 17/10/2016 SG YES $\dot{\tau}$ D147 0.2-0.3 17/10/2016 SG YES 1 D148 0-0.1 17/10/2016 SG YES D148 0.2-0.3 17/10/2016 SG YES D149 17/10/2016 SG 0-0.1 YES D149 0.2-0.3 17/10/2016 SG YES 140 D150 0-0.1 17/10/2016 SG YES D150 0.2-0.3 17/10/2016 SG YES

Relinquished by Received by Signature Name Signature Date Name Date JOHN XU 20/10/2016 Legend: WG Water sample, glass bottle Soil sample (glass jar) SG SP Soil sample (plastic bag) * Purge & Trap WP Water sample, plastic bottle Test required

142

D151

D151

0-0.1

0.2-0.3

17/10/2016

17/10/2016

SG

SG

Laboratory Test Request / Chain of Custody Record

Test required

Tel: (02) 4722 2700 Lemko Place P O Box 880 Fax: (02) 4722 6161 Page of PENRITH NSW 2750 PENRITH NSW 2751 email: info@geotech.com.au 12 16 TO: SGS ENVIRONMENTAL SERVICES 12675/4 Sampling By: LY/JH Job No: **UNIT 16** 33 MADDOX STREET Project: **ALEXANDRIA NSW 2015** PH: 02 8594 0400 FAX: 02 8594 0499 Project Manager: JX Location: Googong NH1A-7 & NH2 ATTN: MS EMILY YIN Sampling details Sample type Results required by: Normal TAT Location Depth (m) Water Date Time **Heavy Metals** TPH F2 & F3 **pH &** KEEP As, Cd, Cu, Pb, with silica gel CEC SAMPLE Mn, Hg, Ni and Zn clean-up 144 7 D152 0-0.1 17/10/2016 SG YES D152 0.2-0.3 17/10/2016 SG YES D152 1.0-1.1 17/10/2016 SG YES D152 1.9-2.0 17/10/2016 SG YES -17/10/2016 D153 0-0.1 SG YES 1 D153 0.2-0.3 17/10/2016 SG YES D154 0-0.1 17/10/2016 SG YES D154 0.2-0.3 17/10/2016 SG YES 1 D155 0-0.1 17/10/2016 SG YES D155 17/10/2016 SG 0.2-0.3 YES D156 SG 1 0-0.1 17/10/2016 YES D156 0.2-0.3 17/10/2016 SG YES 156 D157 0-0.1 17/10/2016 SG YES Relinquished by Received by Name Signature Signature Date Name Date JOHN XU 20/10/2016 2:00 Legend: WG Water sample, glass bottle Soil sample (glass jar) SP Soil sample (plastic bag) SG * Purge & Trap WP

Water sample, plastic bottle

Laboratory Test Request / Chain of Custody Record

Tel: (02) 4722 2700 Lemko Place P O Box 880 Fax: (02) 4722 6161 of Page PENRITH NSW 2750 PENRITH NSW 2751 email: info@geotech.com.au 13 16 SGS ENVIRONMENTAL SERVICES Sampling By: LY/JH Job No: 12675/4 UNIT 16 33 MADDOX STREET Project: **ALEXANDRIA NSW 2015** PH: 02 8594 0400 FAX: 02 8594 0499 Project Manager: JX Location: Googong NH1A-7 & NH2 ATTN: MS EMILY YIN Sampling details Sample type Results required by: Normal TAT Water Location Depth (m) Date Soil Time **Heavy Metals** TPH F2 & F3 **pH &** KEEP As, Cd, Cu, Pb, with silica gel CEC SAMPLE Mn, Hg, Ni and Zn clean-up D157 0.2-0.3 17/10/2016 SG YES D157 1.0-1.1 17/10/2016 SG YES D157 1.9-2.0 17/10/2016 SG YES **DS11** 0-0.1 18/10/2016 SG YES **DS16** 0-0.1 18/10/2016 SG 161 YES **DS18** 0-0.1 18/10/2016 SG YES **DS18** 0.5-0.6 18/10/2016 SG YES **DS19** 0-0.1 18/10/2016 SG YES **DS19** 0.5-0.6 18/10/2016 SG YES DS22 0-0.1 18/10/2016 SG YES **DS22** 18/10/2016 SG 0.5-0.6 YES CS12-1 0-0.1 18/10/2016 SG YES 1 61 CS12-2 0-0.1 18/10/2016 SG YES Relinquished by Received by Name Signature Date Name Signature Date JOHN XU 20/10/2016 Legend: WG Water sample, glass bottle SG Soil sample (glass jar) SP Soil sample (plastic bag) * Purge & Trap WP Water sample, plastic bottle Test required

Laboratory Test Request / Chain of Custody Record

Tel: (02) 4722 2700 Lemko Place P O Box 880 Fax: (02) 4722 6161 of Page PENRITH NSW 2750 PENRITH NSW 2751 email: info@geotech.com.au 16 SGS ENVIRONMENTAL SERVICES LY/JH TO: Sampling By: Job No: 12675/4 UNIT 16 33 MADDOX STREET Project: **ALEXANDRIA NSW 2015** PH: 02 8594 0400 FAX: 02 8594 0499 Project Manager: JX Location: Googong NH1A-7 & NH2 MS EMILY YIN ATTN: Sampling details Sample type Results required by: Normal TAT Depth (m) Water Location Date Time Soil TPH F2 & F3 **Heavy Metals** KEEP **pH &** As, Cd, Cu, Pb, with silica gel CEC SAMPLE Mn, Hg, Ni and Zn clean-up CS12-2 YES 0.5-0.6 18/10/2016 SG CS12-3 YES 18/10/2016 SG 0-0.1 CS14-1 0-0.1 18/10/2016 SG YES CS14-2 0-0.1 18/10/2016 SG YES CS14-3 0-0.1 18/10/2016 SG YES CS15-1 YES 0-0.1 18/10/2016 SG CS15-2 YES 0-0.1 18/10/2016 SG YES CS15-2 0.5-0.6 18/10/2016 SG CS15-3 0-0.1 18/10/2016 SG YES YES CS18-1 0-0.1 18/10/2016 SG CS18-2 0-0.1 18/10/2016 SG YES YES CS18-2 0.5-0.6 18/10/2016 SG CS18-3 18/10/2016 SG YES 0-0.1 Relinquished by Received by Name Signature Date Name Signature Date JOHN XU 20/10/2016 Legend: WG SP Soil sample (plastic bag) Water sample, glass bottle SG Soil sample (glass jar) * Purge & Trap WP Water sample, plastic bottle Test required

Laboratory Test Request / Chain of Custody Record

Tel: (02) 4722 2700 Lemko Place P O Box 880 Fax: (02) 4722 6161 Page of PENRITH NSW 2750 PENRITH NSW 2751 email: info@geotech.com.au 15 16 SGS ENVIRONMENTAL SERVICES Sampling By: LY/JH 12675/4 Job No: UNIT 16 33 MADDOX STREET Project: **ALEXANDRIA NSW 2015** PH: 02 8594 0400 FAX: 02 8594 0499 Project Manager: JX Location: Googong NH1A-7 & NH2 ATTN: MS EMILY YIN Sampling details Sample type Results required by: Normal TAT Location Depth (m) Date Time Soil Water **Heavy Metals** TPH F2 & F3 **pH &** KEEP As, Cd, Cu, Pb, with silica gel CEC SAMPLE Mn, Hg, Ni and Zn clean-up CS22-1 0-0.1 18/10/2016 SG YES CS22-2 0-0.1 18/10/2016 SG YES CS22-3 0-0.1 18/10/2016 SG YES 156 Duplicate D1 17/10/2016 SG YES S Duplicate D2 17/10/2016 SG YES 144 Duplicate D3 17/10/2016 SG YES Q Duplicate D4 SG 17/10/2016 YES Duplicate D5 18/10/2016 SG YES Duplicate D6 18/10/2016 SG YES QZ Duplicate D7 18/10/2016 SG YES 145 Duplicate D8 18/10/2016 SG YES 194 Duplicate D9 18/10/2016 SG YES Duplicate D10 18/10/2016 SG YES Relinquished by Received by Name Signature Date Name Date Date Signature **JOHN XU** 20/10/2016 Legend: WG Water sample, glass bottle SG Soil sample (glass jar) SP Soil sample (plastic bag) * Purge & Trap WP Water sample, plastic bottle Test required

Laboratory Test Request / Chain of Custody Record

Lemko Place			DE4		Box 880		4722 6161				Page	16	of	16
UNIT 16 33 MADDO	ONMENTAL S X STREET RIA NSW 201		PEN	KUH N	SW 2751	em	ail: info@geotech.com.a Sampling By:	au	LY/JH	Job No: Project:	12675/4	16	- OI	10
PH: 02 8594 040				FAX:	02 8594 0	499	Project Manager:		JX	Location:	Googong NH	1A-7 & NH2		
VIII. MS CMICT	Sampling de	tails		Sami	ole type		3	12.00		e Do Managara				
Location	Depth (m)	Date	Time	Soil	Water			Results	required by: N	ormal TAT				
						Heavy Metals As, Cd, Cu, Pb, Mn, Hg, Ni and Zn	TPH F2 & F3 with silica gel clean-up	Heavy Metals As, Cd, Cu, Pb, Mn, Hg, Ni and Zn (unfiltered)	Heavy Metals As, Cd, Cu, Pb, Mn, Hg, Ni and Zn (to be filtered at lab)					KEEP SAMPLE
Rinsate R1	()	17/10/2016			WG	/					0	1		YES
Rinsate R2	(18/10/2016			WG	√	V							YES
Dam Water W1		18/10/2016	*		WG/WP			V	V					YES
													-	YES
							-						-	
													-	
				-							-		1	
				17									4	
		Relin	quished by		-				Ri	eceived by		1	-	
Name			Signature	е		Date	0	Name		Signat	ure	19/10/	Date	200
JOHN XU			jx			20/10/2016	Chre			()	*	17/10/	100	
	le, glass bottle			SG	Soil sampl	le (glass jar)			Soil sample (plastic bag) Test required			* Purge & Tra	ip	

SAMPLE RECEIPT ADVICE

CLIENT DETAILS

Email

LABORATORY DETAILS

Contact John Xu

Client Geotechnique Address P.O. Box 880

P.O. Box 880 PENRITH NSW 2751 Manager Huong Crawford

Laboratory SGS Alexandria Environmental

Address Unit 16, 33 Maddox St

Alexandria NSW 2015

Telephone 02 4722 2700

Facsimile 02 4722 6161

john.xu@geotech.com.au

Telephone +61 2 8594 0400

Facsimile +61 2 8594 0499

Email

au.environmental.sydney@sgs.com

Project 12675-4 Googong NH1A-7 and NH2

Order Number (Not specified)
Samples 198

Samples Received Report Due Wed 19/10/2016 Thu 27/10/2016

SGS Reference SE158264

SUBMISSION DETAILS

This is to confirm that 198 samples were received on Wednesday 19/10/2016. Results are expected to be ready by Thursday 27/10/2016. Please quote SGS reference SE158264 when making enquiries. Refer below for details relating to sample integrity upon receipt.

Sample counts by matrix
Date documentation received
Samples received without headspace
Sample container provider
Samples received in correct containers

Sample cooling method

Complete documentation received

195 Soil, 3 Water 20/10/16@12:22pm

Yes SGS Yes Ice Bricks Yes Type of documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested Sufficient sample for analysis Samples clearly labelled COC Yes 8.3°C Standard Yes Yes

Unless otherwise instructed, water and bulk samples will be held for one month from date of report, and soil samples will be held for two months.

COMMENTS -

To the extent not inconsistent with the other provisions of this document and unless specifically agreed otherwise in writing by SGS, all SGS services are rendered in accordance with the applicable SGS General Conditions of Service accessible at http://www.sgs.com/en/terms-and-conditions as at the date of this document. Attention is drawn to the limitations of liability and to the clauses of indemnification.

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia Australia

t +61 2 8594 0400 f +61 2 8594 0499

www.sgs.com.au

CLIENT DETAILS -

Client Geotechnique

Project 12675-4 Googong NH1A-7 and NH2

- SUMMARY OF ANALYSIS

		Exchangeable Cations and Cation Exchange Capacity	Mercury in Soil	Moisture Content	pH in soil (1:5)	Total Recoverable Metals in Soil/Waste
No.	Sample ID A4 0.25-0.35		1	1	-	7
002	A4 0.5-0.6	_	1	1	_	7
003	A6 0.25-0.35	_	1	1	_	7
004	A6 0.5-0.6	_	1	1	_	7
005	A8 0.25-0.35	_	1	1	_	7
006	A8 0.5-0.6	13	1	1	1	7
007	A8 1.0-1.1	-	1	1	-	7
008	A9 0.25-0.35	-	1	1	-	7
009	A9 0.5-0.6	-	1	1	-	7
010	A11 0.25-0.35	-	1	1	-	7
011	A11 0.5-0.6	-	1	1	-	7
012	A11 1.0-1.1	13	1	1	1	7
013	A11 1.9-2.0	-	1	1	-	7
014	A13 0.25-0.35	-	1	1	-	7
015	A13 0.5-0.6	-	1	1	-	7
016	A15 0.2-0.3	-	1	1	-	7
017	A15 0.5-0.6	13	1	1	1	7
018	A15 1.0-1.1	-	1	1	-	7
019	A15 1.9-2.0	-	1	1	-	7
020	A16 0.2-0.3	13	1	1	1	7
021	A16 0.5-0.6	-	1	1	-	7
022	A16 1.0-1.1	-	1	1	-	7
023	A16 1.5-1.6	-	1	1	-	7
024	A17 0.2-0.3	-	1	1	-	7

_ CONTINUED OVERLEAF

The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details.

Testing as per this table shall commence immediately unless the client intervenes with a correction .

CLIENT DETAILS -

Client Geotechnique

Project 12675-4 Googong NH1A-7 and NH2

- SUMMARY OF ANALYSIS

No.	Sample ID	Exchangeable Cations and Cation Exchange Capacity	Mercury in Soil	Moisture Content	pH in soil (1:5)	Total Recoverable Metals in Soil/Waste
025	A17 0.5-0.6	-	1	1	-	7
026	A17 1.0-1.1	-	1	1	-	7
027	A17 1.9-2.0	13	1	1	1	7
028	A18 0.2-0.3	-	1	1	-	7
029	A18 0.5-0.6	-	1	1	-	7
030	A18 1.0-1.1	13	1	1	1	7
031	D101 0-0.1	13	1	1	1	7
032	D101 0.2-0.3	-	1	1	-	7
033	D101 1.0-1.1	13	1	1	1	7
034	D101 1.9-2.0	-	1	1	-	7
035	D102 0-0.1	-	1	1	-	7
036	D102 0.2-0.3	-	1	1	-	7
037	D103 0-0.1	-	1	1	-	7
038	D103 0.2-0.3	-	1	1	-	7
039	D104 0-0.1	-	1	1	-	7
040	D104 0.2-0.3	-	1	1	-	7
041	D105 0-0.1	-	1	1	-	7
042	D105 0.2-0.3	-	1	1	-	7
043	D106 0-0.1	-	1	1	-	7
044	D106 0.2-0.3	-	1	1	-	7
045	D107 0-0.1	-	1	1	-	7
046	D107 0.2-0.3	-	1	1	-	7
047	D108 0-0.1	-	1	1	-	7
048	D108 0.2-0.3	-	1	1	-	7

_ CONTINUED OVERLEAF

The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details.

CLIENT DETAILS -

Client Geotechnique

Project 12675-4 Googong NH1A-7 and NH2

- SUMMARY OF ANALYSIS

		Exchangeable Cations and Cation Exchange Capacity	Mercury in Soil	Moisture Content	pH in soil (1:5)	Total Recoverable Metals in Soil/Waste
No. 049	Sample ID D109 0-0.1	ш О	≥ 1	1	<u>a</u>	7 .⊑
		_	1	1	_	7
050	D109 0.2-0.3					
051	D110 0-0.1	-	1	1	-	7
052	D110 0.2-0.3	-	1	1	-	7
053	D111 0-0.1	-	1	1	-	7
054	D111 0.2-0.3	-	1	1	-	7
055	D112 0-0.1	-	1	1	-	7
056	D112 0.2-0.3	-	1	1	-	7
057	D113 0-0.1	-	1	1	-	7
058	D113 0.2-0.3	-	1	1	-	7
059	D114 0-0.1	-	1	1	-	7
060	D114 0.2-0.3	-	1	1	-	7
061	D115 0-0.1	-	1	1	-	7
062	D115 0.2-0.3	-	1	1	-	7
063	D116 0-0.1	13	1	1	1	7
064	D116 0.2-0.3	13	1	1	1	7
065	D116 1.0-1.1	-	1	1	-	7
066	D116 1.4-1.5	-	1	1	-	7
067	D117 0-0.1	-	1	1	-	7
068	D117 0.2-0.3	-	1	1	-	7
069	D118 0-0.1	-	1	1	-	7
070	D118 0.2-0.3	-	1	1	-	7
071	D119 0-0.1	13	1	1	1	7
072	D119 0.2-0.3	-	1	1	-	7

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document.

The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details.

Testing as per this table shall commence immediately unless the client intervenes with a correction .

CLIENT DETAILS -

Client Geotechnique

Project 12675-4 Googong NH1A-7 and NH2

- SUMMARY OF ANALYSIS

No.	Sample ID	Exchangeable Cations and Cation Exchange Capacity	Mercury in Soil	Moisture Content	pH in soil (1:5)	Total Recoverable Metals in Soil/Waste
073	D120 0-0.1	-	1	1	_	7
074	D120 0.2-0.3	-	1	1	-	7
075	D121 0-0.1	-	1	1	-	7
076	D121 0.2-0.3	-	1	1	-	7
077	D122 0-0.1	-	1	1	-	7
078	D122 0.2-0.3	-	1	1	-	7
079	D123 0-0.1	-	1	1	-	7
080	D123 0.2-0.3	-	1	1	-	7
081	D124 0-0.1	-	1	1	-	7
082	D124 0.2-0.3	-	1	1	-	7
083	D125 0-0.1	-	1	1	-	7
084	D125 0.2-0.3	-	1	1	-	7
085	D126 0-0.1	-	1	1	-	7
086	D126 0.2-0.3	-	1	1	-	7
087	D127 0-0.1	-	1	1	-	7
088	D127 0.2-0.3	-	1	1	-	7
089	D128 0-0.1	-	1	1	-	7
090	D128 0.2-0.3	-	1	1	-	7
091	D129 0-0.1	-	1	1	-	7
092	D129 0.2-0.03	-	1	1	-	7
093	D130 0-0.1	13	1	1	1	7
094	D130 0.2-0.3	-	1	1	-	7
095	D130 1.0-1.1	13	1	1	1	7
096	D131 0-0.1	-	1	1	-	7

_ CONTINUED OVERLEAF

The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details.

Testing as per this table shall commence immediately unless the client intervenes with a correction .

CLIENT DETAILS -

Client Geotechnique

Project 12675-4 Googong NH1A-7 and NH2

SUMMARY OF ANALYSIS

No. Sample ID Discrete Sample ID Discrete D							
098 D132 0-0.1 13 1 1 7 099 D132 0.2-0.3 13 1 1 7 100 D132 1.0-1.1 - 1 1 - 7 101 D132 1.9-2.0 - 1 1 - 7 102 D133 0-0.1 - 1 1 - 7 103 D133 0-0.1 - 1 1 - 7 104 D134 0-0.3 - 1 1 - 7 105 D134 0-2-0.03 - 1 1 - 7 106 D135 0-0.1 - 1 1 - 7 107 D135 0-2-0.3 - 1 1 - 7 108 D136 0-2-0.3 - 1 1 - 7 109 D136 0-2-0.3 - 1 1 - 7 110 D137 0-0.1 - 1 1	No.	Sample ID	Exchangeable Cations and Cation Exchange Capacity	Mercury in Soil	Moisture Content	pH in soil (1:5)	Total Recoverable Metals in Soil/Waste
099 D132 0.2-0.3 13 1 1 7 100 D132 1.0-1.1 - 1 1 - 7 101 D132 1.9-2.0 - 1 1 - 7 102 D133 0-0.1 - 1 1 - 7 103 D133 0.2-0.3 - 1 1 - 7 104 D134 0.2-0.03 - 1 1 - 7 105 D134 0.2-0.03 - 1 1 - 7 106 D135 0.2-0.3 - 1 1 - 7 107 D135 0.2-0.3 - 1 1 - 7 108 D136 0.2-0.3 - 1 1 - 7 110 D137 0-0.1 - 1 1 - 7 111 D138 0-2-0.3 - 1 1 - 7 113 D138 0-2-0.3 -	097	D131 0.2-0.3	-	1	1	-	7
100 D132 1.0-1.1 - 1 1 - 7 101 D132 1.9-2.0 - 1 1 - 7 102 D133 0-0.1 - 1 1 - 7 103 D133 0.2-0.3 - 1 1 - 7 104 D134 0-0.1 - 1 1 - 7 105 D134 0.2-0.03 - 1 1 - 7 106 D135 0-0.1 - 1 1 - 7 107 D135 0-2-0.3 - 1 1 - 7 108 D136 0-2-0.3 - 1 1 - 7 109 D136 0-2-0.3 - 1 1 - 7 110 D137 0-2-0.3 - 1 1 - 7 111 D138 0-2-0.3 - 1 1 - 7 114 D139 0-2-0.3 - 1 1 - 7 115 D139 0-2-0.3 -	098	D132 0-0.1	13	1	1	1	7
101 D132 1.9-2.0 - 1 1 - 7 102 D133 0-0.1 - 1 1 - 7 103 D133 0.2-0.3 - 1 1 - 7 104 D134 0-0.1 - 1 1 - 7 105 D134 0.2-0.03 - 1 1 - 7 106 D135 0-0.1 - 1 1 - 7 107 D135 0.2-0.3 - 1 1 - 7 108 D136 0.2-0.3 - 1 1 - 7 109 D136 0.2-0.3 - 1 1 - 7 110 D137 0-0.1 - 1 1 - 7 111 D138 0-0.1 - 1 1 - 7 112 D138 0-0.1 - 1 1 - 7 114 D139 0-0.3 - 1 1 - 7 114 D139 0.2-0.3 - 1	099	D132 0.2-0.3	13	1	1	1	7
102 D133 0-0.1 - 1 1 - 7 103 D133 0.2-0.3 - 1 1 - 7 104 D134 0-0.1 - 1 1 - 7 105 D134 0.2-0.03 - 1 1 - 7 106 D135 0-0.1 - 1 1 - 7 107 D135 0.2-0.3 - 1 1 - 7 108 D136 0.2-0.3 - 1 1 - 7 109 D136 0.2-0.3 - 1 1 - 7 110 D137 0-0.1 - 1 1 - 7 111 D137 0-2-0.3 - 1 1 - 7 112 D138 0-0.1 - 1 1 - 7 114 D139 0-0.1 13 1 1 1 7 115 D139 0.2-0.3 - 1 1 1 - 7 115 D139 0.2-0.3 <t< td=""><td>100</td><td>D132 1.0-1.1</td><td>-</td><td>1</td><td>1</td><td>-</td><td>7</td></t<>	100	D132 1.0-1.1	-	1	1	-	7
103 D133 0.2-0.3 - 1 1 - 7 104 D134 0-0.1 - 1 1 - 7 105 D134 0.2-0.03 - 1 1 - 7 106 D135 0-0.1 - 1 1 - 7 107 D135 0.2-0.3 - 1 1 - 7 108 D136 0-0.1 - 1 1 - 7 109 D136 0.2-0.3 - 1 1 - 7 110 D137 0-0.1 - 1 1 - 7 111 D138 0-0.01 - 1 1 - 7 113 D138 0-2.0.3 - 1 1 - 7 114 D139 0-2.0.3 - 1 1 - 7 115 D139 0.2-0.3 - 1 1 - 7	101	D132 1.9-2.0	-	1	1	-	7
104 D134 0-0.1 - 1 1 - 7 105 D134 0.2-0.03 - 1 1 - 7 106 D135 0-0.1 - 1 1 - 7 107 D135 0.2-0.3 - 1 1 - 7 108 D136 0-0.1 - 1 1 - 7 109 D136 0.2-0.3 - 1 1 - 7 110 D137 0-0.1 - 1 1 - 7 111 D137 0.2-0.3 - 1 1 - 7 112 D138 0-0.1 - 1 1 - 7 113 D138 0.2-0.3 - 1 1 - 7 114 D139 0.2-0.3 - 1 1 - 7 115 D139 0.2-0.3 - 1 1 - 7	102	D133 0-0.1	-	1	1	-	7
105 D134 0.2-0.03 - 1 1 - 7 106 D135 0-0.1 - 1 1 - 7 107 D135 0.2-0.3 - 1 1 - 7 108 D136 0.2-0.3 - 1 1 - 7 109 D136 0.2-0.3 - 1 1 - 7 110 D137 0-0.1 - 1 1 - 7 111 D137 0.2-0.3 - 1 1 - 7 112 D138 0-0.1 - 1 1 - 7 113 D138 0.2-0.3 - 1 1 - 7 114 D139 0-0.1 13 1 1 1 - 7 115 D139 0.2-0.3 - 1 1 - 7	103	D133 0.2-0.3	-	1	1	-	7
106 D135 0-0.1 - 1 1 - 7 107 D135 0.2-0.3 - 1 1 - 7 108 D136 0-0.1 - 1 1 - 7 109 D136 0.2-0.3 - 1 1 - 7 110 D137 0-0.1 - 1 1 - 7 111 D137 0.2-0.3 - 1 1 - 7 112 D138 0-0.1 - 1 1 - 7 113 D138 0.2-0.3 - 1 1 - 7 114 D139 0-0.1 13 1 1 1 7 115 D139 0.2-0.3 - 1 1 - 7	104	D134 0-0.1	-	1	1	-	7
107 D135 0.2-0.3 - 1 1 - 7 108 D136 0-0.1 - 1 1 - 7 109 D136 0.2-0.3 - 1 1 - 7 110 D137 0-0.1 - 1 1 - 7 111 D137 0.2-0.3 - 1 1 - 7 112 D138 0-0.1 - 1 1 - 7 113 D138 0.2-0.3 - 1 1 - 7 114 D139 0-0.1 13 1 1 1 7 115 D139 0.2-0.3 - 1 1 - 7	105	D134 0.2-0.03	-	1	1	-	7
108 D136 0-0.1 - 1 1 - 7 109 D136 0.2-0.3 - 1 1 - 7 110 D137 0-0.1 - 1 1 - 7 111 D137 0.2-0.3 - 1 1 - 7 112 D138 0-0.1 - 1 1 - 7 113 D138 0.2-0.3 - 1 1 - 7 114 D139 0-0.1 13 1 1 1 7 115 D139 0.2-0.3 - 1 1 - 7	106	D135 0-0.1	-	1	1	-	7
109 D136 0.2-0.3 - 1 1 - 7 110 D137 0-0.1 - 1 1 - 7 111 D137 0.2-0.3 - 1 1 - 7 112 D138 0-0.1 - 1 1 - 7 113 D138 0.2-0.3 - 1 1 - 7 114 D139 0-0.1 13 1 1 1 7 115 D139 0.2-0.3 - 1 1 - 7	107	D135 0.2-0.3	-	1	1	-	7
110 D137 0-0.1 - 1 1 - 7 111 D137 0.2-0.3 - 1 1 - 7 112 D138 0-0.1 - 1 1 - 7 113 D138 0.2-0.3 - 1 1 - 7 114 D139 0-0.1 13 1 1 1 7 115 D139 0.2-0.3 - 1 1 - 7	108	D136 0-0.1	-	1	1	-	7
111 D137 0.2-0.3 - 1 1 - 7 112 D138 0-0.1 - 1 1 - 7 113 D138 0.2-0.3 - 1 1 - 7 114 D139 0-0.1 13 1 1 1 7 115 D139 0.2-0.3 - 1 1 - 7	109	D136 0.2-0.3	-	1	1	-	7
112 D138 0-0.1 - 1 1 - 7 113 D138 0.2-0.3 - 1 1 - 7 114 D139 0-0.1 13 1 1 1 7 115 D139 0.2-0.3 - 1 1 - 7	110	D137 0-0.1	-	1	1	-	7
113 D138 0.2-0.3 - 1 1 - 7 114 D139 0-0.1 13 1 1 1 7 115 D139 0.2-0.3 - 1 1 - 7	111	D137 0.2-0.3	-	1	1	-	7
114 D139 0-0.1 13 1 1 7 115 D139 0.2-0.3 - 1 1 - 7	112	D138 0-0.1	-	1	1	-	7
115 D139 0.2-0.3 - 1 1 - 7	113	D138 0.2-0.3	-	1	1	-	7
	114	D139 0-0.1	13	1	1	1	7
116 D139 1 0-1 1 - 7	115	D139 0.2-0.3	-	1	1	-	7
5100 1.0 1.1	116	D139 1.0-1.1	-	1	1	-	7
117 D139 1.4-1.5 13 1 1 7	117	D139 1.4-1.5	13	1	1	1	7
118 D140 0-0.1 - 1 1 - 7	118	D140 0-0.1	-	1	1	-	7
119 D140 0.2-0.3 - 1 1 - 7	119	D140 0.2-0.3	-	1	1	-	7
120 D141 0-0.1 - 1 1 - 7	120	D141 0-0.1	-	1	1	-	7

_ CONTINUED OVERLEAF

The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details.

Testing as per this table shall commence immediately unless the client intervenes with a correction .

CLIENT DETAILS -

Client Geotechnique

Project 12675-4 Googong NH1A-7 and NH2

- SUMMARY OF ANALYSIS

No.	Sample ID	Exchangeable Cations and Cation Exchange Capacity	Mercury in Soil	Moisture Content	pH in soil (1:5)	Total Recoverable Metals in Soil/Waste
121	D141 0.2-0.3	-	1	1	-	7
122	D142 0-0.1	13	1	1	1	7
123	D142 0.2-0.3	-	1	1	-	7
124	D142 1.0-1.1	-	1	1	-	7
125	D142 1.9-2.0	13	1	1	1	7
126	D143 0-0.1	-	1	1	-	7
127	D143 0.2-0.3	-	1	1	-	7
128	D144 0-0.1	-	1	1	-	7
129	D144 0.2-0.3	-	1	1	-	7
130	D145 0-0.1	-	1	1	-	7
131	D145 0.2-0.3	-	1	1	-	7
132	D146 0-0.1	-	1	1	-	7
133	D146 0.2-0.3	-	1	1	-	7
134	D147 0-0.1	-	1	1	-	7
135	D147 0.2-0.3	-	1	1	-	7
136	D148 0-0.1	-	1	1	-	7
137	D148 0.2-0.3	-	1	1	-	7
138	D149 0-0.1	-	1	1	-	7
139	D149 0.2-0.3	-	1	1	-	7
140	D150 0-0.1	-	1	1	-	7
141	D150 0.2-0.3	-	1	1	-	7
142	D151 0-0.1	-	1	1	-	7
143	D151 0.2-0.3	-	1	1	-	7
144	D152 0-0.1	13	1	1	1	7

_ CONTINUED OVERLEAF

The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details.

Testing as per this table shall commence immediately unless the client intervenes with a correction .

CLIENT DETAILS -

Client Geotechnique

Project 12675-4 Googong NH1A-7 and NH2

SUMMARY OF ANALYSIS

No.	Sample ID	Exchangeable Cations and Cation Exchange Capacity	Mercury in Soil	Moisture Content	pH in soil (1:5)	Total Recoverable Metals in Soil/Waste	TRH Silica Gel (Total Recoverable
145	D152 0.2-0.3	13	1	1	1	7	-
146	D152 1.0-1.1	-	1	1	-	7	-
147	D152 1.9-2.0	-	1	1	-	7	-
148	D153 0-0.1	-	1	1	-	7	-
149	D153 0.2-0.3	-	1	1	-	7	-
150	D154 0-0.1	-	1	1	-	7	-
151	D154 0.2-0.3	-	1	1	-	7	-
152	D155 0-0.1	-	1	1	-	7	-
153	D155 0.2-0.3	-	1	1	-	7	-
154	D156 0-0.1	-	1	1	-	7	-
155	D156 0.2-0.3	-	1	1	-	7	-
156	D157 0-0.1	13	1	1	1	7	-
157	D157 0.2-0.3	-	1	1	-	7	-
158	D157 1.0-1.1	13	1	1	1	7	-
159	D157 1.9-2.0	-	1	1	-	7	-
160	DS11 0-0.1	-	-	1	-	-	8
161	DS16 0-0.1	-	-	1	-	-	8
162	DS18 0-0.1	-	-	1	-	-	8
163	DS18 0.5-0.6	-	-	1	-	-	8
164	DS19 0-0.1	-	-	1	-	-	8
165	DS19 0.5-0.6	-	-	1	-	-	8
166	DS22 0-0.1	-	-	1	-	-	8
167	DS22 0.5-0.6	-	-	1	-	-	8
168	CS12-1 0-0.1	-	-	1	-	-	8

_ CONTINUED OVERLEAF

The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details.

Testing as per this table shall commence immediately unless the client intervenes with a correction .

CLIENT DETAILS -

Client Geotechnique

Project 12675-4 Googong NH1A-7 and NH2

- SUMMARY OF ANALYSIS

No.	Sample ID	Mercury in Soil	Moisture Content	Total Recoverable Metals in Soil/Waste	TRH Silica Gel (Total Recoverable
169	CS12-2 0-0.1	-	1	-	8
170	CS12-2 0.5-0.6	-	1	-	8
171	CS12-3 0-0.1	-	1	-	8
172	CS14-1 0-0.1	-	1	-	8
173	CS14-2 0-0.1	-	1	-	8
174	CS14-3 0-0.1	-	1	-	8
175	CS15-1 0-0.1	-	1	-	8
176	CS15-2 0-0.1	-	1	-	8
177	CS15-2 0.5-0.6	-	1	-	8
178	CS15-3 0-0.1	-	1	-	8
179	CS18-1 0-0.1	-	1	-	8
180	CS18-2 0-0.1	-	1	-	8
181	CS18-2 0.5-0.6	-	1	-	8
182	CS18-3 0-0.1	-	1	-	8
183	CS22-1 0-0.1	-	1	-	8
184	CS22-2 0-0.1	-	1	-	8
185	CS22-3 0-0.1	-	1	-	8
186	Duplicate D1	1	1	7	-
187	Duplicate D2	1	1	7	-
188	Duplicate D3	1	1	7	-
189	Duplicate D4	1	1	7	-
190	Duplicate D5	1	1	7	-
191	Duplicate D6	1	1	7	-
192	Duplicate D7	1	1	7	-

_ CONTINUED OVERLEAF

The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details.

Testing as per this table shall commence immediately unless the client intervenes with a correction .

CLIENT DETAILS

Client Geotechnique Project 12675-4 Googong NH1A-7 and NH2

SUMMARY OF ANALYSIS

No.	Sample ID	Moisture Content	TRH Silica Gel (Total Recoverable	TRH Silica Gel (Total Recoverable
193	Duplicate D8	1	8	-
194	Duplicate D9	1	8	-
195	Duplicate D10	1	8	-
197	Rinsate R2	-	_	9

CLIENT DETAILS -Project 12675-4 Googong NH1A-7 and NH2 Client Geotechnique

SUMMARY OF ANALYSIS

No.	Sample ID	Mercury (dissolved) in Water	Mercury (total) in Water	Metals in Water (Dissolved) by ICPOES	Trace Metals (Dissolved) in Water by ICPMS	Trace Metals (Total) in Water by ICPMS
196	Rinsate R1	1	-	7	-	-
197	Rinsate R2	1	-	7	-	-
198	Dam Water W1	1	1	-	7	7

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document.

21/10/2016 Page 11 of 11

The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details.

Testing as per this table shall commence immediately unless the client intervenes with a correction .

ANALYTICAL REPORT

CLIENT DETAILS

LABORATORY DETAILS

Contact Client

John Xu Geotechnique P.O. Box 880

PENRITH NSW 2751

Huong Crawford Manager

Laboratory Address

SGS Alexandria Environmental

Unit 16, 33 Maddox St

Alexandria NSW 2015

Telephone Facsimile

Address

02 4722 2700 02 4722 6161

Email

john.xu@geotech.com.au

Project

12675-4 Googong NH1A-7 and NH2-Add

Samples

(Not specified)

Order Number 198 Telephone

Email

+61 2 8594 0400

Facsimile

+61 2 8594 0499 au.environmental.sydney@sgs.com

SGS Reference

SE158264A R0

Date Received 1/11/2016

Date Reported

4/11/2016

COMMENTS

Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562(4354).

SIGNATORIES

Bennet Lo

Senior Organic Chemist/Metals Chemist

Dong Liang

Metals/Inorganics Team Leader

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC

Alexandria NSW 2015 Alexandria NSW 2015

Australia Australia t +61 2 8594 0400 f +61 2 8594 0499

www.sgs.com.au

SE158264A R0

pH in soil (1:5) [AN101] Tested: 2/11/2016

			D101 1.9-2.0	D103 0-0.1	D104 0-0.1	D105 0-0.1	D114 0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			17/10/2016	18/10/2016	18/10/2016	18/10/2016	17/10/2016
PARAMETER	UOM	LOR	SE158264A.034	SE158264A.037	SE158264A.039	SE158264A.041	SE158264A.059
рН	pH Units	-	7.7	6.1	5.3	6.0	6.1

			D115 0-0.1	D115 0.2-0.3	D124 0-0.1	D126 0-0.1	D135 0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			17/10/2016	17/10/2016	17/10/2016	17/10/2016	17/10/2016
PARAMETER	UOM	LOR	SE158264A.061	SE158264A.062	SE158264A.081	SE158264A.085	SE158264A.106
рН	pH Units	-	5.5	5.9	5.5	6.0	6.3

			D136 0-0.1	D137 0.2-0.3	D141 0.2-0.3	D153 0.2-0.3	D155 0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	17/10/2016 SE158264A.108	17/10/2016 SE158264A.111	17/10/2016 SE158264A.121	17/10/2016 SE158264A.149	17/10/2016 SE158264A.152
рН	pH Units	-	6.3	6.1	6.4	6.1	6.3

4/11/2016 Page 2 of 5

Exchangeable Cations and Cation Exchange Capacity (CEC/ESP/SAR) [AN122] Tested: 1/11/2016

			A15 1.9-2.0	A16 0.5-0.6	A16 1.0-1.1	A16 1.5-1.6	D101 1.9-2.0
			SOIL - 18/10/2016	SOIL - 18/10/2016	SOIL - 18/10/2016	SOIL - 18/10/2016	SOIL - 17/10/2016
PARAMETER	иом	LOR	SE158264A.019	SE158264A.021	SE158264A.022	SE158264A.023	SE158264A.034
Exchangeable Sodium, Na	mg/kg	2	200	39	34	42	100
Exchangeable Sodium, Na	meq/100g	0.01	0.89	0.17	0.15	0.18	0.45
Exchangeable Sodium Percentage*	%	0.1	4.1	1.5	1.5	1.1	2.8
Exchangeable Potassium, K	mg/kg	2	64	100	81	70	170
Exchangeable Potassium, K	meq/100g	0.01	0.16	0.26	0.21	0.18	0.43
Exchangeable Potassium Percentage*	%	0.1	0.7	2.4	2.1	1.1	2.7
Exchangeable Calcium, Ca	mg/kg	2	68	710	520	160	1200
Exchangeable Calcium, Ca	meq/100g	0.01	0.34	3.5	2.6	0.78	6.1
Exchangeable Calcium Percentage*	%	0.1	1.5	32.3	26.9	4.7	38.1
Exchangeable Magnesium, Mg	mg/kg	2	2500	850	830	1900	1100
Exchangeable Magnesium, Mg	meq/100g	0.02	21	7.0	6.8	16	9.0
Exchangeable Magnesium Percentage*	%	0.1	93.7	63.8	69.4	93.2	56.4
Cation Exchange Capacity	meq/100g	0.02	22	11	9.8	17	16

			D103 0-0.1	D104 0-0.1	D105 0-0.1	D114 0-0.1	D115 0-0.1
			SOIL -	SOIL -	SOIL -	SOIL -	SOIL -
PARAMETER	UOM	LOR	18/10/2016 SE158264A.037	18/10/2016 SE158264A.039	18/10/2016 SE158264A.041	17/10/2016 SE158264A.059	17/10/2016 SE158264A.061
Exchangeable Sodium, Na	mg/kg	2	21	18	27	25	19
Exchangeable Sodium, Na	meq/100g	0.01	0.09	0.08	0.12	0.11	0.08
Exchangeable Sodium Percentage*	%	0.1	1.2	1.4	1.9	1.3	1.1
Exchangeable Potassium, K	mg/kg	2	65	66	39	220	100
Exchangeable Potassium, K	meq/100g	0.01	0.17	0.17	0.10	0.56	0.26
Exchangeable Potassium Percentage*	%	0.1	2.2	3.1	1.6	7.0	3.5
Exchangeable Calcium, Ca	mg/kg	2	1100	810	780	1000	1000
Exchangeable Calcium, Ca	meq/100g	0.01	5.3	4.1	3.9	5.0	5.1
Exchangeable Calcium Percentage*	%	0.1	70.0	73.1	63.1	62.6	68.5
Exchangeable Magnesium, Mg	mg/kg	2	250	150	250	290	240
Exchangeable Magnesium, Mg	meq/100g	0.02	2.0	1.2	2.1	2.3	2.0
Exchangeable Magnesium Percentage*	%	0.1	26.6	22.4	33.4	29.1	26.9
Cation Exchange Capacity	meq/100g	0.02	7.6	5.5	6.2	8.0	7.4

			D115 0.2-0.3	D121 0.2-0.3	D124 0-0.1	D126 0-0.1	D135 0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 17/10/2016	18/10/2016	- 17/10/2016	- 17/10/2016	- 17/10/2016
PARAMETER	UOM	LOR	SE158264A.062	SE158264A.076	SE158264A.081	SE158264A.085	SE158264A.106
Exchangeable Sodium, Na	mg/kg	2	17	39	10	13	27
Exchangeable Sodium, Na	meq/100g	0.01	0.08	0.17	0.05	0.05	0.12
Exchangeable Sodium Percentage*	%	0.1	1.1	1.2	1.5	0.5	1.4
Exchangeable Potassium, K	mg/kg	2	92	130	130	68	80
Exchangeable Potassium, K	meq/100g	0.01	0.24	0.32	0.33	0.17	0.20
Exchangeable Potassium Percentage*	%	0.1	3.5	2.3	11.2	1.7	2.4
Exchangeable Calcium, Ca	mg/kg	2	880	980	320	1700	860
Exchangeable Calcium, Ca	meq/100g	0.01	4.4	4.9	1.6	8.5	4.3
Exchangeable Calcium Percentage*	%	0.1	65.2	34.2	53.9	83.5	49.5
Exchangeable Magnesium, Mg	mg/kg	2	250	1100	120	180	490
Exchangeable Magnesium, Mg	meq/100g	0.02	2.0	8.9	0.98	1.5	4.0
Exchangeable Magnesium Percentage*	%	0.1	30.2	62.3	33.3	14.3	46.8
Cation Exchange Capacity	meq/100g	0.02	6.7	14	3.0	10	8.6

4/11/2016 Page 3 of 5

Exchangeable Cations and Cation Exchange Capacity (CEC/ESP/SAR) [AN122] Tested: 1/11/2016 (continued)

			D136 0-0.1	D137 0.2-0.3	D141 0.2-0.3	D153 0.2-0.3	D155 0-0.1
PARAMETER	UOM	LOR	SOIL - 17/10/2016 SE158264A.108	SOIL - 17/10/2016 SE158264A.111	SOIL - 17/10/2016 SE158264A.121	SOIL - 17/10/2016 SE158264A.149	SOIL - 17/10/2016 SE158264A.152
Exchangeable Sodium, Na	mg/kg	2	19	22	27	21	19
Exchangeable Sodium, Na	meq/100g	0.01	0.08	0.10	0.12	0.09	0.08
Exchangeable Sodium Percentage*	%	0.1	1.5	1.4	1.7	1.7	1.0
Exchangeable Potassium, K	mg/kg	2	59	57	60	66	49
Exchangeable Potassium, K	meq/100g	0.01	0.15	0.15	0.15	0.17	0.13
Exchangeable Potassium Percentage*	%	0.1	2.7	2.2	2.2	3.0	1.6
Exchangeable Calcium, Ca	mg/kg	2	720	820	670	650	1000
Exchangeable Calcium, Ca	meq/100g	0.01	3.6	4.1	3.4	3.3	5.1
Exchangeable Calcium Percentage*	%	0.1	65.2	60.7	47.6	58.4	64.1
Exchangeable Magnesium, Mg	mg/kg	2	210	290	420	250	320
Exchangeable Magnesium, Mg	meq/100g	0.02	1.7	2.4	3.4	2.1	2.6
Exchangeable Magnesium Percentage*	%	0.1	30.6	35.7	48.6	37.0	33.3
Cation Exchange Capacity	meq/100g	0.02	5.5	6.8	7.1	5.6	7.9

PARAMETER	иом	LOR	D156 0-0.1 SOIL - 17/10/2016 SE158264A.154	D157 1.9-2.0 SOIL - 17/10/2016 SE158264A.159
Exchangeable Sodium, Na	mg/kg	2	27	370
Exchangeable Sodium, Na	meq/100g	0.01	0.12	1.6
Exchangeable Sodium Percentage*	%	0.1	1.1	8.4
Exchangeable Potassium, K	mg/kg	2	42	160
Exchangeable Potassium, K	meq/100g	0.01	0.11	0.40
Exchangeable Potassium Percentage*	%	0.1	1.0	2.1
Exchangeable Calcium, Ca	mg/kg	2	1400	760
Exchangeable Calcium, Ca	meq/100g	0.01	6.9	3.8
Exchangeable Calcium Percentage*	%	0.1	62.6	19.8
Exchangeable Magnesium, Mg	mg/kg	2	470	1600
Exchangeable Magnesium, Mg	meq/100g	0.02	3.9	13
Exchangeable Magnesium Percentage*	%	0.1	35.3	69.8
Cation Exchange Capacity	meq/100g	0.02	11	19

4/11/2016 Page 4 of 5

METHOD SUMMARY

SE158264A R0

METHOD -

— METHODOLOGY SUMMARY –

AN101

pH in Soil Sludge Sediment and Water: pH is measured electrometrically using a combination electrode and is calibrated against 3 buffers purchased commercially. For soils, sediments and sludges, an extract with water (or 0.01M CaCl2) is made at a ratio of 1:5 and the pH determined and reported on the extract. Reference APHA 4500-H+.

AN122

Exchangeable Cations, CEC and ESP: Soil sample is extracted in 1M Ammonium Acetate at pH=7 (or 1M Ammonium Chloride at pH=7) with cations (Na, K, Ca & Mg) then determined by ICP OES/ICP MS and reported as Exchangeable Cations. For saline soils, these results can be corrected for water soluble cations and reported as Exchangeable cations in meq/100g or soil can be pre-treated (aqueous ethanol/aqueous glycerol) prior to extraction. Cation Exchange Capacity (CEC) is the sum of the exchangeable cations in meq/100g.

AN122

The Exchangeable Sodium Percentage (ESP) is calculated as the exchangeable sodium divided by the CEC (all in meq/100g) times 100.

ESP can be used to categorise the sodicity of the soil as below:

ESP < 6% non-sodic ESP 6-15% sodic ESP >15% strongly sodic

Method is refernced to Rayment and Higginson, 1992, sections 15D3 and 15N1.-

FOOTNOTES -

NATA accreditation does not cover Not analysed. UOM Unit of Measure. NVL the performance of this service. Not validated. LOR Limit of Reporting. Indicative data, theoretical holding IS Insufficient sample for analysis. Raised/lowered Limit of $\uparrow \downarrow$ time exceeded. INR Sample listed, but not received. Reporting.

Samples analysed as received.

Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/en/terms-and-conditions. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full.

4/11/2016 Page 5 of 5

STATEMENT OF QA/QC **PERFORMANCE**

CLIENT DETAILS LABORATORY DETAILS

John Xu **Huong Crawford** Manager Contact

Geotechnique SGS Alexandria Environmental Client Laboratory Address

P.O. Box 880 Address Unit 16, 33 Maddox St PENRITH NSW 2751 Alexandria NSW 2015

02 4722 2700 +61 2 8594 0400 Telephone Telephone 02 4722 6161 +61 2 8594 0499

Facsimile Facsimile

john.xu@geotech.com.au au.environmental.sydney@sgs.com Fmail Email

12675-4 Googong NH1A-7 and NH2-Add SE158264A R0 SGS Reference Project (Not specified) 01 Nov 2016 Order Number Date Received

04 Nov 2016 198 Date Reported Samples

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document and was supplied by the Client.

This QA/QC Statement must be read in conjunction with the referenced Analytical Report.

The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met with the exception of the following:

Extraction Date pH in soil (1:5) 15 items

SAMPLE SUMMARY

Sample counts by matrix Date documentation received Samples received without headspace Sample container provider Samples received in correct containers Sample cooling method Complete documentation received

22 Soil 1/11/16@4:129pm Yes SGS Yes Ice Bricks Yes

Type of documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested Sufficient sample for analysis Samples clearly labelled

COC Yes 8.3°C Standard Yes Yes

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia Australia

t +61 2 8594 0400 f+61 2 8594 0499 www.sgs.com.au

Member of the SGS Group

HOLDING TIME SUMMARY

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Exchangeable Cations and Cation Exchange Capacity (CEC/ESP/SAR)

Method: ME-(AU)-[ENV]AN122

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
A15 1.9-2.0	SE158264A.019	LB112973	18 Oct 2016	01 Nov 2016	15 Nov 2016	01 Nov 2016	15 Nov 2016	04 Nov 2016
A16 0.5-0.6	SE158264A.021	LB112973	18 Oct 2016	01 Nov 2016	15 Nov 2016	01 Nov 2016	15 Nov 2016	04 Nov 2016
A16 1.0-1.1	SE158264A.022	LB112973	18 Oct 2016	01 Nov 2016	15 Nov 2016	01 Nov 2016	15 Nov 2016	04 Nov 2016
A16 1.5-1.6	SE158264A.023	LB112973	18 Oct 2016	01 Nov 2016	15 Nov 2016	01 Nov 2016	15 Nov 2016	04 Nov 2016
D101 1.9-2.0	SE158264A.034	LB112973	17 Oct 2016	01 Nov 2016	14 Nov 2016	01 Nov 2016	14 Nov 2016	04 Nov 2016
D103 0-0.1	SE158264A.037	LB112973	18 Oct 2016	01 Nov 2016	15 Nov 2016	01 Nov 2016	15 Nov 2016	04 Nov 2016
D104 0-0.1	SE158264A.039	LB112973	18 Oct 2016	01 Nov 2016	15 Nov 2016	01 Nov 2016	15 Nov 2016	04 Nov 2016
D105 0-0.1	SE158264A.041	LB112973	18 Oct 2016	01 Nov 2016	15 Nov 2016	01 Nov 2016	15 Nov 2016	04 Nov 2016
D114 0-0.1	SE158264A.059	LB112973	17 Oct 2016	01 Nov 2016	14 Nov 2016	01 Nov 2016	14 Nov 2016	04 Nov 2016
D115 0-0.1	SE158264A.061	LB112973	17 Oct 2016	01 Nov 2016	14 Nov 2016	01 Nov 2016	14 Nov 2016	04 Nov 2016
D115 0.2-0.3	SE158264A.062	LB112973	17 Oct 2016	01 Nov 2016	14 Nov 2016	01 Nov 2016	14 Nov 2016	04 Nov 2016
D121 0.2-0.3	SE158264A.076	LB112973	18 Oct 2016	01 Nov 2016	15 Nov 2016	01 Nov 2016	15 Nov 2016	04 Nov 2016
D124 0-0.1	SE158264A.081	LB112973	17 Oct 2016	01 Nov 2016	14 Nov 2016	01 Nov 2016	14 Nov 2016	04 Nov 2016
D126 0-0.1	SE158264A.085	LB112973	17 Oct 2016	01 Nov 2016	14 Nov 2016	01 Nov 2016	14 Nov 2016	04 Nov 2016
D135 0-0.1	SE158264A.106	LB112973	17 Oct 2016	01 Nov 2016	14 Nov 2016	01 Nov 2016	14 Nov 2016	04 Nov 2016
D136 0-0.1	SE158264A.108	LB112973	17 Oct 2016	01 Nov 2016	14 Nov 2016	01 Nov 2016	14 Nov 2016	04 Nov 2016
D137 0.2-0.3	SE158264A.111	LB112973	17 Oct 2016	01 Nov 2016	14 Nov 2016	01 Nov 2016	14 Nov 2016	04 Nov 2016
D141 0.2-0.3	SE158264A.121	LB112973	17 Oct 2016	01 Nov 2016	14 Nov 2016	01 Nov 2016	14 Nov 2016	04 Nov 2016
D153 0.2-0.3	SE158264A.149	LB112973	17 Oct 2016	01 Nov 2016	14 Nov 2016	01 Nov 2016	14 Nov 2016	04 Nov 2016
D155 0-0.1	SE158264A.152	LB112973	17 Oct 2016	01 Nov 2016	14 Nov 2016	01 Nov 2016	14 Nov 2016	04 Nov 2016
D156 0-0.1	SE158264A.154	LB112973	17 Oct 2016	01 Nov 2016	14 Nov 2016	01 Nov 2016	14 Nov 2016	04 Nov 2016
D157 1.9-2.0	SE158264A.159	LB112973	17 Oct 2016	01 Nov 2016	14 Nov 2016	01 Nov 2016	14 Nov 2016	04 Nov 2016

pH in soil (1:5)

Method: ME-(AU)-[ENV]AN101

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
D101 1.9-2.0	SE158264A.034	LB112993	17 Oct 2016	01 Nov 2016	24 Oct 2016	02 Nov 2016†	03 Nov 2016	02 Nov 2016
D103 0-0.1	SE158264A.037	LB112993	18 Oct 2016	01 Nov 2016	25 Oct 2016	02 Nov 2016†	03 Nov 2016	02 Nov 2016
D104 0-0.1	SE158264A.039	LB112993	18 Oct 2016	01 Nov 2016	25 Oct 2016	02 Nov 2016†	03 Nov 2016	02 Nov 2016
D105 0-0.1	SE158264A.041	LB112993	18 Oct 2016	01 Nov 2016	25 Oct 2016	02 Nov 2016†	03 Nov 2016	02 Nov 2016
D114 0-0.1	SE158264A.059	LB112993	17 Oct 2016	01 Nov 2016	24 Oct 2016	02 Nov 2016†	03 Nov 2016	02 Nov 2016
D115 0-0.1	SE158264A.061	LB112993	17 Oct 2016	01 Nov 2016	24 Oct 2016	02 Nov 2016†	03 Nov 2016	02 Nov 2016
D115 0.2-0.3	SE158264A.062	LB112993	17 Oct 2016	01 Nov 2016	24 Oct 2016	02 Nov 2016†	03 Nov 2016	02 Nov 2016
D124 0-0.1	SE158264A.081	LB112993	17 Oct 2016	01 Nov 2016	24 Oct 2016	02 Nov 2016†	03 Nov 2016	02 Nov 2016
D126 0-0.1	SE158264A.085	LB112993	17 Oct 2016	01 Nov 2016	24 Oct 2016	02 Nov 2016†	03 Nov 2016	02 Nov 2016
D135 0-0.1	SE158264A.106	LB112993	17 Oct 2016	01 Nov 2016	24 Oct 2016	02 Nov 2016†	03 Nov 2016	02 Nov 2016
D136 0-0.1	SE158264A.108	LB112993	17 Oct 2016	01 Nov 2016	24 Oct 2016	02 Nov 2016†	03 Nov 2016	02 Nov 2016
D137 0.2-0.3	SE158264A.111	LB112993	17 Oct 2016	01 Nov 2016	24 Oct 2016	02 Nov 2016†	03 Nov 2016	02 Nov 2016
D141 0.2-0.3	SE158264A.121	LB112993	17 Oct 2016	01 Nov 2016	24 Oct 2016	02 Nov 2016†	03 Nov 2016	02 Nov 2016
D153 0.2-0.3	SE158264A.149	LB112993	17 Oct 2016	01 Nov 2016	24 Oct 2016	02 Nov 2016†	03 Nov 2016	02 Nov 2016
D155 0-0.1	SE158264A.152	LB112993	17 Oct 2016	01 Nov 2016	24 Oct 2016	02 Nov 2016†	03 Nov 2016	02 Nov 2016

4/11/2016 Page 2 of 9

SURROGATES

SE158264A R0

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No surrogates were required for this job.

4/11/2016 Page 3 of 9

METHOD BLANKS

SE158264A R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Exchangeable Cations and Cation Exchange Capacity (CEC/ESP/SAR)

Method: ME-(AU)-[ENV]AN122

Sample Number Parameter Units LOR

4/11/2016 Page 4 of 9

DUPLICATES

SE158264A R0

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

pH in soil (1:5) Method: ME-(AU)-[ENV]AN101

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE158264A.106	LB112993.014	pH	pH Units	-	6.3	6.3	32	0
SE158687.009	LB112993.025	рН	pH Units	-	9.61	9.63	31	0

4/11/2016 Page 5 of 9

LABORATORY CONTROL SAMPLES

SE158264A R0

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Exchangeable Cations and Cation Exchange Capacity (CEC/ESP/SAR)

Method: ME-(AU)-[ENV]AN122

Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB112973.002	Exchangeable Sodium, Na	mg/kg	2	NA	390	80 - 120	100
	Exchangeable Potassium, K	mg/kg	2	NA	343	80 - 120	99
	Exchangeable Calcium, Ca	mg/kg	2	NA	2570	80 - 120	96
	Exchangeable Magnesium, Mg	mg/kg	2	NA	635	80 - 120	96

pH in soil (1:5)

Method: ME-(AU)-[ENV]AN101

LB112993.003	Hq	pH Units	-	7.4	7.415	98 - 102	100
Sample Numbe	er Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %

4/11/2016 Page 6 of 9

MATRIX SPIKES

SE158264A R0

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spikes were required for this job.

4/11/2016 Page 7 of 9

MATRIX SPIKE DUPLICATES

SE158264A R0

Matrix spike duplicates are calculated as Relative Percent Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spike duplicates were required for this job.

4/11/2016 Page 8 of 9

FOOTNOTES

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover tthe performance of this service .
- Sample not analysed for this analyte.

IS Insufficient sample for analysis. LNR Sample listed, but not received.

LOR Limit of reporting.

QFH QC result is above the upper tolerance.
QFL QC result is below the lower tolerance.

- ① At least 2 of 3 surrogates are within acceptance criteria.
- ② RPD failed acceptance criteria due to sample heterogeneity.
- 3 Results less than 5 times LOR preclude acceptance criteria for RPD.
- Recovery failed acceptance criteria due to matrix interference.
- ® Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- © LOR was raised due to sample matrix interference.
- ① LOR was raised due to dilution of significantly high concentration of analyte in sample.
- ® Reanalysis of sample in duplicate confirmed sample heterogeneity and inconsistency of results.
- Recovery failed acceptance criteria due to sample heterogeneity.
- © LOR was raised due to high conductivity of the sample (required dilution).
- † Refer to Analytical Report comments for further information.

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service, available on request and accessible at http://www.sqs.com/en/terms-and-conditions. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained herein reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This test report shall not be reproduced, except in full.

4/11/2016 Page 9 of 9

GEOTECHNIQUE PTY I TD

Laboratory Test Request / Chain of Custody Record

_emko Place PENRITH NSW 275	50		PENE	RITH NS	Box 880 W 2751		02) 4722 6161 info@geotech.com.au			Page	1	of	2
FO: SGS ENV UNIT 16 33 MADD	TRONMENTAL S OX STREET DRIA NSW 201		FAX: 02 8594 0499 Sample type			Sampling By: Project Manager:	LY/JH JX	Job No: Project: Location:	12675/4 Googong NH1A-	7 & NH2			
	Sampling de	tails		Samp	le type		40.45						
Location	Depth (m)	Date	Time	Soil	Water		Results r	equired by: 7/ (SGS Ref. S		mal TAT)			
						рН	CEC						KEEP SAMPLE
19 A15	1.9-2.0	18/10/2016		SG						1			YES
21 A16	0.5-0.6	18/10/2016		SG						4-			YES
2 L A16	1.0-1.1	18/10/2016		SG			V						YES
> 3 A16	1.5-1.6	18/10/2016	-	SG			/					1	YES
₹ D101	1.9-2.0	17/10/2016		SG		✓	V						YES
3 7 D103	0-0.1	18/10/2016	-	SG		✓	✓						YES
39 D104	0-0.1	18/10/2016	•	SG		✓	✓ ·						YES
4/ D105	0-0.1	18/10/2016		SG		√	1						YES
59 D114	0-0.1	17/10/2016	-8	SG		✓	V						YES
6 D115	0-0.1	17/10/2016	w	SG		✓	√					1000	YES
D115	0.2-0.3	17/10/2016		SG		✓	V						YES
7 D121	0.2-0.3	18/10/2016		SG	1		V					1	YES
S D124	0-0.1	17/10/2016		SG		✓	V						YES
		Relino	uished by						Received by				
Name			Signature			Date	Name		Signatu	ire		Date	
JOHN) Legend:	(U		jx			1/11/2016	Church	Y				1.1.6	

GEOTECHNIQUE PTY I TO

Laboratory Test Request / Chain of Custody Record

Lemko Place PENRITH NSW 275	50		PENI		Box 880 SW 2751	Fax	: (02) 4722 2700 x: (02) 4722 6161 ail: info@geotech.com.au			Page	2	of	2
UNIT 16 33 MADD ALEXANI	'IRONMENTAL S OX STREET DRIA NSW 201						Sampling By:	LY/JH	Job No: Project:	12675/4			
PH: 02 8594 0 ATTN: MS EMIL				FAX:	02 8594	0499	Project Manager:	JX	Location:	Googong NH1A	A-7 & NH2		
	Sampling de	tails		Samp	ole type								
Location	Depth (m)	Date	Time	Soil	Water		Results r	equired by: 7/ (SGS Ref. S		mal TAT)			
						рН	CEC						KEEP SAMPLE
D126	0-0.1	17/10/2016	-	SG		/	/						YES
po b D135	0-0.1	17/10/2016		SG		/	/						YES
10 8 D136	0-0.1	17/10/2016		SG		~	~						YES
M / D137	0.2-0.3	17/10/2016		SG		✓	√					1 1 1	YES
12) D141	0.2-0.3	17/10/2016	3	SG		✓	1						YES
14 9 D153	0.2-0.3	17/10/2016	1.9	SG		✓	V						YES
15 2 D155	0-0.1	17/10/2016		SG	4	✓	V					1000	YES
/5 × D156	0-0.1	17/10/2016		SG			1						YES
K9 D157	1.9-2.0	17/10/2016	7	SG			7						YES
	-1	Relino	uished by						Received by	1			
Name		7.15.001	Signature			Date	Name		Signatu	ire T		Date	
JOHN X	Ü		jx			1/11/2016		1 in	(g		1101		
	nple, glass bottle			SG	Soil sam	ple (glass jar)) s	SP Soil sample (p ✓ Test required	lastic bag)	*	Purge & Trap		7.7

CLIENT DETAILS

LABORATORY DETAILS

John Xu Contact

Geotechnique Client Address P.O. Box 880

PENRITH NSW 2751

Huong Crawford Manager

SGS Alexandria Environmental Laboratory

Address Unit 16, 33 Maddox St

Alexandria NSW 2015

02 4722 2700 +61 2 8594 0400 Telephone Telephone

02 4722 6161 +61 2 8594 0499 Facsimile Facsimile

john.xu@geotech.com.au au.environmental.sydney@sgs.com Email **Email**

12675-4 Googong NH1A-7 and NH2-Add Project Samples Received Tue 1/11/2016 Order Number (Not specified) Report Due Mon 7/11/2016 198 SF158264A Samples SGS Reference

SUBMISSION DETAILS

This is to confirm that 198 samples were received on Tuesday 1/11/2016. Results are expected to be ready by Monday 7/11/2016. Please quote SGS reference SE158264A when making enquiries. Refer below for details relating to sample integrity upon receipt.

Sample counts by matrix 22 Soil Type of documentation received COC Date documentation received 1/11/16@4:129pm Samples received in good order Yes Samples received without headspace Yes Sample temperature upon receipt 8.3°C Sample container provider SGS Turnaround time requested Standard Samples received in correct containers Yes Sufficient sample for analysis Yes Yes

Sample cooling method Ice Bricks Samples clearly labelled Complete documentation received Yes

Unless otherwise instructed, water and bulk samples will be held for one month from date of report, and soil samples will be held for two months.

COMMENTS -

To the extent not inconsistent with the other provisions of this document and unless specifically agreed otherwise in writing by SGS, all SGS services are rendered in accordance with the applicable SGS General Conditions of Service accessible at http://www.sgs.com/en/terms-and-conditions as at the date of this document. Attention is drawn to the limitations of liability and to the clauses of indemnification.

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia Australia t +61 2 8594 0400 f +61 2 8594 0499

www.sgs.com.au

- CLIENT DETAILS	
Client Geotechnique	Project 12675-4 Googong NH1A-7 and NH2-Add

SUMMARY	OF ANALYSIS	
No.	Sample ID	Exchangeable Cations and Cation Exchange Capacity
019	A15 1.9-2.0	13
021	A16 0.5-0.6	13
022	A16 1.0-1.1	13
023	A16 1.5-1.6	13

- SUMMARY OF ANALYSIS

SAMPLE RECEIPT ADVICE

CLIENT DETAILS

Client Geotechnique Project 12675-4 Googong NH1A-7 and NH2-Add

Γ		
	xchangeable Cations and sation Exchange Capacity	H in soil (1:5)

No.	Sample ID	Excha	pH in
034	D101 1.9-2.0	13	1
037	D103 0-0.1	13	1
039	D104 0-0.1	13	1
041	D105 0-0.1	13	1

CLIENT DETAILS	
Client Geotechnique	Project 12675-4 Googong NH1A-7 and NH2-Add

SUMMARY OF ANALYSIS ———————————————————————————————————					
	Occupied ID	Exchangeable Cations and Cation Exchange Capacity	pH in soil (1:5)		
No.	Sample ID			_	
059	D114 0-0.1	13	1		
061	D115 0-0.1	13	1		
062	D115 0.2-0.3	13	1		

_ CLIENT	DETAILS			\
Client	Geotechnique	Project	12675-4 Googong NH1A-7 and NH2-Add	
)

SUMMARY OF ANALYSIS —						
		Exchangeable Cations and Cation Exchange Capacity	pH in soil (1:5)			
No.	Sample ID	шо	<u>a</u>			
076	D121 0.2-0.3	13	-			
081	D124 0-0.1	13	1			
085	D126 0-0.1	13	1			

_ CLIENT	DETAILS		
Client	Geotechnique	Project	12675-4 Googong NH1A-7 and NH2-Add

SUMMARY	SUMMARY OF ANALYSIS						
No.	Sample ID	Exchangeable Cations and Cation Exchange Capacity	pH in soil (1:5)				
106	D135 0-0.1	13	1	_			
108	D136 0-0.1	13	1	_			
111	D137 0.2-0.3	13	1				

121

D141 0.2-0.3

Client Geotechnique

Project 12675-4 Googong NH1A-7 and NH2-Add

SUMMARY OF ANALYSIS

Project 12675-4 Googong NH1A-7 and NH2-Add

Lips and Capton Brown and Cap

1

13

CLIENT DETAILS _ 12675-4 Googong NH1A-7 and NH2-Add Client Geotechnique

SUMMARY OF ANALYSIS ———————————————————————————————————						
No.	Sample ID	Exchangeable Cations and Cation Exchange Capacity	pH in soil (1:5)			
149	D153 0.2-0.3	13	1			
152	D155 0-0.1	13	1			
154	D156 0-0.1	13	-			
159	D157 1.9-2.0	13	-			

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document.

3/11/2016 Page 8 of 8

The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details.

Testing as per this table shall commence immediately unless the client intervenes with a correction .

ANALYTICAL REPORT

CLIENT DETAILS

LABORATORY DETAILS

John Xu Contact Client

Geotechnique Address P.O. Box 880

PENRITH NSW 2751

Huong Crawford Manager

SGS Alexandria Environmental Laboratory

Address Unit 16, 33 Maddox St

Alexandria NSW 2015

02 4722 2700 Telephone Facsimile 02 4722 6161

Email john.xu@geotech.com.au

Email

12675-4 Googong NH1A-7 and NH2-Add Project

Order Number (Not specified)

198 Samples

+61 2 8594 0400 Telephone Facsimile +61 2 8594 0499

au.environmental.sydney@sgs.com

SGS Reference SE158264B R0 Date Received 2/11/2016

8/11/2016 Date Reported

COMMENTS

Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562(4354).

SIGNATORIES

Bennet Lo

Senior Organic Chemist/Metals Chemist

Dong Liang

Metals/Inorganics Team Leader

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC

Alexandria NSW 2015 Alexandria NSW 2015

Australia Australia t +61 2 8594 0400 f +61 2 8594 0499

www.sgs.com.au

Member of the SGS Group

SE158264B R0

pH in soil (1:5) [AN101] Tested: 4/11/2016

			D103 0.2-0.3	D137 0-0.1	D153 0-0.1
			SOIL	SOIL	SOIL
					-
			18/10/2016	17/10/2016	17/10/2016
PARAMETER	UOM	LOR	SE158264B.038	SE158264B.110	SE158264B.148
рН	pH Units	-	6.1	5.7	5.8

8/11/2016 Page 2 of 4

ANALYTICAL RESULTS

Exchangeable Cations and Cation Exchange Capacity (CEC/ESP/SAR) [AN122] Tested: 3/11/2016

			D103 0.2-0.3	D137 0-0.1	D153 0-0.1
			SOIL - 18/10/2016	SOIL - 17/10/2016	SOIL - 17/10/2016
PARAMETER	UOM	LOR	SE158264B.038	SE158264B.110	SE158264B.148
Exchangeable Sodium, Na	mg/kg	2	19	21	18
Exchangeable Sodium, Na	meq/100g	0.01	0.08	0.09	0.08
Exchangeable Sodium Percentage*	%	0.1	0.9	1.5	1.4
Exchangeable Potassium, K	mg/kg	2	52	48	50
Exchangeable Potassium, K	meq/100g	0.01	0.13	0.12	0.13
Exchangeable Potassium Percentage*	%	0.1	1.5	1.9	2.3
Exchangeable Calcium, Ca	mg/kg	2	1300	870	720
Exchangeable Calcium, Ca	meq/100g	0.01	6.4	4.3	3.6
Exchangeable Calcium Percentage*	%	0.1	70.1	68.6	64.2
Exchangeable Magnesium, Mg	mg/kg	2	310	220	220
Exchangeable Magnesium, Mg	meq/100g	0.02	2.5	1.8	1.8
Exchangeable Magnesium Percentage*	%	0.1	27.6	28.0	32.1
Cation Exchange Capacity	meq/100g	0.02	9.2	6.3	5.6

8/11/2016 Page 3 of 4

METHOD SUMMARY

SE158264B R0

METHOD -

— METHODOLOGY SUMMARY –

AN101

pH in Soil Sludge Sediment and Water: pH is measured electrometrically using a combination electrode and is calibrated against 3 buffers purchased commercially. For soils, sediments and sludges, an extract with water (or 0.01M CaCl2) is made at a ratio of 1:5 and the pH determined and reported on the extract. Reference APHA 4500-H+.

AN122

Exchangeable Cations, CEC and ESP: Soil sample is extracted in 1M Ammonium Acetate at pH=7 (or 1M Ammonium Chloride at pH=7) with cations (Na, K, Ca & Mg) then determined by ICP OES/ICP MS and reported as Exchangeable Cations. For saline soils, these results can be corrected for water soluble cations and reported as Exchangeable cations in meq/100g or soil can be pre-treated (aqueous ethanol/aqueous glycerol) prior to extraction. Cation Exchange Capacity (CEC) is the sum of the exchangeable cations in meq/100g.

AN122

The Exchangeable Sodium Percentage (ESP) is calculated as the exchangeable sodium divided by the CEC (all in meq/100g) times 100.

ESP can be used to categorise the sodicity of the soil as below:

ESP < 6% non-sodic ESP 6-15% sodic ESP >15% strongly sodic

Method is refernced to Rayment and Higginson, 1992, sections 15D3 and 15N1.-

FOOTNOTES -

NATA accreditation does not cover Not analysed. UOM Unit of Measure. NVL the performance of this service. Not validated. LOR Limit of Reporting. Indicative data, theoretical holding IS Insufficient sample for analysis. Raised/lowered Limit of $\uparrow \downarrow$ time exceeded. INR Sample listed, but not received. Reporting.

Samples analysed as received.

Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/en/terms-and-conditions. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full.

8/11/2016 Page 4 of 4

STATEMENT OF QA/QC **PERFORMANCE**

CLIENT DETAILS LABORATORY DETAILS

John Xu **Huong Crawford** Manager Contact

Geotechnique SGS Alexandria Environmental Client Laboratory Address P.O. Box 880 Unit 16, 33 Maddox St

Address PENRITH NSW 2751 Alexandria NSW 2015

02 4722 2700 +61 2 8594 0400 Telephone Telephone 02 4722 6161 +61 2 8594 0499 Facsimile

Facsimile john.xu@geotech.com.au au.environmental.sydney@sgs.com Fmail Email

12675-4 Googong NH1A-7 and NH2-Add SE158264B R0 SGS Reference Project

(Not specified) 02 Nov 2016 Date Received Order Number 08 Nov 2016 198 Date Reported Samples

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document and was supplied by the Client.

This QA/QC Statement must be read in conjunction with the referenced Analytical Report.

The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met with the exception of the following:

Extraction Date pH in soil (1:5) 3 items

SAMPLE SUMMARY

Sample counts by matrix Date documentation received Samples received without headspace Sample container provider Samples received in correct containers Sample cooling method Complete documentation received

3 Soil 2/11/16@1:42pm Yes SGS Yes Ice Bricks Yes

Type of documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested Sufficient sample for analysis Samples clearly labelled

COC Yes 8.3°C Standard Yes Yes

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia Australia t +61 2 8594 0400 f+61 2 8594 0499 www.sgs.com.au

HOLDING TIME SUMMARY

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Exchangeable Cations and Cation Exchange Capacity (CEC/ESP/SAR)

Method: ME-(AU)-[ENV]AN122

		2224						
pH in soil (1:5)							Method: I	ME-(AU)-[ENV]AN101
D153 0-0.1	SE158264B.148	LB113112	17 Oct 2016	02 Nov 2016	14 Nov 2016	03 Nov 2016	14 Nov 2016	08 Nov 2016
D137 0-0.1	SE158264B.110	LB113112	17 Oct 2016	02 Nov 2016	14 Nov 2016	03 Nov 2016	14 Nov 2016	08 Nov 2016
D103 0.2-0.3	SE158264B.038	LB113112	18 Oct 2016	02 Nov 2016	15 Nov 2016	03 Nov 2016	15 Nov 2016	08 Nov 2016
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
D103 0.2-0.3	SE158264B.038	LB113201	18 Oct 2016	02 Nov 2016	25 Oct 2016	04 Nov 2016†	05 Nov 2016	04 Nov 2016
D137 0-0.1	SE158264B.110	LB113201	17 Oct 2016	02 Nov 2016	24 Oct 2016	04 Nov 2016†	05 Nov 2016	04 Nov 2016
D153 0-0.1	SE158264B.148	LB113201	17 Oct 2016	02 Nov 2016	24 Oct 2016	04 Nov 2016†	05 Nov 2016	04 Nov 2016

8/11/2016 Page 2 of 9

SURROGATES

SE158264B R0

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No surrogates were required for this job.

8/11/2016 Page 3 of 9

METHOD BLANKS

SE158264B R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Exchangeable Cations and Cation Exchange Capacity (CEC/ESP/SAR)

Method: ME-(AU)-[ENV]AN122

Sample Number Parameter Units LOR

8/11/2016 Page 4 of 9

DUPLICATES

SE158264B R0

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

pH in soil (1:5) Method: ME-(AU)-[ENV]AN101

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE158717.019	LB113201.014	рН	pH Units	-	7.901	7.868	31	0
SE158732.019	LB113201.031	рН	pH Units	-	6.2	6.2	32	0

8/11/2016 Page 5 of 9

LABORATORY CONTROL SAMPLES

SE158264B R0

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Exchangeable Cations and Cation Exchange Capacity (CEC/ESP/SAR)

Method: ME-(AU)-[ENV]AN122

Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB113112.002	Exchangeable Sodium, Na	mg/kg	2	NA	390	80 - 120	98
	Exchangeable Potassium, K	mg/kg	2	NA	343	80 - 120	88
	Exchangeable Calcium, Ca	mg/kg	2	NA	2570	80 - 120	105
	Exchangeable Magnesium, Mg	mg/kg	2	NA	635	80 - 120	99

pH in soil (1:5)

Method: ME-(AU)-[ENV]AN101

Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB113201.003	рН	pH Units	-	7.4	7.415	98 - 102	100

8/11/2016 Page 6 of 9

MATRIX SPIKES

SE158264B R0

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spikes were required for this job.

8/11/2016 Page 7 of 9

MATRIX SPIKE DUPLICATES

SE158264B R0

Matrix spike duplicates are calculated as Relative Percent Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spike duplicates were required for this job.

8/11/2016 Page 8 of 9

FOOTNOTES

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover tthe performance of this service .
- Sample not analysed for this analyte.

IS Insufficient sample for analysis.

LNR Sample listed, but not received.

LOR Limit of reporting.

QFH QC result is above the upper tolerance.
QFL QC result is below the lower tolerance.

- ① At least 2 of 3 surrogates are within acceptance criteria.
- ② RPD failed acceptance criteria due to sample heterogeneity.
- 3 Results less than 5 times LOR preclude acceptance criteria for RPD.
- Recovery failed acceptance criteria due to matrix interference.
- ® Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- © LOR was raised due to sample matrix interference.
- ① LOR was raised due to dilution of significantly high concentration of analyte in sample.
- ® Reanalysis of sample in duplicate confirmed sample heterogeneity and inconsistency of results.
- Recovery failed acceptance criteria due to sample heterogeneity.
- © LOR was raised due to high conductivity of the sample (required dilution).
- † Refer to Analytical Report comments for further information.

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service, available on request and accessible at http://www.sqs.com/en/terms-and-conditions. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained herein reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This test report shall not be reproduced, except in full.

8/11/2016 Page 9 of 9

GEOTECHNIQUE PTY I TO

Laboratory Test Request / Chain of Custody Record

	Place ITH NSW 275	0		PEN	P O RITH NS	Box 880 W 2751	Fax: (02) 4722 2700 02) 4722 6161 info@geotech.com.au			Page	1	of	1
TO:	UNIT 16 33 MADDO	RONMENTAL: DX STREET RIA NSW 201						Sampling By:	LY/JH	Job No: Project:	12675/4			
PH: ATTN:	02 8594 04 MS EMILY				FAX:	02 8594	0499	Project Manager:	JX	Location:	Googong NH1A	-7 & NH2		
		Sampling de	tails		Samp	le type				North Control			_	
	Location	Depth (m)	Date	Time	Soil	Water		Results		8/11/2016 (Nor . SE158264)	mal TAT)			
. 0							рН	CEC						KEEP SAMPLE
48	D103	0.2-0.3	18/10/2016		SG		✓	✓ ×					+	YES
110	D137	0-0.1	17/10/2016	-	SG	1	✓	/					1	YES
148	D153	0-0.1	17/10/2016		SG		V	V						YES
	41.		Relino	quished by						Received by				
	Name JOHN XI			Signature			Date	Name	9	Signatu	ire		Date	
Legend				jx			2/11/2016	Charly !	7~	6		2/11/1	6	
WG WP	Water sam	ple, glass bottle ple, plastic bottl			SG	Soil samp	ple (glass jar)		SP Soil samp ✓ Test requ	ele (plastic bag) ired	*	Purge & Trap	0	

CLIENT DETAILS

Email

LABORATORY DETAILS

John Xu Contact

Geotechnique Client Address P.O. Box 880

PENRITH NSW 2751

Huong Crawford Manager

SGS Alexandria Environmental Laboratory

Unit 16, 33 Maddox St

Alexandria NSW 2015

02 4722 2700 Telephone 02 4722 6161 Facsimile

john.xu@geotech.com.au

Email

+61 2 8594 0400 +61 2 8594 0499

Facsimile

Telephone

Address

au.environmental.sydney@sgs.com

12675-4 Googong NH1A-7 and NH2-Add Project

Order Number (Not specified) 198 Samples

Samples Received Report Due

Wed 2/11/2016 Tue 8/11/2016

SF158264B SGS Reference

SUBMISSION DETAILS

This is to confirm that 198 samples were received on Wednesday 2/11/2016. Results are expected to be ready by Tuesday 8/11/2016. Please quote SGS reference SE158264B when making enquiries. Refer below for details relating to sample integrity upon receipt.

Sample counts by matrix

Date documentation received Samples received without headspace Sample container provider

Samples received in correct containers Sample cooling method

Complete documentation received

3 Soil 2/11/16@1:42pm

Yes SGS Yes Ice Bricks Yes

Type of documentation received Samples received in good order Sample temperature upon receipt

Turnaround time requested Sufficient sample for analysis Samples clearly labelled

COC Yes

8.3°C Standard Yes Yes

Unless otherwise instructed, water and bulk samples will be held for one month from date of report, and soil samples will be held for two months.

COMMENTS -

To the extent not inconsistent with the other provisions of this document and unless specifically agreed otherwise in writing by SGS, all SGS services are rendered in accordance with the applicable SGS General Conditions of Service accessible at http://www.sgs.com/en/terms-and-conditions as at the date of this document. Attention is drawn to the limitations of liability and to the clauses of indemnification.

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia Australia

t +61 2 8594 0400 f +61 2 8594 0499

www.sgs.com.au

CLIENT DE	railseotechnique			Project 12675-4 Googong NH1A-7 and NH2-Add
SUMMARY	OF ANALYSIS			
		and		
		tions		
		Exchangeable Ca Cation Exchange	pH in soil (1:5)	
No.	Sample ID	Excha	pH in	
038	D103 0.2-0.3	13	1	

SGS

SAMPLE RECEIPT ADVICE

CLIENT DE	TAILS			
Client Ge	eotechnique			Project 12675-4 Googong NH1A-7 and NH2-Add
- SUMMARY	OF ANALYSIS -			
COMMINATOR	OT ANALTOID			
		<u>م</u> و		
		tions and Capacity		
		Cations ige Capa		
		Ca	_	
		Exchangeable Ca Cation Exchange	pH in soil (1:5)	
		Exc	oi Oi	
		han	s L	
No.	Sample ID	Cat	Hd	
110	D137 0-0.1	13	1	
	1	1		1

CLIENT DE	TAILS			
Client Ge	eotechnique			Project 12675-4 Googong NH1A-7 and NH2-Add
- SUMMARY	OF ANALYSIS —			
	. ,			
		모		
		s ar		
		Exchangeable Cations and Cation Exchange Cation		
		Ca		
		able	pH in soil (1:5)	
		ges	<u> </u>	
		thar ion	s <u>u</u>	
No.	Sample ID	Exc	Hd	
148	D153 0-0.1	13	1	
		1		

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document.

The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details.

Testing as per this table shall commence immediately unless the client intervenes with a correction .

ANALYTICAL REPORT

CLIENT DETAILS

LABORATORY DETAILS

Contact Client Address John Xu Geotechnique P.O. Box 880

P.O. Box 880 PENRITH NSW 2751 Manager Huong Crawford

Laboratory Address SGS Alexandria Environmental

Unit 16, 33 Maddox St

Alexandria NSW 2015

Telephone Facsimile 02 4722 2700 02 4722 6161

Email

john.xu@geotech.com.au

Project

12675-4 Googong NH1A-7 and NH2-Add

Order Number

(Not specified)

Samples 198

Telephone

+61 2 8594 0400 +61 2 8594 0499

Facsimile Email

au.environmental.sydney@sgs.com

SGS Reference

SE158264C R0 8/11/2016

Date Received 8/11/2016

Date Reported 10/11/2016

COMMENTS

Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562(4354).

SIGNATORIES

Bennet Lo

Senior Organic Chemist/Metals Chemist

Huong Crawford

Production Manager

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015

Australia Australia t +61 2 8594 0400 f +61 2 8594 0499

www.sgs.com.au

ANALYTICAL RESULTS

SE158264C R0

pH in soil (1:5) [AN101] Tested: 8/11/2016

			D102 0-0.1	D111 0.2-0.3	D113 0-0.1	D147 0-0.1	D155 0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			17/10/2016	17/10/2016	17/10/2016	17/10/2016	17/10/2016
PARAMETER	UOM	LOR	SE158264C.035	SE158264C.054	SE158264C.057	SE158264C.134	SE158264C.153
рН	pH Units	-	6.2	5.3	5.8	5.9	6.4

10/11/2016 Page 2 of 4

ANALYTICAL RESULTS

Exchangeable Cations and Cation Exchange Capacity (CEC/ESP/SAR) [AN122] Tested: 8/11/2016

			D102 0-0.1	D111 0.2-0.3	D113 0-0.1	D147 0-0.1	D155 0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 17/10/2016	- 17/10/2016	- 17/10/2016	- 17/10/2016	- 17/10/2016
PARAMETER	UOM	LOR	SE158264C.035	SE158264C.054	SE158264C.057	SE158264C.134	SE158264C.153
Exchangeable Sodium, Na	mg/kg	2	18	20	25	20	28
Exchangeable Sodium, Na	meq/100g	0.01	0.08	0.09	0.11	0.09	0.12
Exchangeable Sodium Percentage*	%	0.1	1.0	1.7	1.3	1.4	1.5
Exchangeable Potassium, K	mg/kg	2	170	89	610	43	63
Exchangeable Potassium, K	meq/100g	0.01	0.44	0.23	1.6	0.11	0.16
Exchangeable Potassium Percentage*	%	0.1	5.7	4.4	18.9	1.8	1.9
Exchangeable Calcium, Ca	mg/kg	2	930	690	890	890	990
Exchangeable Calcium, Ca	meq/100g	0.01	4.6	3.4	4.5	4.5	5.0
Exchangeable Calcium Percentage*	%	0.1	60.1	66.8	54.1	74.4	59.2
Exchangeable Magnesium, Mg	mg/kg	2	310	170	260	160	380
Exchangeable Magnesium, Mg	meq/100g	0.02	2.6	1.4	2.1	1.3	3.1
Exchangeable Magnesium Percentage*	%	0.1	33.2	27.1	25.7	22.3	37.4
Cation Exchange Capacity	meq/100g	0.02	7.7	5.2	8.3	6.0	8.4

10/11/2016 Page 3 of 4

METHOD SUMMARY

SE158264C R0

METHOD -

— METHODOLOGY SUMMARY –

AN101

pH in Soil Sludge Sediment and Water: pH is measured electrometrically using a combination electrode and is calibrated against 3 buffers purchased commercially. For soils, sediments and sludges, an extract with water (or 0.01M CaCl2) is made at a ratio of 1:5 and the pH determined and reported on the extract. Reference APHA 4500-H+.

AN122

Exchangeable Cations, CEC and ESP: Soil sample is extracted in 1M Ammonium Acetate at pH=7 (or 1M Ammonium Chloride at pH=7) with cations (Na, K, Ca & Mg) then determined by ICP OES/ICP MS and reported as Exchangeable Cations. For saline soils, these results can be corrected for water soluble cations and reported as Exchangeable cations in meq/100g or soil can be pre-treated (aqueous ethanol/aqueous glycerol) prior to extraction. Cation Exchange Capacity (CEC) is the sum of the exchangeable cations in meq/100g.

AN122

The Exchangeable Sodium Percentage (ESP) is calculated as the exchangeable sodium divided by the CEC (all in meq/100g) times 100.

ESP can be used to categorise the sodicity of the soil as below:

ESP < 6% non-sodic ESP 6-15% sodic ESP >15% strongly sodic

Method is refernced to Rayment and Higginson, 1992, sections 15D3 and 15N1.-

FOOTNOTES -

NATA accreditation does not cover Not analysed. UOM Unit of Measure. NVL the performance of this service. Not validated. LOR Limit of Reporting. Indicative data, theoretical holding IS Insufficient sample for analysis. Raised/lowered Limit of $\uparrow \downarrow$ time exceeded. INR Sample listed, but not received. Reporting.

Samples analysed as received.

Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/en/terms-and-conditions. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full.

10/11/2016 Page 4 of 4

STATEMENT OF QA/QC **PERFORMANCE**

CLIENT DETAILS LABORATORY DETAILS

John Xu **Huong Crawford** Manager Contact

Geotechnique SGS Alexandria Environmental Client Laboratory Address P.O. Box 880 Unit 16, 33 Maddox St

Address PENRITH NSW 2751 Alexandria NSW 2015

02 4722 2700 Telephone +61 2 8594 0400 Telephone 02 4722 6161 +61 2 8594 0499

Facsimile Facsimile john.xu@geotech.com.au au.environmental.sydney@sgs.com Email Email

12675-4 Googong NH1A-7 and NH2-Add SE158264C R0 SGS Reference Project

(Not specified) 08 Nov 2016 Date Received Order Number 10 Nov 2016 198 Date Reported Samples

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document and was supplied by the Client.

This QA/QC Statement must be read in conjunction with the referenced Analytical Report.

The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met with the exception of the following:

Extraction Date pH in soil (1:5) 5 items

SAMPLE SUMMARY

Sample counts by matrix Date documentation received Samples received without headspace Sample container provider Samples received in correct containers Sample cooling method Complete documentation received

5 Soil 8/11/16@11:14am Yes SGS Yes Ice Bricks Yes

Type of documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested Sufficient sample for analysis Samples clearly labelled

COC Yes 8.3°C Standard Yes Yes

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia Australia

t +61 2 8594 0400 f+61 2 8594 0499 www.sgs.com.au

Member of the SGS Group

HOLDING TIME SUMMARY

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Exchangeable Cations and Cation Exchange Capacity (CEC/ESP/SAR)

Method: ME-(AU)-[ENV]AN122

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
D102 0-0.1	SE158264C.035	LB113442	17 Oct 2016	08 Nov 2016	14 Nov 2016	08 Nov 2016	14 Nov 2016	10 Nov 2016
D111 0.2-0.3	SE158264C.054	LB113442	17 Oct 2016	08 Nov 2016	14 Nov 2016	08 Nov 2016	14 Nov 2016	10 Nov 2016
D113 0-0.1	SE158264C.057	LB113442	17 Oct 2016	08 Nov 2016	14 Nov 2016	08 Nov 2016	14 Nov 2016	10 Nov 2016
D147 0-0.1	SE158264C.134	LB113442	17 Oct 2016	08 Nov 2016	14 Nov 2016	08 Nov 2016	14 Nov 2016	10 Nov 2016
D155 0.2-0.3	SE158264C.153	LB113442	17 Oct 2016	08 Nov 2016	14 Nov 2016	08 Nov 2016	14 Nov 2016	10 Nov 2016

pH in soil (1:5)

Method: ME-(AU)-[ENV]AN101

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
D102 0-0.1	SE158264C.035	LB113418	17 Oct 2016	08 Nov 2016	24 Oct 2016	08 Nov 2016†	09 Nov 2016	09 Nov 2016
D111 0.2-0.3	SE158264C.054	LB113418	17 Oct 2016	08 Nov 2016	24 Oct 2016	08 Nov 2016†	09 Nov 2016	09 Nov 2016
D113 0-0.1	SE158264C.057	LB113418	17 Oct 2016	08 Nov 2016	24 Oct 2016	08 Nov 2016†	09 Nov 2016	09 Nov 2016
D147 0-0.1	SE158264C.134	LB113418	17 Oct 2016	08 Nov 2016	24 Oct 2016	08 Nov 2016†	09 Nov 2016	09 Nov 2016
D155 0.2-0.3	SE158264C.153	LB113418	17 Oct 2016	08 Nov 2016	24 Oct 2016	08 Nov 2016†	09 Nov 2016	09 Nov 2016

10/11/2016 Page 2 of 9

SURROGATES

SE158264C R0

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No surrogates were required for this job.

10/11/2016 Page 3 of 9

METHOD BLANKS

SE158264C R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Exchangeable Cations and Cation Exchange Capacity (CEC/ESP/SAR)

Method: ME-(AU)-[ENV]AN122

ample Number Parameter Units LOR

10/11/2016 Page 4 of 9

DUPLICATES

SE158264C R0

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

pH in soil (1:5) Method: ME-(AU)-[ENV]AN101

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE158900.010	LB113418.025	pH	pH Units	-	7.507	8.017	31	7

10/11/2016 Page 5 of 9

LABORATORY CONTROL SAMPLES

SE158264C R0

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Exchangeable Cations and Cation Exchange Capacity (CEC/ESP/SAR)

Method: ME-(AU)-[ENV]AN122

Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB113442.002	Exchangeable Sodium, Na	mg/kg	2	NA	390	80 - 120	99
	Exchangeable Potassium, K	mg/kg	2	NA	343	80 - 120	98
	Exchangeable Calcium, Ca	mg/kg	2	NA	2570	80 - 120	93
	Exchangeable Magnesium, Mg	mg/kg	2	NA	635	80 - 120	96

pH in soil (1:5)

Method: ME-(AU)-[ENV]AN101

Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB113418.003	Hq	pH Units	-	7.4	7.415	98 - 102	100

10/11/2016 Page 6 of 9

MATRIX SPIKES

SE158264C R0

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spikes were required for this job.

10/11/2016 Page 7 of 9

MATRIX SPIKE DUPLICATES

SE158264C R0

Matrix spike duplicates are calculated as Relative Percent Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spike duplicates were required for this job.

10/11/2016 Page 8 of 9

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover tthe performance of this service .
- Sample not analysed for this analyte.

IS Insufficient sample for analysis.

LNR Sample listed, but not received.

LOR Limit of reporting.

QFH QC result is above the upper tolerance.
QFL QC result is below the lower tolerance.

- ① At least 2 of 3 surrogates are within acceptance criteria.
- ② RPD failed acceptance criteria due to sample heterogeneity.
- 3 Results less than 5 times LOR preclude acceptance criteria for RPD.
- Recovery failed acceptance criteria due to matrix interference.
- ® Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- © LOR was raised due to sample matrix interference.
- ① LOR was raised due to dilution of significantly high concentration of analyte in sample.
- ® Reanalysis of sample in duplicate confirmed sample heterogeneity and inconsistency of results.
- Recovery failed acceptance criteria due to sample heterogeneity.
- © LOR was raised due to high conductivity of the sample (required dilution).
- † Refer to Analytical Report comments for further information.

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service, available on request and accessible at http://www.sqs.com/en/terms-and-conditions. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained herein reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This test report shall not be reproduced, except in full.

10/11/2016 Page 9 of 9

GEOTECHNIQUE PTY I TO

Laboratory Test Request / Chain of Custody Record

Tel: (02) 4722 2700 Lemko Place P O Box 880 Fax: (02) 4722 6161 PENRITH NSW 2750 email: info@geotech.com.au Page of PENRITH NSW 2751 SGS ENVIRONMENTAL SERVICES Sampling By: LY/JH Job No: 12675/4 UNIT 16 33 MADDOX STREET Project: **ALEXANDRIA NSW 2015** PH: 02 8594 0400 FAX: 02 8594 0499 Project Manager: JX Location: Googong NH1A-7 & NH2 MS EMILY YIN ATTN: Sampling details Sample type Results required by: 14/11/2016 (Normal TAT) Location Depth (m) Date Time Soil Water (SGS Ref. SE158264) KEEP pH CEC SAMPLE D102 0-0.1 17/10/2016 SG YES 4 D111 0.2-0.3 17/10/2016 SG YES 5 7 D113 0-0.1 17/10/2016 SG YES 34 D147 0-0.1 17/10/2016 SG YES 157 D155 0.2-0.3 17/10/2016 SG YES Relinquished by Received by Name Signature Date Name Signature Date JOHN XU 7/11/2016 4._-866613 01114 Legend: WG Water sample, glass bottle SG Soil sample (glass jar) Soil sample (plastic bag) * Purge & Trap WP Water sample, plastic bottle Test required

Address

CLIENT DETAILS

Email

LABORATORY DETAILS

John Xu Contact

Geotechnique Client Address P.O. Box 880

PENRITH NSW 2751

Huong Crawford Manager

SGS Alexandria Environmental Laboratory

Unit 16, 33 Maddox St

Alexandria NSW 2015

02 4722 2700 Telephone 02 4722 6161 Facsimile

john.xu@geotech.com.au

Email

Project

Order Number (Not specified) Samples

12675-4 Googong NH1A-7 and NH2-Add

198

+61 2 8594 0400 Telephone Facsimile

+61 2 8594 0499

au.environmental.sydney@sgs.com

Samples Received Tue 8/11/2016

Report Due Mon 14/11/2016 SF158264C SGS Reference

SUBMISSION DETAILS

This is to confirm that 198 samples were received on Tuesday 8/11/2016. Results are expected to be ready by Monday 14/11/2016. Please quote SGS reference SE158264C when making enquiries. Refer below for details relating to sample integrity upon receipt.

Sample counts by matrix Date documentation received

Samples received without headspace Sample container provider Samples received in correct containers

Sample cooling method

Complete documentation received

8/11/16@11:14am

Yes SGS Yes Ice Bricks Yes

Type of documentation received

Samples received in good order Sample temperature upon receipt Turnaround time requested Sufficient sample for analysis Samples clearly labelled

COC

Yes 8.3°C Standard Yes Yes

Unless otherwise instructed, water and bulk samples will be held for one month from date of report, and soil samples will be held for two months.

COMMENTS -

To the extent not inconsistent with the other provisions of this document and unless specifically agreed otherwise in writing by SGS, all SGS services are rendered in accordance with the applicable SGS General Conditions of Service accessible at http://www.sgs.com/en/terms-and-conditions as at the date of this document. Attention is drawn to the limitations of liability and to the clauses of indemnification.

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia Australia

t +61 2 8594 0400 f +61 2 8594 0499

www.sgs.com.au

Client Ge	eotechnique			Project 12675-4 Googong NH1A-7 and NH2-Add	
SUMMARY	OF ANALYSIS —				
No.	Sample ID	Exchangeable Cations and Cation Exchange Capacity	pH in soil (1:5)		
035	D102 0-0.1	13	1		

_ CLIENT	DETAILS		
Client	Geotechnique	Project	12675-4 Googong NH1A-7 and NH2-Add

SUMMARY	OF ANALYSIS —		
O O I VII VII VII VII	01 7114 (21010		
No.	Sample ID	Exchangeable Cations and Cation Exchange Capacity	pH in soil (1:5)
054	D111 0.2-0.3	13	1
057	D113 0-0.1	13	1

Client Geotechnique		Project	12675-4 Googong NH1A-7 and NH2-Add
SUMMARY OF ANALYS	ils ———		
	and icity		
	tions		
	eable C	(1:5)	
No. Sample	Exchang	oH in soi	
No. Sample			

Client Ge	TAILSeotechnique		Р	roject 12675-4 Googong NH1A-7 and NH2-Add
SUMMARY	OF ANALYSIS —			
		utions and Capacity		
		ole Cations	(5:	
		Exchangeable Cat	pH in soil (1:5)	
No.	Sample ID	шО	Δ.	
153	D155 0.2-0.3	13	1	

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document.

The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details.

Testing as per this table shall commence immediately unless the client intervenes with a correction .

ANALYTICAL REPORT

CLIENT DETAILS

LABORATORY DETAILS

Contact John Xu
Client Geotechnique

Client Geotechnique
Address P.O. Box 880

PENRITH NSW 2751

Manager Huong Crawford

Laboratory SGS Alexandria Environmental

Address Unit 16, 33 Maddox St

Alexandria NSW 2015

Telephone 02 4722 2700

Facsimile 02 4722 6161

Email john.xu@geotech.com.au

Project 12675-4 Googong NH1A-7 and NH2-Add

Order Number (Not specified)

Samples 198

Telephone +61 2 8594 0400 Facsimile +61 2 8594 0499

Facsimile +61 2 8594 0499
Email au.environmental.sydney@sgs.com

SGS Reference SE158264D R4

Date Received 13/12/2016

Date Reported 20/1/2017

COMMENTS

Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562(4354).

This report cancels and supersedes the report No.SE158264D R3. Dated 19/01/17 issued by SGS Environment, Health and Safety due to amended Cr results for samples #1-#30 and #118 following data check.

SIGNATORIES

Bennet Lo

Senior Organic Chemist/Metals Chemist

Dong Liang

Metals/Inorganics Team Leader

Huong Crawford

Production Manager

Kamrul Ahsan Senior Chemist

> SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015

Australia Australia t +61 2 8594 0400 f +61 2 8594 0499

www.sgs.com.au

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES [AN040/AN320] Tested: 15/12/2016

			A4 0.25-0.35	A4 0.5-0.6	A6 0.25-0.35	A6 0.5-0.6	A8 0.25-0.35
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			18/10/2016	18/10/2016	18/10/2016	18/10/2016	18/10/2016
PARAMETER	UOM	LOR	SE158264D.001	SE158264D.002	SE158264D.003	SE158264D.004	SE158264D.005
Chromium, Cr	mg/kg	0.5	29	29	32	16	30

			A8 0.5-0.6	A8 1.0-1.1	A9 0.25-0.35	A9 0.5-0.6	A11 0.25-0.35
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			18/10/2016	18/10/2016	18/10/2016	18/10/2016	18/10/2016
PARAMETER	UOM	LOR	SE158264D.006	SE158264D.007	SE158264D.008	SE158264D.009	SE158264D.010
Chromium, Cr	mg/kg	0.5	35	34	38	35	42

			A11 0.5-0.6	A11 1.0-1.1	A11 1.9-2.0	A13 0.25-0.35	A13 0.5-0.6
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			18/10/2016	18/10/2016	18/10/2016	18/10/2016	18/10/2016
PARAMETER	UOM	LOR	SE158264D.011	SE158264D.012	SE158264D.013	SE158264D.014	SE158264D.015
Chromium, Cr	mg/kg	0.5	27	27	9.2	41	32

			A15 0.2-0.3	A15 0.5-0.6	A15 1.0-1.1	A15 1.9-2.0	A16 0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			18/10/2016	18/10/2016	18/10/2016	18/10/2016	18/10/2016
PARAMETER	UOM	LOR	SE158264D.016	SE158264D.017	SE158264D.018	SE158264D.019	SE158264D.020
Chromium, Cr	mg/kg	0.5	37	38	38	33	26

			A16 0.5-0.6	A16 1.0-1.1	A16 1.5-1.6	A17 0.2-0.3	A17 0.5-0.6
			SOIL	SOIL	SOIL	SOIL	SOIL
			18/10/2016	18/10/2016	18/10/2016	18/10/2016	18/10/2016
PARAMETER	UOM	LOR	SE158264D.021	SE158264D.022	SE158264D.023	SE158264D.024	SE158264D.025
Chromium, Cr	mg/kg	0.5	2.5	28	17	28	37

			A17 1.0-1.1	A17 1.9-2.0	A18 0.2-0.3	A18 0.5-0.6	A18 1.0-1.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 18/10/2016	- 18/10/2016	- 18/10/2016	- 18/10/2016	- 18/10/2016
PARAMETER	UOM	LOR	SE158264D.026	SE158264D.027	SE158264D.028	SE158264D.029	SE158264D.030
Chromium, Cr	mg/kg	0.5	68	18	23	26	27

			D101 0-0.1	D101 0.2-0.3	D101 1.0-1.1	D101 1.9-2.0	D102 0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			17/10/2016	17/10/2016	17/10/2016	17/10/2016	17/10/2016
PARAMETER	UOM	LOR	SE158264D.031	SE158264D.032	SE158264D.033	SE158264D.034	SE158264D.035
Chromium, Cr	mg/kg	0.5	32	35	34	7.0	30

20/01/2017 Page 2 of 10

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES [AN040/AN320] Tested: 15/12/2016 (continued)

			D102 0.2-0.3	D103 0-0.1	D103 0.2-0.3	D104 0-0.1	D104 0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			17/10/2016	18/10/2016	18/10/2016	18/10/2016	18/10/2016
PARAMETER	UOM	LOR	SE158264D.036	SE158264D.037	SE158264D.038	SE158264D.039	SE158264D.040
Chromium, Cr	mg/kg	0.5	37	34	34	34	32

			D105 0-0.1	D105 0.2-0.3	D106 0-0.1	D106 0.2-0.3	D107 0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			18/10/2016	18/10/2016	18/10/2016	18/10/2016	18/10/2016
PARAMETER	UOM	LOR	SE158264D.041	SE158264D.042	SE158264D.043	SE158264D.044	SE158264D.045
Chromium, Cr	mg/kg	0.5	28	40	32	35	39

			D107 0.2-0.3	D108 0-0.1	D108 0.2-0.3	D109 0-0.1	D109 0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			18/10/2016	18/10/2016	18/10/2016	18/10/2016	18/10/2016
PARAMETER	UOM	LOR	SE158264D.046	SE158264D.047	SE158264D.048	SE158264D.049	SE158264D.050
Chromium, Cr	mg/kg	0.5	25	28	29	37	35

			D110 0-0.1	D110 0.2-0.3	D111 0-0.1	D111 0.2-0.3	D112 0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			17/10/2016	17/10/2016	17/10/2016	17/10/2016	17/10/2016
PARAMETER	UOM	LOR	SE158264D.051	SE158264D.052	SE158264D.053	SE158264D.054	SE158264D.055
Chromium, Cr	mg/kg	0.5	35	38	24	32	31

			D112 0.2-0.3	D113 0-0.1	D113 0.2-0.3	D114 0-0.1	D114 0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			17/10/2016	17/10/2016	17/10/2016	17/10/2016	17/10/2016
PARAMETER	UOM	LOR	SE158264D.056	SE158264D.057	SE158264D.058	SE158264D.059	SE158264D.060
Chromium, Cr	mg/kg	0.5	36	35	38	31	35

			D115 0-0.1	D115 0.2-0.3	D116 0-0.1	D116 0.2-0.3	D116 1.0-1.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			17/10/2016	17/10/2016	18/10/2016	18/10/2016	18/10/2016
PARAMETER	UOM	LOR	SE158264D.061	SE158264D.062	SE158264D.063	SE158264D.064	SE158264D.065
Chromium, Cr	mg/kg	0.5	36	38	36	34	35

			D116 1.4-1.5	D117 0-0.1	D117 0.2-0.3	D118 0-0.1	D118 0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			18/10/2016	18/10/2016	18/10/2016	18/10/2016	18/10/2016
PARAMETER	UOM	LOR	SE158264D.066	SE158264D.067	SE158264D.068	SE158264D.069	SE158264D.070
Chromium, Cr	mg/kg	0.5	19	35	29	22	33

20/01/2017 Page 3 of 10

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES [AN040/AN320] Tested: 15/12/2016 (continued)

			D119 0-0.1	D119 0.2-0.3	D120 0-0.1	D120 0.2-0.3	D121 0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
							- 1
			18/10/2016	18/10/2016	18/10/2016	18/10/2016	18/10/2016
PARAMETER	UOM	LOR	SE158264D.071	SE158264D.072	SE158264D.073	SE158264D.074	SE158264D.075
Chromium, Cr	mg/kg	0.5	33	38	20	20	34

			D121 0.2-0.3	D122 0-0.1	D122 0.2-0.3	D123 0-0.1	D123 0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			18/10/2016	18/10/2016	18/10/2016	18/10/2016	18/10/2016
PARAMETER	UOM	LOR	SE158264D.076	SE158264D.077	SE158264D.078	SE158264D.079	SE158264D.080
Chromium, Cr	mg/kg	0.5	30	22	40	34	38

			D124 0-0.1	D124 0.2-0.3	D125 0-0.1	D125 0.2-0.3	D126 0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			17/10/2016	17/10/2016	17/10/2016	17/10/2016	17/10/2016
PARAMETER	UOM	LOR	SE158264D.081	SE158264D.082	SE158264D.083	SE158264D.084	SE158264D.085
Chromium, Cr	mg/kg	0.5	31	32	39	39	34

			D126 0.2-0.3	D127 0-0.1	D127 0.2-0.3	D128 0-0.1	D128 0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			17/10/2016	18/10/2016	18/10/2016	18/10/2016	18/10/2016
PARAMETER	UOM	LOR	SE158264D.086	SE158264D.087	SE158264D.088	SE158264D.089	SE158264D.090
Chromium, Cr	mg/kg	0.5	41	40	38	5.5	11

			D129 0-0.1	D129 0.2-0.3	D130 0-0.1	D130 0.2-0.3	D130 1.0-1.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			18/10/2016	18/10/2016	18/10/2016	18/10/2016	18/10/2016
PARAMETER	UOM	LOR	SE158264D.091	SE158264D.092	SE158264D.093	SE158264D.094	SE158264D.095
Chromium, Cr	mg/kg	0.5	7.6	13	7.2	11	12

			D131 0-0.1	D131 0.2-0.3	D132 0-0.1	D132 0.2-0.3	D132 1.0-1.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			18/10/2016	18/10/2016	17/10/2016	17/10/2016	17/10/2016
PARAMETER	UOM	LOR	SE158264D.096	SE158264D.097	SE158264D.098	SE158264D.099	SE158264D.100
Chromium, Cr	mg/kg	0.5	39	36	34	42	37

			D132 1.9-2.0	D133 0-0.1	D133 0.2-0.3	D134 0-0.1	D134 0.2-0.03
			SOIL	SOIL	SOIL	SOIL	SOIL
			17/10/2016	17/10/2016	17/10/2016	17/10/2016	17/10/2016
PARAMETER	UOM	LOR	SE158264D.101	SE158264D.102	SE158264D.103	SE158264D.104	SE158264D.105
Chromium, Cr	mg/kg	0.5	35	31	31	40	63

20/01/2017 Page 4 of 10

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES [AN040/AN320] Tested: 15/12/2016 (continued)

			D135 0-0.1	D135 0.2-0.3	D136 0-0.1	D136 0.2-0.3	D137 0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			17/10/2016	17/10/2016	17/10/2016	17/10/2016	17/10/2016
PARAMETER	UOM	LOR	SE158264D.106	SE158264D.107	SE158264D.108	SE158264D.109	SE158264D.110
Chromium, Cr	mg/kg	0.5	34	36	28	31	26

			D137 0.2-0.3	D138 0-0.1	D138 0.2-0.3	D139 0-0.1	D139 0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			17/10/2016	17/10/2016	17/10/2016	17/10/2016	17/10/2016
PARAMETER	UOM	LOR	SE158264D.111	SE158264D.112	SE158264D.113	SE158264D.114	SE158264D.115
Chromium, Cr	mg/kg	0.5	32	32	26	30	24

			D139 1.0-1.1	D139 1.4-1.5	D140 0-0.1	D140 0.2-0.3	D141 0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			17/10/2016	17/10/2016	17/10/2016	17/10/2016	17/10/2016
PARAMETER	UOM	LOR	SE158264D.116	SE158264D.117	SE158264D.118	SE158264D.119	SE158264D.120
Chromium, Cr	mg/kg	0.5	44	34	29	27	26

			D141 0.2-0.3	D142 0-0.1	D142 0.2-0.3	D142 1.0-1.1	D142 1.9-2.0
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			17/10/2016	17/10/2016	17/10/2016	17/10/2016	17/10/2016
PARAMETER	UOM	LOR	SE158264D.121	SE158264D.122	SE158264D.123	SE158264D.124	SE158264D.125
Chromium, Cr	mg/kg	0.5	28	32	32	28	32

			D143 0-0.1	D143 0.2-0.3	D144 0-0.1	D144 0.2-0.3	D145 0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			17/10/2016	17/10/2016	17/10/2016	17/10/2016	17/10/2016
PARAMETER	UOM	LOR	SE158264D.126	SE158264D.127	SE158264D.128	SE158264D.129	SE158264D.130
Chromium, Cr	mg/kg	0.5	31	40	49	30	32

			D145 0.2-0.3	D146 0-0.1	D146 0.2-0.3	D147 0-0.1	D147 0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			17/10/2016	17/10/2016	17/10/2016	17/10/2016	17/10/2016
PARAMETER	UOM	LOR	SE158264D.131	SE158264D.132	SE158264D.133	SE158264D.134	SE158264D.135
Chromium, Cr	mg/kg	0.5	16	26	35	31	36

			D148 0-0.1	D148 0.2-0.3	D149 0-0.1	D149 0.2-0.3	D150 0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			17/10/2016	17/10/2016	17/10/2016	17/10/2016	17/10/2016
PARAMETER	UOM	LOR	SE158264D.136	SE158264D.137	SE158264D.138	SE158264D.139	SE158264D.140
Chromium, Cr	mg/kg	0.5	28	31	28	34	20

20/01/2017 Page 5 of 10

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES [AN040/AN320] Tested: 15/12/2016 (continued)

			D150 0.2-0.3	D151 0-0.1	D151 0.2-0.3	D152 0-0.1	D152 0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			17/10/2016	17/10/2016	17/10/2016	17/10/2016	17/10/2016
PARAMETER	UOM	LOR	SE158264D.141	SE158264D.142	SE158264D.143	SE158264D.144	SE158264D.145
Chromium, Cr	mg/kg	0.5	23	34	27	39	47

			D152 1.0-1.1	D152 1.9-2.0	D153 0-0.1	D153 0.2-0.3	D154 0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			17/10/2016	17/10/2016	17/10/2016	17/10/2016	17/10/2016
PARAMETER	UOM	LOR	SE158264D.146	SE158264D.147	SE158264D.148	SE158264D.149	SE158264D.150
Chromium, Cr	mg/kg	0.5	30	37	31	40	35

			D154 0.2-0.3	D155 0-0.1	D155 0.2-0.3	D156 0-0.1	D156 0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			17/10/2016	17/10/2016	17/10/2016	17/10/2016	17/10/2016
PARAMETER	UOM	LOR	SE158264D.151	SE158264D.152	SE158264D.153	SE158264D.154	SE158264D.155
Chromium, Cr	mg/kg	0.5	39	36	39	18	26

			D157 0-0.1	D157 0.2-0.3	D157 1.0-1.1	D157 1.9-2.0	Duplicate D1
			SOIL	SOIL	SOIL	SOIL	SOIL
			17/10/2016	17/10/2016	17/10/2016	17/10/2016	17/10/2016
PARAMETER	UOM	LOR	SE158264D.156	SE158264D.157	SE158264D.158	SE158264D.159	SE158264D.186
Chromium, Cr	mg/kg	0.5	26	30	29	28	24

			Duplicate D2	Duplicate D3	Duplicate D4	Duplicate D5	Duplicate D6
			SOIL	SOIL	SOIL	SOIL	SOIL
			17/10/2016	17/10/2016	17/10/2016	18/10/2016	18/10/2016
PARAMETER	UOM	LOR	SE158264D.187	SE158264D.188	SE158264D.189	SE158264D.190	SE158264D.191
Chromium, Cr	mg/kg	0.5	58	32	24	31	34

			Duplicate D7
			SOIL
			- 18/10/2016
PARAMETER	UOM	LOR	SE158264D.192
Chromium, Cr	mg/kg	0.5	37

20/01/2017 Page 6 of 10

SE158264D R4

Trace Metals (Dissolved) in Water by ICPMS [AN318] Tested: 14/12/2016

			Dam Water W1
			WATER
			-
			18/10/2016
PARAMETER	UOM	LOR	SE158264D.198
Chromium, Cr	μg/L	1	2

20/01/2017 Page 7 of 10

SE158264D R4

Trace Metals (Total) in Water by ICPMS [AN022/AN318] Tested: 14/12/2016

			Dam Water W1
			WATER
			- 18/10/2016
PARAMETER	UOM	LOR	SE158264D.198
Total Chromium	μg/L	1	2

20/01/2017 Page 8 of 10

SE158264D R4

Metals in Water (Dissolved) by ICPOES [AN320/AN321] Tested: 20/12/2016

			Rinsate R1	Rinsate R2
			WATER	WATER
			- 17/10/2016	- 18/10/2016
PARAMETER	UOM	LOR	SE158264D.196	SE158264D.197
Chromium, Cr	mg/L	0.005	<0.005	<0.005

20/01/2017 Page 9 of 10

METHOD SUMMARY

SE158264D R4

METHOD _____ METHODOLOGY SUMMARY -

AN022/AN318 Following acid digestion of un filtered sample, determination of elements at trace level in waters by ICP-MS

technique, in accordance with USEPA 6020A.

AN040/AN320 A portion of sample is digested with nitric acid to decompose organic matter and hydrochloric acid to complete the

digestion of metals. The digest is then analysed by ICP OES with metals results reported on the dried sample

basis. Based on USEPA method 200.8 and 6010C.

AN318 Determination of elements at trace level in waters by ICP-MS technique, in accordance with USEPA 6020A.

AN320/AN321 Metals by ICP-OES: Samples are preserved with 10% nitric acid for a wide range of metals and some non-metals.

This solution is measured by Inductively Coupled Plasma. Solutions are aspirated into an argon plasma at 8000-10000K and emit characteristic energy or light as a result of electron transitions through unique energy

levels. The emitted light is focused onto a diffraction grating where it is separated into components .

AN320/AN321 Photomultipliers or CCDs are used to measure the light intensity at specific wavelengths. This intensity is directly

proportional to concentration. Corrections are required to compensate for spectral overlap between elements .

Reference APHA 3120 B.

FOOTNOTES -

NATA accreditation does not cover Not analysed. UOM Unit of Measure. NVL LOR Limit of Reporting. the performance of this service. Not validated. Indicative data, theoretical holding Raised/lowered Limit of Insufficient sample for analysis. IS ↑↓ time exceeded. LNR Sample listed, but not received. Reporting.

Samples analysed as received.

Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/en/terms-and-conditions. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein

Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full.

20/01/2017 Page 10 of 10

STATEMENT OF QA/QC PERFORMANCE

CLIENT DETAILS _____ LABORATORY DETAILS

Contact John Xu Manager Huong Crawford

Client Geotechnique Laboratory SGS Alexandria Environmental
Address P.O. Box 880 Address Unit 16, 33 Maddox St

P.O. Box 880 Address Unit 16, 33 Maddox St PENRITH NSW 2751 Alexandria NSW 2015

Telephone 02 4722 2700 Telephone +61 2 8594 0400
Facsimile 02 4722 6161 Facsimile +61 2 8594 0499

Facsimile 02 4722 6161 Facsimile +61 2 8594 0499

Email john.xu@geotech.com.au Email au.environmental.sydney@sgs.com

Project 12675-4 Googong NH1A-7 and NH2-Add SGS Reference SE158264D R4

 Order Number
 (Not specified)
 Date Received
 13 Dec 2016

 Samples
 198
 Date Reported
 20 Jan 2017

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document and was supplied by the Client.

This QA/QC Statement must be read in conjunction with the referenced Analytical Report.

The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met (within the SGS Alexandria Environmental laboratory).

SAMPLE SUMMARY

Sample counts by matrix
Date documentation received
Samples received without headspace
Sample container provider
Samples received in correct containers
Sample cooling method
Complete documentation received

166 Soil, 3 Water 13/12/16@3:50pm Yes SGS Yes Ice Bricks Yes Type of documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested Sufficient sample for analysis Samples clearly labelled COC Yes 8.3°C Standard Yes Yes

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia Australia t +61 2 8594 0400 f +61 2 8594 0499

www.sgs.com.au

Member of the SGS Group

HOLDING TIME SUMMARY

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES

Method: ME-(AU)-[ENV]AN040/AN320

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
A4 0.25-0.35	SE158264D.001	LB116113	18 Oct 2016	13 Dec 2016	16 Apr 2017	15 Dec 2016	16 Apr 2017	16 Dec 2016
A4 0.5-0.6	SE158264D.002	LB116113	18 Oct 2016	13 Dec 2016	16 Apr 2017	15 Dec 2016	16 Apr 2017	16 Dec 2016
A6 0.25-0.35	SE158264D.003	LB116113	18 Oct 2016	13 Dec 2016	16 Apr 2017	15 Dec 2016	16 Apr 2017	16 Dec 2016
A6 0.5-0.6	SE158264D.004	LB116113	18 Oct 2016	13 Dec 2016	16 Apr 2017	15 Dec 2016	16 Apr 2017	16 Dec 2016
A8 0.25-0.35	SE158264D.005	LB116113	18 Oct 2016	13 Dec 2016	16 Apr 2017	15 Dec 2016	16 Apr 2017	16 Dec 2016
A8 0.5-0.6	SE158264D.006	LB116113	18 Oct 2016	13 Dec 2016	16 Apr 2017	15 Dec 2016	16 Apr 2017	16 Dec 2016
A8 1.0-1.1	SE158264D.007	LB116113	18 Oct 2016	13 Dec 2016	16 Apr 2017	15 Dec 2016	16 Apr 2017	16 Dec 2016
A9 0.25-0.35	SE158264D.008	LB116113	18 Oct 2016	13 Dec 2016	16 Apr 2017	15 Dec 2016	16 Apr 2017	16 Dec 2016
A9 0.5-0.6	SE158264D.009	LB116113	18 Oct 2016	13 Dec 2016	16 Apr 2017	15 Dec 2016	16 Apr 2017	16 Dec 2016
A11 0.25-0.35	SE158264D.010	LB116113	18 Oct 2016	13 Dec 2016	16 Apr 2017	15 Dec 2016	16 Apr 2017	16 Dec 2016
A11 0.5-0.6	SE158264D.011	LB116113	18 Oct 2016	13 Dec 2016	16 Apr 2017	15 Dec 2016	16 Apr 2017	16 Dec 2016
A11 1.0-1.1	SE158264D.012	LB116113	18 Oct 2016	13 Dec 2016	16 Apr 2017	15 Dec 2016	16 Apr 2017	16 Dec 2016
A11 1.9-2.0	SE158264D.013	LB116113	18 Oct 2016	13 Dec 2016	16 Apr 2017	15 Dec 2016	16 Apr 2017	16 Dec 2016
A13 0.25-0.35	SE158264D.014	LB116113	18 Oct 2016	13 Dec 2016	16 Apr 2017	15 Dec 2016	16 Apr 2017	16 Dec 2016
A13 0.5-0.6	SE158264D.015	LB116113	18 Oct 2016	13 Dec 2016	16 Apr 2017	15 Dec 2016	16 Apr 2017	16 Dec 2016
A15 0.2-0.3	SE158264D.016	LB116113	18 Oct 2016	13 Dec 2016	16 Apr 2017	15 Dec 2016	16 Apr 2017	16 Dec 2016
A15 0.5-0.6	SE158264D.017	LB116113	18 Oct 2016	13 Dec 2016	16 Apr 2017	15 Dec 2016	16 Apr 2017	16 Dec 2016
A15 1.0-1.1	SE158264D.018	LB116113	18 Oct 2016	13 Dec 2016	16 Apr 2017	15 Dec 2016	16 Apr 2017	16 Dec 2016
A15 1.9-2.0	SE158264D.019	LB116113	18 Oct 2016	13 Dec 2016	16 Apr 2017	15 Dec 2016	16 Apr 2017	16 Dec 2016
A16 0.2-0.3	SE158264D.020	LB116115	18 Oct 2016	13 Dec 2016	16 Apr 2017	15 Dec 2016	16 Apr 2017	16 Dec 2016
A16 0.5-0.6	SE158264D.021	LB116115	18 Oct 2016	13 Dec 2016	16 Apr 2017	15 Dec 2016	16 Apr 2017	16 Dec 2016
A16 1.0-1.1	SE158264D.022	LB116115	18 Oct 2016	13 Dec 2016	16 Apr 2017	15 Dec 2016	16 Apr 2017	16 Dec 2016
A16 1.5-1.6	SE158264D.023	LB116115	18 Oct 2016	13 Dec 2016	16 Apr 2017	15 Dec 2016	16 Apr 2017	16 Dec 2016
A17 0.2-0.3	SE158264D.024	LB116115	18 Oct 2016	13 Dec 2016	16 Apr 2017	15 Dec 2016	16 Apr 2017	16 Dec 2016
A17 0.5-0.6	SE158264D.025	LB116115	18 Oct 2016	13 Dec 2016	16 Apr 2017	15 Dec 2016	16 Apr 2017	16 Dec 2016
A17 1.0-1.1	SE158264D.026	LB116115	18 Oct 2016	13 Dec 2016	16 Apr 2017	15 Dec 2016	16 Apr 2017	16 Dec 2016
A17 1.9-2.0	SE158264D.027	LB116115	18 Oct 2016	13 Dec 2016	16 Apr 2017	15 Dec 2016	16 Apr 2017	16 Dec 2016
A18 0.2-0.3	SE158264D.028	LB116115	18 Oct 2016	13 Dec 2016	16 Apr 2017	15 Dec 2016	16 Apr 2017	16 Dec 2016
A18 0.5-0.6	SE158264D.029	LB116115	18 Oct 2016	13 Dec 2016	16 Apr 2017	15 Dec 2016	16 Apr 2017	16 Dec 2016
A18 1.0-1.1	SE158264D.030	LB116115	18 Oct 2016	13 Dec 2016	16 Apr 2017	15 Dec 2016	16 Apr 2017	16 Dec 2016
D101 0-0.1	SE158264D.031	LB116115	17 Oct 2016	13 Dec 2016	15 Apr 2017	15 Dec 2016	15 Apr 2017	16 Dec 2016
D101 0.2-0.3	SE158264D.032	LB116115	17 Oct 2016	13 Dec 2016	15 Apr 2017	15 Dec 2016	15 Apr 2017	16 Dec 2016
D101 1.0-1.1	SE158264D.033	LB116115	17 Oct 2016	13 Dec 2016	15 Apr 2017	15 Dec 2016	15 Apr 2017	16 Dec 2016
D101 1.9-2.0	SE158264D.034	LB116115	17 Oct 2016	13 Dec 2016	15 Apr 2017	15 Dec 2016	15 Apr 2017	16 Dec 2016
D102 0-0.1	SE158264D.035	LB116115	17 Oct 2016	13 Dec 2016	15 Apr 2017	15 Dec 2016	15 Apr 2017	16 Dec 2016
D102 0.2-0.3	SE158264D.036	LB116115	17 Oct 2016	13 Dec 2016	15 Apr 2017	15 Dec 2016	15 Apr 2017	16 Dec 2016
D103 0-0.1	SE158264D.037	LB116115	18 Oct 2016	13 Dec 2016	16 Apr 2017	15 Dec 2016	16 Apr 2017	16 Dec 2016
D103 0.2-0.3	SE158264D.038	LB116115	18 Oct 2016	13 Dec 2016	16 Apr 2017	15 Dec 2016	16 Apr 2017	16 Dec 2016
D104 0-0.1	SE158264D.039	LB116116	18 Oct 2016	13 Dec 2016	16 Apr 2017	15 Dec 2016	16 Apr 2017	19 Dec 2016
D104 0.2-0.3	SE158264D.040	LB116116	18 Oct 2016	13 Dec 2016	16 Apr 2017	15 Dec 2016	16 Apr 2017	19 Dec 2016
D105 0-0.1	SE158264D.041	LB116116	18 Oct 2016	13 Dec 2016	16 Apr 2017	15 Dec 2016	16 Apr 2017	19 Dec 2016
D105 0.2-0.3	SE158264D.042	LB116116	18 Oct 2016	13 Dec 2016	16 Apr 2017	15 Dec 2016	16 Apr 2017	19 Dec 2016
D106 0-0.1	SE158264D.043	LB116116	18 Oct 2016	13 Dec 2016	16 Apr 2017	15 Dec 2016	16 Apr 2017	19 Dec 2016
D106 0.2-0.3	SE158264D.044	LB116116	18 Oct 2016	13 Dec 2016	16 Apr 2017	15 Dec 2016	16 Apr 2017	19 Dec 2016
D107 0-0.1	SE158264D.045	LB116116	18 Oct 2016	13 Dec 2016	16 Apr 2017	15 Dec 2016	16 Apr 2017	19 Dec 2016
D107 0.2-0.3	SE158264D.046	LB116116	18 Oct 2016	13 Dec 2016	16 Apr 2017	15 Dec 2016	16 Apr 2017	19 Dec 2016
D108 0-0.1	SE158264D.047	LB116116	18 Oct 2016	13 Dec 2016	16 Apr 2017	15 Dec 2016	16 Apr 2017	19 Dec 2016
D108 0.2-0.3	SE158264D.048	LB116116	18 Oct 2016	13 Dec 2016	16 Apr 2017	15 Dec 2016	16 Apr 2017	19 Dec 2016
D109 0-0.1	SE158264D.049	LB116116	18 Oct 2016	13 Dec 2016	16 Apr 2017	15 Dec 2016	16 Apr 2017	19 Dec 2016
D109 0.2-0.3	SE158264D.050	LB116116	18 Oct 2016	13 Dec 2016	16 Apr 2017	15 Dec 2016	16 Apr 2017	19 Dec 2016
D110 0-0.1	SE158264D.051	LB116116	17 Oct 2016	13 Dec 2016	15 Apr 2017	15 Dec 2016	15 Apr 2017	19 Dec 2016
D110 0.2-0.3	SE158264D.052	LB116116	17 Oct 2016	13 Dec 2016	15 Apr 2017	15 Dec 2016	15 Apr 2017	19 Dec 2016
D111 0-0.1	SE158264D.053	LB116116	17 Oct 2016	13 Dec 2016	15 Apr 2017	15 Dec 2016	15 Apr 2017	19 Dec 2016
D111 0.2-0.3	SE158264D.054	LB116116	17 Oct 2016	13 Dec 2016	15 Apr 2017	15 Dec 2016	15 Apr 2017	19 Dec 2016
D112 0-0.1	SE158264D.055	LB116116	17 Oct 2016	13 Dec 2016	15 Apr 2017	15 Dec 2016	15 Apr 2017	19 Dec 2016
D112 0.2-0.3	SE158264D.056	LB116116	17 Oct 2016	13 Dec 2016	15 Apr 2017	15 Dec 2016	15 Apr 2017	19 Dec 2016
D113 0-0.1	SE158264D.057	LB116116	17 Oct 2016	13 Dec 2016	15 Apr 2017	15 Dec 2016	15 Apr 2017	19 Dec 2016
D113 0.2-0.3	SE158264D.058	LB116117	17 Oct 2016	13 Dec 2016	15 Apr 2017	15 Dec 2016	15 Apr 2017	19 Dec 2016
D114 0-0.1	SE158264D.059	LB116117	17 Oct 2016	13 Dec 2016	15 Apr 2017	15 Dec 2016	15 Apr 2017	19 Dec 2016
D114 0.2-0.3	SE158264D.060	LB116117	17 Oct 2016	13 Dec 2016	15 Apr 2017	15 Dec 2016	15 Apr 2017	19 Dec 2016
5.17 0.2 0.0	OL 100204D.000	ED 110111	17 000 2010	10 200 2010	10 / pr 201/	10 200 2010	10 / Ipl 2011	10 000 2010

20/1/2017 Page 2 of 11

HOLDING TIME SUMMARY

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES (continued)

Method: ME-(AU)-[ENV]AN040/AN320

Total Recoverable Metals	in Soil/Waste Solids/Materia	als by ICPOES (co	ntinued)				Method: ME-(AU))-[ENV]AN040/AN320
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
D115 0-0.1	SE158264D.061	LB116117	17 Oct 2016	13 Dec 2016	15 Apr 2017	15 Dec 2016	15 Apr 2017	19 Dec 2016
D115 0.2-0.3	SE158264D.062	LB116117	17 Oct 2016	13 Dec 2016	15 Apr 2017	15 Dec 2016	15 Apr 2017	19 Dec 2016
D116 0-0.1	SE158264D.063	LB116117	18 Oct 2016	13 Dec 2016	16 Apr 2017	15 Dec 2016	16 Apr 2017	19 Dec 2016
D116 0.2-0.3	SE158264D.064	LB116117	18 Oct 2016	13 Dec 2016	16 Apr 2017	15 Dec 2016	16 Apr 2017	19 Dec 2016
D116 1.0-1.1	SE158264D.065	LB116117	18 Oct 2016	13 Dec 2016	16 Apr 2017	15 Dec 2016	16 Apr 2017	19 Dec 2016
D116 1.4-1.5	SE158264D.066	LB116117	18 Oct 2016	13 Dec 2016	16 Apr 2017	15 Dec 2016	16 Apr 2017	19 Dec 2016
D117 0-0.1	SE158264D.067	LB116117	18 Oct 2016	13 Dec 2016	16 Apr 2017	15 Dec 2016	16 Apr 2017	19 Dec 2016
D117 0.2-0.3	SE158264D.068	LB116117	18 Oct 2016	13 Dec 2016	16 Apr 2017	15 Dec 2016	16 Apr 2017	19 Dec 2016
D118 0-0.1	SE158264D.069	LB116117	18 Oct 2016	13 Dec 2016	16 Apr 2017	15 Dec 2016	16 Apr 2017	19 Dec 2016
D118 0.2-0.3	SE158264D.070	LB116117	18 Oct 2016	13 Dec 2016	16 Apr 2017	15 Dec 2016	16 Apr 2017	19 Dec 2016
D119 0-0.1	SE158264D.071	LB116117	18 Oct 2016	13 Dec 2016	16 Apr 2017	15 Dec 2016	16 Apr 2017	19 Dec 2016
D119 0.2-0.3	SE158264D.072	LB116117	18 Oct 2016	13 Dec 2016	16 Apr 2017	15 Dec 2016	16 Apr 2017	19 Dec 2016
D120 0-0.1	SE158264D.073	LB116117	18 Oct 2016	13 Dec 2016	16 Apr 2017	15 Dec 2016	16 Apr 2017	19 Dec 2016
D120 0.2-0.3	SE158264D.074	LB116117	18 Oct 2016	13 Dec 2016	16 Apr 2017	15 Dec 2016	16 Apr 2017	19 Dec 2016
D121 0-0.1	SE158264D.075	LB116117	18 Oct 2016	13 Dec 2016	16 Apr 2017	15 Dec 2016	16 Apr 2017	19 Dec 2016
D121 0.2-0.3	SE158264D.076	LB116117	18 Oct 2016	13 Dec 2016	16 Apr 2017	15 Dec 2016	16 Apr 2017	19 Dec 2016
D122 0-0.1	SE158264D.077	LB116119	18 Oct 2016	13 Dec 2016	16 Apr 2017	15 Dec 2016	16 Apr 2017	19 Dec 2016
D122 0.2-0.3	SE158264D.078	LB116119	18 Oct 2016	13 Dec 2016	16 Apr 2017	15 Dec 2016	16 Apr 2017	19 Dec 2016
D123 0-0.1	SE158264D.079	LB116119	18 Oct 2016	13 Dec 2016	16 Apr 2017	15 Dec 2016	16 Apr 2017	19 Dec 2016
D123 0.2-0.3	SE158264D.080	LB116119	18 Oct 2016	13 Dec 2016	16 Apr 2017	15 Dec 2016	16 Apr 2017	19 Dec 2016
D124 0-0.1	SE158264D.081	LB116119	17 Oct 2016	13 Dec 2016	15 Apr 2017	15 Dec 2016	15 Apr 2017	19 Dec 2016
D124 0.2-0.3	SE158264D.082	LB116119	17 Oct 2016	13 Dec 2016	15 Apr 2017	15 Dec 2016	15 Apr 2017	19 Dec 2016
D125 0-0.1	SE158264D.083	LB116119	17 Oct 2016	13 Dec 2016	15 Apr 2017	15 Dec 2016	15 Apr 2017	19 Dec 2016
D125 0.2-0.3	SE158264D.084	LB116119	17 Oct 2016	13 Dec 2016	15 Apr 2017	15 Dec 2016	15 Apr 2017	19 Dec 2016
D126 0-0.1	SE158264D.085	LB116119	17 Oct 2016	13 Dec 2016	15 Apr 2017	15 Dec 2016	15 Apr 2017	19 Dec 2016
D126 0.2-0.3	SE158264D.086	LB116119	17 Oct 2016	13 Dec 2016	15 Apr 2017	15 Dec 2016	15 Apr 2017	19 Dec 2016
D127 0-0.1	SE158264D.087	LB116119	18 Oct 2016	13 Dec 2016	16 Apr 2017	15 Dec 2016	16 Apr 2017	19 Dec 2016
D127 0.2-0.3	SE158264D.088	LB116119	18 Oct 2016	13 Dec 2016	16 Apr 2017	15 Dec 2016	16 Apr 2017	19 Dec 2016
D128 0-0.1	SE158264D.089	LB116119	18 Oct 2016	13 Dec 2016	16 Apr 2017	15 Dec 2016	16 Apr 2017	19 Dec 2016
D128 0.2-0.3	SE158264D.090	LB116119	18 Oct 2016	13 Dec 2016	16 Apr 2017	15 Dec 2016	16 Apr 2017	19 Dec 2016
D129 0-0.1	SE158264D.091	LB116119	18 Oct 2016	13 Dec 2016	16 Apr 2017	15 Dec 2016	16 Apr 2017	19 Dec 2016
D129 0.2-0.3	SE158264D.092	LB116119	18 Oct 2016	13 Dec 2016	16 Apr 2017	15 Dec 2016	16 Apr 2017	19 Dec 2016
D130 0-0.1	SE158264D.093	LB116119	18 Oct 2016	13 Dec 2016	16 Apr 2017	15 Dec 2016	16 Apr 2017	19 Dec 2016
D130 0.2-0.3	SE158264D.094	LB116119	18 Oct 2016	13 Dec 2016	16 Apr 2017	15 Dec 2016	16 Apr 2017	19 Dec 2016
D130 1.0-1.1	SE158264D.095	LB116119	18 Oct 2016	13 Dec 2016	16 Apr 2017	15 Dec 2016	16 Apr 2017	19 Dec 2016
D131 0-0.1	SE158264D.096	LB116120	18 Oct 2016	13 Dec 2016	16 Apr 2017	15 Dec 2016	16 Apr 2017	19 Dec 2016
D131 0.2-0.3	SE158264D.097	LB116120	18 Oct 2016	13 Dec 2016	16 Apr 2017	15 Dec 2016	16 Apr 2017	19 Dec 2016
D132 0-0.1	SE158264D.098	LB116120	17 Oct 2016	13 Dec 2016	15 Apr 2017	15 Dec 2016	15 Apr 2017	19 Dec 2016
D132 0.2-0.3	SE158264D.099	LB116120	17 Oct 2016	13 Dec 2016	15 Apr 2017	15 Dec 2016	15 Apr 2017	19 Dec 2016
D132 1.0-1.1	SE158264D.100	LB116120	17 Oct 2016	13 Dec 2016	15 Apr 2017	15 Dec 2016	15 Apr 2017	19 Dec 2016
D132 1.9-2.0	SE158264D.101	LB116120	17 Oct 2016	13 Dec 2016	15 Apr 2017	15 Dec 2016	15 Apr 2017	19 Dec 2016
D133 0-0.1	SE158264D.102	LB116120	17 Oct 2016	13 Dec 2016	15 Apr 2017	15 Dec 2016	15 Apr 2017	19 Dec 2016
D133 0.2-0.3	SE158264D.103	LB116120	17 Oct 2016	13 Dec 2016	15 Apr 2017	15 Dec 2016	15 Apr 2017	19 Dec 2016
D134 0-0.1	SE158264D.104	LB116120	17 Oct 2016	13 Dec 2016	15 Apr 2017	15 Dec 2016	15 Apr 2017	19 Dec 2016
D134 0.2-0.03	SE158264D.105	LB116120	17 Oct 2016	13 Dec 2016	15 Apr 2017	15 Dec 2016	15 Apr 2017	19 Dec 2016
D135 0-0.1	SE158264D.106	LB116120	17 Oct 2016	13 Dec 2016	15 Apr 2017	15 Dec 2016	15 Apr 2017	19 Dec 2016
D135 0.2-0.3	SE158264D.107	LB116120	17 Oct 2016	13 Dec 2016	15 Apr 2017	15 Dec 2016	15 Apr 2017	19 Dec 2016
D136 0-0.1	SE158264D.108	LB116120	17 Oct 2016	13 Dec 2016	15 Apr 2017	15 Dec 2016	15 Apr 2017	19 Dec 2016
D136 0.2-0.3	SE158264D.109	LB116120	17 Oct 2016	13 Dec 2016	15 Apr 2017	15 Dec 2016	15 Apr 2017	19 Dec 2016
D137 0-0.1	SE158264D.110	LB116120	17 Oct 2016	13 Dec 2016	15 Apr 2017	15 Dec 2016	15 Apr 2017	19 Dec 2016
D137 0.2-0.3	SE158264D.111	LB116120	17 Oct 2016	13 Dec 2016	15 Apr 2017	15 Dec 2016	15 Apr 2017	19 Dec 2016
D138 0-0.1	SE158264D.112	LB116120	17 Oct 2016	13 Dec 2016	15 Apr 2017	15 Dec 2016	15 Apr 2017	19 Dec 2016
D138 0.2-0.3	SE158264D.113	LB116120	17 Oct 2016	13 Dec 2016	15 Apr 2017	15 Dec 2016	15 Apr 2017	19 Dec 2016
D139 0-0.1	SE158264D.114	LB116120	17 Oct 2016	13 Dec 2016	15 Apr 2017	15 Dec 2016	15 Apr 2017	19 Dec 2016
D139 0.2-0.3	SE158264D.115	LB116121	17 Oct 2016	13 Dec 2016	15 Apr 2017	15 Dec 2016	15 Apr 2017	19 Dec 2016
D139 1.0-1.1	SE158264D.116	LB116121	17 Oct 2016	13 Dec 2016	15 Apr 2017	15 Dec 2016	15 Apr 2017	19 Dec 2016
D139 1.4-1.5	SE158264D.117	LB116121	17 Oct 2016	13 Dec 2016	15 Apr 2017	15 Dec 2016	15 Apr 2017	19 Dec 2016
D140 0-0.1	SE158264D.118	LB116121	17 Oct 2016	13 Dec 2016	15 Apr 2017	15 Dec 2016	15 Apr 2017	19 Dec 2016
D140 0.2-0.3	SE158264D.119	LB116121	17 Oct 2016	13 Dec 2016	15 Apr 2017	15 Dec 2016	15 Apr 2017	19 Dec 2016
D141 0-0.1	SE158264D.120	LB116121	17 Oct 2016	13 Dec 2016	15 Apr 2017	15 Dec 2016	15 Apr 2017	19 Dec 2016
200	GE 100204D. 120	LDITUILI	17 000 2010	10 000 2010	10/10/1201/	10 000 2010	10 Apr 2011	10 200 2010

20/1/2017 Page 3 of 11

HOLDING TIME SUMMARY

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES (continued)

Method: ME-(AU)-[ENV]AN040/AN320

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
D141 0.2-0.3	SE158264D.121	LB116121	17 Oct 2016	13 Dec 2016	15 Apr 2017	15 Dec 2016	15 Apr 2017	19 Dec 2016
D142 0-0.1	SE158264D.122	LB116121	17 Oct 2016	13 Dec 2016	15 Apr 2017	15 Dec 2016	15 Apr 2017	19 Dec 2016
D142 0.2-0.3	SE158264D.123	LB116121	17 Oct 2016	13 Dec 2016	15 Apr 2017	15 Dec 2016	15 Apr 2017	19 Dec 2016
D142 1.0-1.1	SE158264D.124	LB116121	17 Oct 2016	13 Dec 2016	15 Apr 2017	15 Dec 2016	15 Apr 2017	19 Dec 2016
D142 1.9-2.0	SE158264D.125	LB116121	17 Oct 2016	13 Dec 2016	15 Apr 2017	15 Dec 2016	15 Apr 2017	19 Dec 2016
D143 0-0.1	SE158264D.126	LB116121	17 Oct 2016	13 Dec 2016	15 Apr 2017	15 Dec 2016	15 Apr 2017	19 Dec 2016
D143 0.2-0.3	SE158264D.127	LB116121	17 Oct 2016	13 Dec 2016	15 Apr 2017	15 Dec 2016	15 Apr 2017	19 Dec 2016
D144 0-0.1	SE158264D.128	LB116121	17 Oct 2016	13 Dec 2016	15 Apr 2017	15 Dec 2016	15 Apr 2017	19 Dec 2016
D144 0.2-0.3	SE158264D.129	LB116121	17 Oct 2016	13 Dec 2016	15 Apr 2017	15 Dec 2016	15 Apr 2017	19 Dec 2016
D145 0-0.1	SE158264D.130	LB116121	17 Oct 2016	13 Dec 2016	15 Apr 2017	15 Dec 2016	15 Apr 2017	19 Dec 2016
D145 0.2-0.3	SE158264D.131	LB116121	17 Oct 2016	13 Dec 2016	15 Apr 2017	15 Dec 2016	15 Apr 2017	19 Dec 2016
D146 0-0.1	SE158264D.132	LB116121	17 Oct 2016	13 Dec 2016	15 Apr 2017	15 Dec 2016	15 Apr 2017	19 Dec 2016
D146 0.2-0.3	SE158264D.133	LB116121	17 Oct 2016	13 Dec 2016	15 Apr 2017	15 Dec 2016	15 Apr 2017	19 Dec 2016
D147 0-0.1	SE158264D.134	LB116122	17 Oct 2016	13 Dec 2016	15 Apr 2017	15 Dec 2016	15 Apr 2017	19 Dec 2016
D147 0.2-0.3	SE158264D.135	LB116122	17 Oct 2016	13 Dec 2016	15 Apr 2017	15 Dec 2016	15 Apr 2017	19 Dec 2016
D148 0-0.1	SE158264D.136	LB116122	17 Oct 2016	13 Dec 2016	15 Apr 2017	15 Dec 2016	15 Apr 2017	19 Dec 2016
D148 0.2-0.3	SE158264D.137	LB116122	17 Oct 2016	13 Dec 2016	15 Apr 2017	15 Dec 2016	15 Apr 2017	19 Dec 2016
D149 0-0.1	SE158264D.138	LB116122	17 Oct 2016	13 Dec 2016	15 Apr 2017	15 Dec 2016	15 Apr 2017	19 Dec 2016
D149 0.2-0.3	SE158264D.139	LB116122	17 Oct 2016	13 Dec 2016	15 Apr 2017	15 Dec 2016	15 Apr 2017	19 Dec 2016
D150 0-0.1	SE158264D.140	LB116122	17 Oct 2016	13 Dec 2016	15 Apr 2017	15 Dec 2016	15 Apr 2017	19 Dec 2016
D150 0.2-0.3	SE158264D.141	LB116122	17 Oct 2016	13 Dec 2016	15 Apr 2017	15 Dec 2016	15 Apr 2017	19 Dec 2016
D151 0-0.1	SE158264D.142	LB116122	17 Oct 2016	13 Dec 2016	15 Apr 2017	15 Dec 2016	15 Apr 2017	19 Dec 2016
D151 0.2-0.3	SE158264D.143	LB116122	17 Oct 2016	13 Dec 2016	15 Apr 2017	15 Dec 2016	15 Apr 2017	19 Dec 2016
D152 0-0.1	SE158264D.144	LB116122	17 Oct 2016	13 Dec 2016	15 Apr 2017	15 Dec 2016	15 Apr 2017	19 Dec 2016
D152 0.2-0.3	SE158264D.145	LB116122	17 Oct 2016	13 Dec 2016	15 Apr 2017	15 Dec 2016	15 Apr 2017	19 Dec 2016
D152 1.0-1.1	SE158264D.146	LB116122	17 Oct 2016	13 Dec 2016	15 Apr 2017	15 Dec 2016	15 Apr 2017	19 Dec 2016
D152 1.9-2.0	SE158264D.147	LB116122	17 Oct 2016	13 Dec 2016	15 Apr 2017	15 Dec 2016	15 Apr 2017	19 Dec 2016
D153 0-0.1	SE158264D.148	LB116122	17 Oct 2016	13 Dec 2016	15 Apr 2017	15 Dec 2016	15 Apr 2017	19 Dec 2016
D153 0.2-0.3	SE158264D.149	LB116122	17 Oct 2016	13 Dec 2016	15 Apr 2017	15 Dec 2016	15 Apr 2017	19 Dec 2016
D154 0-0.1	SE158264D.150	LB116122	17 Oct 2016	13 Dec 2016	15 Apr 2017	15 Dec 2016	15 Apr 2017	19 Dec 2016
D154 0.2-0.3	SE158264D.151	LB116122	17 Oct 2016	13 Dec 2016	15 Apr 2017	15 Dec 2016	15 Apr 2017	19 Dec 2016
D155 0-0.1	SE158264D.152	LB116122	17 Oct 2016	13 Dec 2016	15 Apr 2017	15 Dec 2016	15 Apr 2017	19 Dec 2016
D155 0.2-0.3	SE158264D.153	LB116123	17 Oct 2016	13 Dec 2016	15 Apr 2017	15 Dec 2016	15 Apr 2017	19 Dec 2016
D156 0-0.1	SE158264D.154	LB116123	17 Oct 2016	13 Dec 2016	15 Apr 2017	15 Dec 2016	15 Apr 2017	19 Dec 2016
D156 0.2-0.3	SE158264D.155	LB116123	17 Oct 2016	13 Dec 2016	15 Apr 2017	15 Dec 2016	15 Apr 2017	19 Dec 2016
D157 0-0.1	SE158264D.156	LB116123	17 Oct 2016	13 Dec 2016	15 Apr 2017	15 Dec 2016	15 Apr 2017	19 Dec 2016
D157 0.2-0.3	SE158264D.157	LB116123	17 Oct 2016	13 Dec 2016	15 Apr 2017	15 Dec 2016	15 Apr 2017	19 Dec 2016
D157 1.0-1.1	SE158264D.158	LB116123	17 Oct 2016	13 Dec 2016	15 Apr 2017	15 Dec 2016	15 Apr 2017	19 Dec 2016
D157 1.9-2.0	SE158264D.159	LB116123	17 Oct 2016	13 Dec 2016	15 Apr 2017	15 Dec 2016	15 Apr 2017	19 Dec 2016
Duplicate D1	SE158264D.186	LB116123	17 Oct 2016	13 Dec 2016	15 Apr 2017	15 Dec 2016	15 Apr 2017	19 Dec 2016
Duplicate D2	SE158264D.187	LB116123	17 Oct 2016	13 Dec 2016	15 Apr 2017	15 Dec 2016	15 Apr 2017	19 Dec 2016
Duplicate D3	SE158264D.188	LB116123	17 Oct 2016	13 Dec 2016	15 Apr 2017	15 Dec 2016	15 Apr 2017	19 Dec 2016
Duplicate D3 Duplicate D4	SE158264D.189	LB116123	17 Oct 2016	13 Dec 2016	15 Apr 2017	15 Dec 2016	15 Apr 2017	19 Dec 2016
Duplicate D5	SE158264D.190	LB116123	18 Oct 2016	13 Dec 2016	16 Apr 2017	15 Dec 2016	16 Apr 2017	19 Dec 2016
Duplicate D6	SE158264D.191	LB116123	18 Oct 2016	13 Dec 2016	16 Apr 2017	15 Dec 2016	16 Apr 2017	19 Dec 2016
Duplicate D7	SE158264D.192	LB116123	18 Oct 2016	13 Dec 2016	16 Apr 2017	15 Dec 2016	16 Apr 2017	19 Dec 2016
Duplicate D8	SE158264D.192	LB116123	18 Oct 2016	13 Dec 2016	16 Apr 2017	15 Dec 2016	16 Apr 2017	19 Dec 2016
Duplicate D9	SE158264D.194	LB116123	18 Oct 2016	13 Dec 2016	16 Apr 2017	15 Dec 2016	16 Apr 2017	19 Dec 2016
Duplicate D9 Duplicate D10	SE158264D.195	LB116123	18 Oct 2016	13 Dec 2016	16 Apr 2017	15 Dec 2016	16 Apr 2017	19 Dec 2016
Duplicate DT0	JE 130Z04D.193	LD110123	10 OCL 2010	13 Dec 2010	10 Apt 2017	10 Dec 2010	10 Apr 2017	19 Dec 2010

Trace Metals (Dissolved) in Water by ICPMS

Method: ME-(AU)-[ENV]AN318

• • •	•							
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
Dam Water W1	SE158264D.198	LB115973	18 Oct 2016	13 Dec 2016	16 Apr 2017	14 Dec 2016	16 Apr 2017	14 Dec 2016

Trace Metals (Total) in Water by ICPMS

Method: ME-(AU)-[ENV]AN022/AN318

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
Dam Water W1	SE158264D.198	LB115974	18 Oct 2016	13 Dec 2016	16 Apr 2017	14 Dec 2016	16 Apr 2017	14 Dec 2016

20/1/2017 Page 4 of 11

SURROGATES

SE158264D R4

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No surrogates were required for this job.

20/1/2017 Page 5 of 11

METHOD BLANKS

SE158264D R4

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES

Method: ME-(AU)-[ENV]AN040/AN320

Sample Number	Parameter	Units	LOR	Result
LB116113.001	Chromium, Cr	mg/kg	0.5	<0.5
LB116115.001	Chromium, Cr	mg/kg	0.5	<0.5
LB116116.001	Chromium, Cr	mg/kg	0.5	<0.5
LB116117.001	Chromium, Cr	mg/kg	0.5	<0.5
LB116119.001	Chromium, Cr	mg/kg	0.5	<0.5
LB116120.001	Chromium, Cr	mg/kg	0.5	<0.5
LB116121.001	Chromium, Cr	mg/kg	0.5	<0.5
LB116122.001	Chromium, Cr	mg/kg	0.5	<0.5
LB116123.001	Chromium, Cr	mg/kg	0.5	<0.5

Trace Metals (Dissolved) in Water by ICPMS

Method: ME-(AU)-[ENV]AN318

Sample Number	Parameter	Units	LOR	Result
LB115973.001	Chromium, Cr	ua/L	1	<1

20/1/2017 Page 6 of 11

DUPLICATES

SE158264D R4

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No duplicates were required for this job.

20/1/2017 Page 7 of 11

LABORATORY CONTROL SAMPLES

SE158264D R4

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES

Method: ME-(AU)-[ENV]AN040/AN320

Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB116113.002	Chromium, Cr	mg/kg	0.5	49	50	80 - 120	99
LB116115.002	Chromium, Cr	mg/kg	0.5	50	50	80 - 120	101
LB116116.002	Chromium, Cr	mg/kg	0.5	50	50	80 - 120	100
LB116117.002	Chromium, Cr	mg/kg	0.5	50	50	80 - 120	100
LB116119.002	Chromium, Cr	mg/kg	0.5	51	50	80 - 120	101
LB116120.002	Chromium, Cr	mg/kg	0.5	48	50	80 - 120	96
LB116121.002	Chromium, Cr	mg/kg	0.5	49	50	80 - 120	98
LB116122.002	Chromium, Cr	mg/kg	0.5	50	50	80 - 120	100
LB116123.002	Chromium, Cr	mg/kg	0.5	49	50	80 - 120	99

Trace Metals (Dissolved) in Water by ICPMS

Method: ME-(AU)-[ENV]AN318

Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB115973.002	Chromium, Cr	ua/L	1	21	20	80 - 120	106

20/1/2017 Page 8 of 11

MATRIX SPIKES

SE158264D R4

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spikes were required for this job.

20/1/2017 Page 9 of 11

MATRIX SPIKE DUPLICATES

SE158264D R4

Matrix spike duplicates are calculated as Relative Percent Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spike duplicates were required for this job.

20/1/2017 Page 10 of 11

FOOTNOTES

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover tthe performance of this service .
- Sample not analysed for this analyte.

IS Insufficient sample for analysis. LNR Sample listed, but not received.

LOR Limit of reporting.

QFH QC result is above the upper tolerance.
QFL QC result is below the lower tolerance.

- ① At least 2 of 3 surrogates are within acceptance criteria.
- ② RPD failed acceptance criteria due to sample heterogeneity.
- 3 Results less than 5 times LOR preclude acceptance criteria for RPD.
- Recovery failed acceptance criteria due to matrix interference.
- ® Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- © LOR was raised due to sample matrix interference.
- ① LOR was raised due to dilution of significantly high concentration of analyte in sample.
- ® Reanalysis of sample in duplicate confirmed sample heterogeneity and inconsistency of results.
- Recovery failed acceptance criteria due to sample heterogeneity.
- © LOR was raised due to high conductivity of the sample (required dilution).
- † Refer to Analytical Report comments for further information.

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service, available on request and accessible at http://www.sqs.com/en/terms-and-conditions. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained herein reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This test report shall not be reproduced, except in full.

20/1/2017 Page 11 of 11

Laboratory Test Request / Chain of Custody Record

PENR	Place ITH NSW 275	50		PEN		Box 880 W 2751	Fax: (0	2) 4722 2700 12) 4722 6161 nfo@geotech.com.au			Page	4	of	16
TO: PH: ATTN:	UNIT 16 33 MADD ALEXANI 02 8594 0					02 8594 04		Sampling By: Project Manager:	JX LA/JH	Job No: Project: Location:	12675/4 Googong NH1A	-7 & NH2	- OI	16
ATTIN.	MIS EMIL	Sampling de	tails		Same	le type								
	Location	Depth (m)	Date	Time	Soil	Water		Results re	equired by: 19 (SGS Ref. S		rmal TAT)			
							Heavy Metal Cr							KEEP SAMPLI
1	A4	0.25-0.35	18/10/2016		SG		1							YES
2	A4	0.5-0.6	18/10/2016		SG		/	S ₁ L						YES
3	A6	0.25-0.35	18/10/2016		SG	(C)	✓							YES
4	A6	0.5-0.6	18/10/2016		SG		/						7	YES
5	A8	0.25-0.35	18/10/2016	10.	SG		✓	J						YES
۲	A8	0.5-0.6	18/10/2016		SG		✓							YES
7	A8	1.0-1.1	18/10/2016		SG		✓							YES
8	A9	0.25-0.35	18/10/2016	•	SG		V							YES
9	A9 A11	0.5-0.6	18/10/2016		SG		V							YES
10	A11	0.25-0.35	18/10/2016	*	SG	58.4	· /							YES.
(1	A11	0.5-0.6 1.0-1.1	18/10/2016 18/10/2016	7	SG		· ·	The state of the s						YES
13	A11	1.9-2.0	18/10/2016		SG SG									YES
1)	AH	1.9-2.0		uiahad bu	SG		· ·							YES
	Name	Relinquished by Name Signature Date					Date	News		Received by				
	JOHN X			ix			13/12/2016	Name	1441	Signatu	ire	1 1	Date	
egend		- 1 - 1		J.			10/12/2010	- Func	100			13/14	1,6	
NG NP		ple, glass bottle ple, plastic bottle			SG	Soil sample	(glass jar)	Ś	SP Soil sample (p ✓ Test required	lastic bag)		Purge & Trap	-	

Laboratory Test Request / Chain of Custody Record

Tel: (02) 4722 2700 Lemko Place P O Box 880 Fax: (02) 4722 6161 Page PENRITH NSW 2750 PENRITH NSW 2751 of email: info@geotech.com.au 2 16 SGS ENVIRONMENTAL SERVICES Sampling By: LY/JH Job No: 12675/4 UNIT 16 33 MADDOX STREET Project: **ALEXANDRIA NSW 2015** PH: 02 8594 0400 FAX: 02 8594 0499 Project Manager: JX Googong NH1A-7 & NH2 Location: ATTN: MS EMILY YIN Sampling details Sample type Results required by: 19/12/2016 (Normal TAT) Location Depth (m) Date Time Soil Water (SGS Ref. SE158264) **Heavy Metal** KEEP Cr SAMPLE A13 0.25-0.35 18/10/2016 SG YES 15 A13 0.5-0.6 18/10/2016 SG YES 16 A15 0.2-0.3 18/10/2016 SG YES 17 A15 0.5-0.6 18/10/2016 SG YES 18 A15 1.0-1.1 18/10/2016 SG YES A15 19 1.9-2.0 18/10/2016 SG YES A16 0.2-0.3 18/10/2016 SG YES 21 A16 0.5-0.6 18/10/2016 SG YES A16 1.0-1.1 18/10/2016 SG YES 2) A16 1.5-1.6 18/10/2016 SG YES A17 0.2-0.3 18/10/2016 SG YES A17 0.5-0.6 18/10/2016 SG YES A17 1.0-1.1 18/10/2016 SG V YES Relinquished by Received by Name Signature Date Signature Date JOHN XU 13/1-116 jx 13/12/2016 e Legend: WG Water sample, glass bottle Soil sample (glass jar) SP Soil sample (plastic bag) * Purge & Trap WP Water sample, plastic bottle Test required

Laboratory Test Request / Chain of Custody Record

Tel: (02) 4722 2700 Lemko Place P O Box 880 Fax: (02) 4722 6161 PENRITH NSW 2750 PENRITH NSW 2751 Page email: info@geotech.com.au of 16 SGS ENVIRONMENTAL SERVICES Sampling By: LY/JH Job No: 12675/4 UNIT 16 33 MADDOX STREET Project: **ALEXANDRIA NSW 2015** PH: 02 8594 0400 FAX: 02 8594 0499 Project Manager: JX Googong NH1A-7 & NH2 Location: ATTN: MS EMILY YIN Sampling details Sample type Results required by: 19/12/2016 (Normal TAT) Location Depth (m) Date Time Water Soil (SGS Ref. SE158264) **Heavy Metal** KEEP Cr SAMPLE A17 1.9-2.0 18/10/2016 SG YES A18 0.2-0.3 18/10/2016 SG YES 28 A18 0.5-0.6 18/10/2016 SG YES 30 A18 1.0-1.1 18/10/2016 SG YES D101 0-0.1 31 17/10/2016 SG YES D101 0.2-0.3 17/10/2016 SG YES 3) D101 1.0-1.1 17/10/2016 SG YES D101 1.9-2.0 17/10/2016 SG YES D102 0-0.1 17/10/2016 SG YES D102 36 0.2-0.3 17/10/2016 SG YES 37 D103 0-0.1 18/10/2016 SG YES D103 0.2-0.3 18/10/2016 SG YES D104 0-0.1 18/10/2016 SG YES Relinquished by Received by Name Signature Date Name Signature Date JOHN XU 13/12/2016 12/16 Legend: WG Water sample, glass bottle Soil sample (glass jar) SP Soil sample (plastic bag) * Purge & Trap WP Water sample, plastic bottle Test required

Laboratory Test Request / Chain of Custody Record

Lemko Place PENRITH NSW 27	50		PENF	PO RITH NS	Box 880 W 2751		2) 4722 6161 nfo@geotech.com.au			Page	4	of	16
UNIT 16 33 MADI ALEXAN	VIRONMENTAL DOX STREET DRIA NSW 201				Service And		Sampling By:	LY/JH	Job No: Project:	12675/4	7	- 01	10
H: 02 8594	0400			FAX:	02 8594 0	499	Project Manager:	JX	Location:	Googong NH1A-7	& NH2		
TTN: MS EMIL	Y YIN												
	Sampling de	tails		Samp	le type			A TY CODE OF				_	
Location	Depth (m)	Date	Time	Soil	Water		Results re	equired by: 19 (SGS Ref. S		rmal TAT)			
						Heavy Metal Cr							KEEP
40 D104	0.2-0.3	18/10/2016		SG		/							YES
€1 D105	0-0.1	18/10/2016	- 14	SG		✓							YES
12 D105	0.2-0.3	18/10/2016		SG		1							YES
43 D106	0-0.1	18/10/2016	- 8	SG		✓							YES
44 D106	0.2-0.3	18/10/2016		SG		✓							YES
41 D107	0-0.1	18/10/2016		SG		✓							YES
46 D107	0.2-0.3	18/10/2016		SG		√							YES
₹7 D108	0-0.1	18/10/2016	-	SG		✓							YES
48 D108	0.2-0.3	18/10/2016	•	SG		✓							YES
D109 D109	0-0.1	18/10/2016	-	SG		✓							YES
	0.2-0.3	18/10/2016	8.	SG		V					- 9		YES
∩ D110	0-0.1	17/10/2016	• •	SG		√							YES
イレ D110	0.2-0.3	17/10/2016	4	SG		V							YES
		Reling	uished by						Received by				ILO
Name			Signature			Date	Name		Signatu	re		Date	
JOHN)	(11)		ix		156	13/12/2016	E-CV	4-1	a		4	1-116	_

Laboratory Test Request / Chain of Custody Record

Tel: (02) 4722 2700 Lemko Place P O Box 880 Fax: (02) 4722 6161 Page PENRITH NSW 2750 email: info@geotech.com.au of PENRITH NSW 2751 5 16 SGS ENVIRONMENTAL SERVICES Sampling By: LY/JH 12675/4 Job No: UNIT 16 33 MADDOX STREET Project: **ALEXANDRIA NSW 2015** PH: 02 8594 0400 FAX: 02 8594 0499 Project Manager: JX Location: Googong NH1A-7 & NH2 ATTN: MS EMILY YIN Sampling details Sample type Results required by: 19/12/2016 (Normal TAT) Location Depth (m) Water Date Soil Time (SGS Ref. SE158264) Heavy Metal KEEP Cr SAMPLE 13 D111 0-0.1 17/10/2016 SG YES 54 SG D111 0.2-0.3 17/10/2016 YES 5 D112 17/10/2016 0-0.1 SG YES 5% D112 0.2-0.3 17/10/2016 SG YES 57 D113 0-0.1 17/10/2016 SG -YES SY D113 0.2-0.3 17/10/2016 SG YES 11 D114 0-0.1 17/10/2016 SG YES 6-D114 0.2-0.3 17/10/2016 SG YES D115 0-0.1 17/10/2016 201 SG YES D115 0.2-0.3 17/10/2016 SG 62 YES 67 D116 0-0.1 18/10/2016 SG YES D116 0.2-0.3 18/10/2016 64 SG YES D116 1.0-1.1 18/10/2016 SG YES Relinquished by Received by Name Signature Date Name Date Signature JOHN XU 13/12/2016 1311-113 Legend:

Soil sample (glass jar)

SP

Soil sample (plastic bag)

Test required

* Purge & Trap

Water sample, glass bottle

Water sample, plastic bottle

WG

WP

Laboratory Test Request / Chain of Custody Record

Tel: (02) 4722 2700 Lemko Place P O Box 880 Fax: (02) 4722 6161 Page PENRITH NSW 2750 email: info@geotech.com.au PENRITH NSW 2751 6 of 16 SGS ENVIRONMENTAL SERVICES Sampling By: LY/JH 12675/4 Job No: UNIT 16 33 MADDOX STREET Project: **ALEXANDRIA NSW 2015** PH: 02 8594 0400 FAX: 02 8594 0499 Project Manager: JX Location: Googong NH1A-7 & NH2 ATTN: MS EMILY YIN Sampling details Sample type Results required by: 19/12/2016 (Normal TAT) Location Depth (m) Water Date Time Soil (SGS Ref. SE158264) **Heavy Metal** KEEP Cr SAMPLE 18/10/2016 66 D116 14-15 SG YES D117 0-0.1 18/10/2016 SG YES (8 D117 0.2-0.3 18/10/2016 SG YES 6) D118 0-0.1 18/10/2016 SG YES 70 D118 0.2-0.3 18/10/2016 SG YES D119 0-0.1 18/10/2016 SG YES D119 0.2-0.3 18/10/2016 SG YES 13 D120 0-0.1 18/10/2016 SG YES D120 18/10/2016 0.2-0.3 SG YES D121 0-0.1 18/10/2016 75 SG YES 76 D121 0.2-0.3 18/10/2016 SG YES D122 17 0-0.1 18/10/2016 SG YES D122 0.2-0.3 18/10/2016 SG YES Relinquished by Received by Name Signature Date Name Signature Date JOHN XU 13/12/2016 (211~11= Legend: WG Water sample, glass bottle Soil sample (glass jar) SP Soil sample (plastic bag) * Purge & Trap WP Water sample, plastic bottle Test required

Laboratory Test Request / Chain of Custody Record

Tel: (02) 4722 2700 Lemko Place P O Box 880 Fax: (02) 4722 6161 Page PENRITH NSW 2750 PENRITH NSW 2751 of email: info@geotech.com.au 16 SGS ENVIRONMENTAL SERVICES Sampling By: LY/JH Job No: 12675/4 UNIT 16 33 MADDOX STREET Project: **ALEXANDRIA NSW 2015** PH: 02 8594 0400 FAX: 02 8594 0499 Project Manager: JX Location: Googong NH1A-7 & NH2 ATTN: MS EMILY YIN Sampling details Sample type Results required by: 19/12/2016 (Normal TAT) Location Depth (m) Date Time Soil Water (SGS Ref. SE158264) **Heavy Metal** KEEP Cr SAMPLE D123 18/10/2016 0-0.1 SG YES 10 D123 0.2-0.3 18/10/2016 SG YES D124 0-0.1 17/10/2016 SG 11 YES D124 0.2-0.3 17/10/2016 SG Y2 YES D125 0-0.1 83 17/10/2016 SG YES 14 D125 0.2-0.3 17/10/2016 SG YES D126 17/10/2016 0-0.1 SG YES D126 0.2-0.3 17/10/2016 86 SG YES 87 D127 0-0.1 18/10/2016 SG YES 8V D127 0.2-0.3 18/10/2016 SG YES D128 0-0.1 18/10/2016 SG YES (> D128 0.2-0.3 18/10/2016 SG YES S/ D129 0-0.1 18/10/2016 SG **√** YES Relinquished by Received by Name Signature Date Name Signature Date JOHN XU 13/11/16 13/12/2016 Legend: WG Water sample, glass bottle Soil sample (glass jar) SP Soil sample (plastic bag) * Purge & Trap WP Water sample, plastic bottle Test required

Laboratory Test Request / Chain of Custody Record

Lemko Place			2272	P O Box 880 Fax			2) 4722 2700 02) 4722 6161			B			
PENRITH NSW 2750 PENI FO: SGS ENVIRONMENTAL SERVICES UNIT 16			RITH NS	W 2751	email:	info@geotech.com.au Sampling By:	LY/JH	Job No:	Page 12675/4	8	of	16	
33 MADE	33 MADDOX STREET ALEXANDRIA NSW 2015								Project:				
PH: 02 8594 0400 ATTN: MS EMILY YIN				FAX:	02 8594 049	99	Project Manager:	JX	Location:	Googong NH1A			
ATTIN. INIS CIVIL	Sampling de	tails		Samp	le type					A WEST CO			
Location Depth (m) Date			Time	Soil	Water	Results required by: 19/12/2016 (Normal TAT) (SGS Ref. SE158264)							
						Heavy Metal Cr							KEEP SAMPLE
92 D129	0.2-0.03	18/10/2016		SG		✓							YES
53 D130	0-0.1	18/10/2016		SG		V							YES
C4 D130	0.2-0.3	18/10/2016	-9-	SG	Second Second	✓							YES
5 D130	1.0-1.1	18/10/2016		SG		√	_1						YES
۲L D131	0-0.1	18/10/2016	- 1	SG		√							YES
87 D131	0.2-0.3	18/10/2016		SG		√	/						YES
₫¥ D132	0-0.1	17/10/2016		SG		✓							YES
ΓΓ D132	0.2-0.3	17/10/2016	- 4	SG		√			- 7				YES
D132	1.0-1.1	17/10/2016		SG		✓							YES
(°(D132	1.9-2.0	17/10/2016		SG		V			- 0'				YES
◆ D133	0-0.1	17/10/2016		SG		✓							YES
3 D133	0.2-0.3	17/10/2016	-	SG		√							YES
4 D134	0-0.1	17/10/2016	or the	SG		√							YES
		Reling	uished by						Received by				
Name Signature			Signature	ature Date			/ Name	/ Name		Signature		Date	
JOHN XU jx				13/12/2016	1 Dunnel	. 9_>			(3(1~				

Laboratory Test Request / Chain of Custody Record

Tel: (02) 4722 2700 Lemko Place P O Box 880 Fax: (02) 4722 6161 PENRITH NSW 2750 Page PENRITH NSW 2751 email: info@geotech.com.au of 16 SGS ENVIRONMENTAL SERVICES Sampling By: LY/JH Job No: 12675/4 UNIT 16 33 MADDOX STREET Project: **ALEXANDRIA NSW 2015** PH: 02 8594 0400 FAX: 02 8594 0499 Project Manager: JX Googong NH1A-7 & NH2 Location: ATTN: MS EMILY YIN Sampling details Sample type Results required by: 19/12/2016 (Normal TAT) Depth (m) Location Date Water Time Soil (SGS Ref. SE158264) **Heavy Metal** KEEP Cr SAMPLE 10 Y D134 0.2-0.03 17/10/2016 SG YES D135 17/10/2016 0-0.1 SG YES D135 0.2-0.3 17/10/2016 SG YES D136 0-0.1 17/10/2016 SG x YES D136 0.2-0.3 17/10/2016 SG YES (1) D137 0-0.1 17/10/2016 SG YES D137 0.2-0.3 17/10/2016 SG YES D138 0-0.1 17/10/2016 SG YES D138 0.2-0.3 17/10/2016 SG YES D139 0-0.1 17/10/2016 SG YES D139 0.2-0.3 17/10/2016 SG YES D139 1.0-1.1 17/10/2016 SG 6 YES D139 1.4-1.5 17/10/2016 SG YES Relinquished by Received by Name Signature Date Name Signature Date **UX NHOL** 13/12/2016 es com by 13/12/16 Legend: WG Water sample, glass bottle Soil sample (glass jar) Soil sample (plastic bag) * Purge & Trap WP Water sample, plastic bottle Test required

Laboratory Test Request / Chain of Custody Record

Tel: (02) 4722 2700 Lemko Place P O Box 880 Fax: (02) 4722 6161 PENRITH NSW 2750 Page PENRITH NSW 2751 email: info@geotech.com.au of 10 16 SGS ENVIRONMENTAL SERVICES Sampling By: LY/JH Job No: 12675/4 UNIT 16 33 MADDOX STREET Project: **ALEXANDRIA NSW 2015** PH: 02 8594 0400 FAX: 02 8594 0499 Project Manager: JX Googong NH1A-7 & NH2 Location: MS EMILY YIN ATTN: Sampling details Sample type Results required by: 19/12/2016 (Normal TAT) Location Depth (m) Date Time Soil Water (SGS Ref. SE158264) **Heavy Metal** KEEP Cr SAMPLE 118 D140 0.0.1 17/10/2016 SG YES D140 17/10/2016 0.2-0.3 SG YES D141 0-0.1 17/10/2016 SG YES D141 0.2-0.3 17/10/2016 SG YES D142 0-0.1 17/10/2016 SG YES D142 0.2-0.3 17/10/2016 SG YES D142 1.0-1.1 17/10/2016 SG YES D142 1.9-2.0 17/10/2016 SG < YES D143 0-0.1 17/10/2016 6 SG YES D143 0.2-0.3 17/10/2016 SG YES D144 0-0.1 17/10/2016 SG YES D144 0.2-0.3 17/10/2016 SG YES D145 0-0.1 17/10/2016 SG YES Relinquished by Received by Name Signature Date Name Signature Date JOHN XU 13/12/2016 ix 13/14/1 Legend: WG Water sample, glass bottle Soil sample (glass jar) SP Soil sample (plastic bag) * Purge & Trap WP Water sample, plastic bottle Test required

Laboratory Test Request / Chain of Custody Record

Tel: (02) 4722 2700 Lemko Place P O Box 880 Fax: (02) 4722 6161 PENRITH NSW 2750 Page of PENRITH NSW 2751 email: info@geotech.com.au 11 16 SGS ENVIRONMENTAL SERVICES Sampling By: LY/JH Job No: 12675/4 UNIT 16 33 MADDOX STREET Project: **ALEXANDRIA NSW 2015** 02 8594 0400 PH: FAX: 02 8594 0499 Project Manager: JX Googong NH1A-7 & NH2 Location: MS EMILY YIN ATTN: Sampling details Sample type Results required by: 19/12/2016 (Normal TAT) Location Depth (m) Water Date Time Soil (SGS Ref. SE158264) **Heavy Metal** KEEP Cr SAMPLE 17 D145 0.2 0.3 17/10/2016 SC YES ~ D146 17/10/2016 0-0.1 SG YES D146 0.2-0.3 17/10/2016 SG YES D147 17/10/2016 0-0.1 SG YES * D147 0.2-0.3 17/10/2016 SG YES D148 17/10/2016 0 - 0.1SG YES D148 0.2-0.3 17/10/2016 SG YES Ý D149 0-0.1 17/10/2016 SG YES D149 0.2-0.3 17/10/2016 SG YES (40 D150 0-0.1 17/10/2016 SG YES D150 0.2-0.3 SG 17/10/2016 YES D151 0-0.1 17/10/2016 SG YES > D151 0.2-0.3 17/10/2016 SG YES Relinquished by Received by Name Signature Date Name Signature Date **JOHN XU** 13/12/2016 13/12/16 ix Legend: WG Water sample, glass bottle Soil sample (glass jar) SP Soil sample (plastic bag) * Purge & Trap WP Water sample, plastic bottle Test required

Laboratory Test Request / Chain of Custody Record

Lemko Place PENRITH NSW 2750 PE			PENF	P O	Box 880 W 2751	Fax: (0	2) 4722 2700 02) 4722 6161 info@geotech.com.au		Page	12	of	16	
UNIT 16 33 MADD	/IRONMENTAL DOX STREET DRIA NSW 201						Sampling By:	LY/JH	Job No: Project:	12675/4			
PH: 02 8594 (ATTN: MS EMIL				FAX:	02 8594 (0499	Project Manager:	JX	Location:	Googong NH1A-7 &	NH2		
ATTN: MS EMIL	Sampling de	tails		Samo	le type								
Location	Depth (m)	Date	Time	Soil	Water		Results r	equired by: 19/ (SGS Ref. S		rmal TAT)			
						Heavy Metal Cr							KEEP SAMPLE
144 D152	0-0.1	17/10/2016		SG									YES
C D152	0.2-0.3	17/10/2016	-	SG		✓							YES
(D152	1.0-1.1	17/10/2016		SG		✓							YES
7 D152	1.9-2.0	17/10/2016	-	SG		✓							YES
₹ D153	0-0.1	17/10/2016		SG		✓							YES
9 D153	0.2-0.3	17/10/2016		SG		✓							YES
(5° D154	0-0.1	17/10/2016	-	SG		√							YES
D154	0.2-0.3	17/10/2016	- 2	SG	- 11	√							YES
ע D155	0-0.1	17/10/2016		SG		√							YES
y D155	0.2-0.3	17/10/2016		SG	V	/							YES
φ D156	0-0.1	17/10/2016		SG		✓							YES
∠ D156	0.2-0.3	17/10/2016	- · · ·	SG		✓							YES
b D157	0-0.1	17/10/2016		SG		✓							YES
		Relino	uished by						Received by				
Name			Signature			200,010.00	Name		Signature		Date		
JOHN)	(U		jx			13/12/2016	Bunly 1	تسا	6		13/1-/16		
	nple, glass bottle			SG	Soil samp	ole (glass jar)		SP Soil sample (p	elastic bag)	* Pur	ge & Trap		

Laboratory Test Request / Chain of Custody Record

Lemko Place	50		DENI		Box 880	Fax: (0	2) 4722 2700 2) 4722 6161			D	72		
PENRITH NSW 2750 PENR TO: SGS ENVIRONMENTAL SERVICES UNIT 16 33 MADDOX STREET ALEXANDRIA NSW 2015				KIIH NS	VV 2751	email: i	nfo@geotech.com.au Sampling By:	LY/JH	Job No: Project:	Page 12675/4	13	of	16
PH: 02 8594 0400 ATTN: MS EMILY YIN				FAX:	02 8594 0	499	Project Manager:	JX	Location:	Googong NH1A-7 & NH2			
Sampling details Sample type													
Location	Depth (m)	Date	Time	Soil	Water	Results required by: 19/12/2016 (Normal TAT) (SGS Ref. SE158264)							
						Heavy Metal Cr							KEEP SAMPLE
(×7 D157	0.2-0.3	17/10/2016		SG		✓				-			YES
₽ D157	1.0-1.1	17/10/2016	- 12	SG		✓						+	YES
9 D157	1.9-2.0	17/10/2016		SG		✓							YES
DS11	0-0.1	18/10/2016	- (H) =	SG									YES
DS16	0-0.1	18/10/2016	40	SG									YES
DS18	0-0.1	18/10/2016	7	SG									YES
DS18	0.5-0.6	18/10/2016		SG			-				_		YES
DS19	0-0.1	18/10/2016	-	SG									YES
DS19	0.5-0.6	18/10/2016	_ <	SG									YES
DS22	0-0.1	18/10/2016		SG									YES
DS22	0.5-0.6	18/10/2016		SG									YES
CS12-1	0-0.1	18/10/2016		SG									YES
CS12-2	0-0.1	18/10/2016	2	SG									YES
		Reling	uished by						Received by				110
Name Signatu		Signature				Name		Signature			Date		
JOHN X	U		jx			13/12/2016	1 de la	lu-	0		(3/12/1	(
	nple, glass bottle			SG	Soil sample	e (glass jar))	SP Soil sample (p ✓ Test required	elastic bag)	•	Purge & Tra		

Laboratory Test Request / Chain of Custody Record

Tel: (02) 4722 2700 Lemko Place P O Box 880 Fax: (02) 4722 6161 PENRITH NSW 2750 email: info@geotech.com.au Page PENRITH NSW 2751 of 15 16 SGS ENVIRONMENTAL SERVICES Sampling By: LY/JH Job No: 12675/4 UNIT 16 33 MADDOX STREET Project: **ALEXANDRIA NSW 2015** PH: 02 8594 0400 FAX: 02 8594 0499 Project Manager: JX Location: Googong NH1A-7 & NH2 ATTN: MS EMILY YIN Sampling details Sample type Results required by: 19/12/2016 (Normal TAT) Location Depth (m) Date Water Time Soil (SGS Ref. SE158264) **Heavy Metal** KEEP Cr SAMPLE CS22-1 0-0.1 18/10/2016 SG YES CS22-2 18/10/2016 0-0.1 SG YES CS22-3 18/10/2016 0 - 0.1SG YES Duplicate D1 17/10/2016 SG YES 7 Duplicate D2 17/10/2016 SG YES Duplicate D3 17/10/2016 SG YES Duplicate D4 17/10/2016 SG YES (% Duplicate D5 18/10/2016 SG YES Duplicate D6 18/10/2016 SG YES Duplicate D7 18/10/2016 SG YES Duplicate D8 18/10/2016 SG YES ₱ Duplicate D9 18/10/2016 SG YES 5 Duplicate D10 18/10/2016 SG YES Relinquished by Received by Name Signature Date Signature Date JOHN XU 13/12/2016 13/12/1 Legend: WG Water sample, glass bottle Soil sample (glass jar) Soil sample (plastic bag) SP * Purge & Trap WP Water sample, plastic bottle Test required

Laboratory Test Request / Chain of Custody Record

Lemko Place PENRITH NSW 2750			051		O Box 880	Fax: (02	4722 2700					I Take				
PENRITH NSW 2750 PENRITO: SGS ENVIRONMENTAL SERVICES UNIT 16 33 MADDOX STREET ALEXANDRIA NSW 2015				KIIH N	SVV 2/51	e	nail: info@geotech.com.a Sampling By:	au	LY/JH		Job No: Project:	Page 12675/4	16	of	16	
PH: 02 8594 040 ATTN: MS EMILY			FAX:	02 8594 04	199	Project Manager:		JX		Location:	Googong NH1					
0.00	Sampling de	tails		Sami	ple type											
Location	Depth (m)	Date	Time Soil Water Results						Results required by: 19/12/2016 (Normal TAT) (SGS Ref. SE158264)							
						Heavy Metal Cr	Heavy Metal Cr (unfiltered)	Heavy Metal Cr (to be filtered at I)							KEEP SAMPLE	
6 Rinsate R1		17/10/2016			WG	*									YES	
Rinsate R2		18/10/2016		-	WG	V	1				- 4				YES	
Dam Water W1		18/10/2016	-		WG/WP		/	7							YES	
															YES	
		-		-												
										7 7			,			
					-											
			_	-												
			_						-							
										_						
		Relin	quished by						_	Pagain	and have					
Name						Date	All and			Receiv	sceived by Signature			Data		
JOHN XU			jx 13/12/2016				U,	Name			Signature Date					
	e, glass bottle e, plastic bottle			SG	Soil sample	(glass jar)		SP ✓	Soil sample Test require				* Purge & Tra			

SAMPLE RECEIPT ADVICE

CLIENT DETAILS

LABORATORY DETAILS

John Xu Contact

Geotechnique Client Address P.O. Box 880

PENRITH NSW 2751

Huong Crawford Manager

SGS Alexandria Environmental Laboratory

Address Unit 16, 33 Maddox St

Alexandria NSW 2015

02 4722 2700 Telephone

02 4722 6161 Facsimile

john.xu@geotech.com.au Email

+61 2 8594 0400 Telephone

+61 2 8594 0499 Facsimile

Email

au.environmental.sydney@sgs.com

12675-4 Googong NH1A-7 and NH2-Add Project

Order Number (Not specified) 198 Samples

Samples Received Report Due

Tue 13/12/2016 Mon 19/12/2016

SF158264D SGS Reference

SUBMISSION DETAILS

This is to confirm that 198 samples were received on Tuesday 13/12/2016. Results are expected to be ready by Monday 19/12/2016. Please quote SGS reference SE158264D when making enquiries. Refer below for details relating to sample integrity upon receipt.

Samples clearly labelled Sample container provider Samples received in correct containers

Date documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested

Yes SGS Yes

13/12/16@3:50pm

Yes 8.3°C

Standard

Complete documentation received

Sample cooling method Sample counts by matrix

Type of documentation received Samples received without headspace Sufficient sample for analysis

Yes Ice Bricks 166 Soil, 3 Water

COC Yes Yes

Unless otherwise instructed, water and bulk samples will be held for one month from date of report, and soil samples will be held for two months.

COMMENTS -

To the extent not inconsistent with the other provisions of this document and unless specifically agreed otherwise in writing by SGS, all SGS services are rendered in accordance with the applicable SGS General Conditions of Service accessible at http://www.sgs.com/en/terms-and-conditions as at the date of this document. Attention is drawn to the limitations of liability and to the clauses of indemnification.

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia Australia

t +61 2 8594 0400 f +61 2 8594 0499

www.sgs.com.au

CLIENT DETAILS -Project 12675-4 Googong NH1A-7 and NH2-Add Client Geotechnique

SUMMARY OF ANALYSIS	_

No.	Sample ID	Total Recoverable Metals in Soil/Waste
001	A4 0.25-0.35	1
002	A4 0.5-0.6	1
003	A6 0.25-0.35	1
004	A6 0.5-0.6	1
005	A8 0.25-0.35	1
006	A8 0.5-0.6	1
007	A8 1.0-1.1	1
800	A9 0.25-0.35	1
009	A9 0.5-0.6	1
010	A11 0.25-0.35	1
011	A11 0.5-0.6	1
012	A11 1.0-1.1	1
013	A11 1.9-2.0	1
014	A13 0.25-0.35	1
015	A13 0.5-0.6	1
016	A15 0.2-0.3	1
017	A15 0.5-0.6	1
018	A15 1.0-1.1	1
019	A15 1.9-2.0	1
020	A16 0.2-0.3	1
021	A16 0.5-0.6	1
022	A16 1.0-1.1	1
023	A16 1.5-1.6	1
024	A17 0.2-0.3	1

_ CONTINUED OVERLEAF

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document.

The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details.

Testing as per this table shall commence immediately unless the client intervenes with a correction .

CLIENT DETAILS _ Project 12675-4 Googong NH1A-7 and NH2-Add Client Geotechnique

-	SUMMARY OF ANALYSIS —				
	No.	Sample ID	Total Recoverable Metals in Soil/Waste		
	025	A17 0.5-0.6	1		
	026	A17 1.0-1.1	1		
	027	A17 1.9-2.0	1		
	028	A18 0.2-0.3	1		
	029	A18 0.5-0.6	1		
	030	A18 1.0-1.1	1		
	031	D101 0-0.1	1		
	032	D101 0.2-0.3	1		
	033	D101 1.0-1.1	1		
	034	D101 1.9-2.0	1		
	035	D102 0-0.1	1		
	036	D102 0.2-0.3	1		
	037	D103 0-0.1	1		
	038	D103 0.2-0.3	1		
	039	D104 0-0.1	1		
	040	D104 0.2-0.3	1		
	041	D105 0-0.1	1		
	042	D105 0.2-0.3	1		
	043	D106 0-0.1	1		
	044	D106 0.2-0.3	1		
	045	D107 0-0.1	1		
	046	D107 0.2-0.3	1		
	047	D108 0-0.1	1		

CONTINUED OVERLEAF

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document.

048

D108 0.2-0.3

The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details.

CLIENT DETAILS _ Project 12675-4 Googong NH1A-7 and NH2-Add Client Geotechnique

SUMMARY OF ANALYSIS	
---------------------	--

No.	Sample ID	Total Recoverable Metals in Soil/Waste
049	D109 0-0.1	1
050	D109 0.2-0.3	1
051	D110 0-0.1	1
052	D110 0.2-0.3	1
053	D111 0-0.1	1
054	D111 0.2-0.3	1
055	D112 0-0.1	1
056	D112 0.2-0.3	1
057	D113 0-0.1	1
058	D113 0.2-0.3	1
059	D114 0-0.1	1
060	D114 0.2-0.3	1
061	D115 0-0.1	1
062	D115 0.2-0.3	1
063	D116 0-0.1	1
064	D116 0.2-0.3	1
065	D116 1.0-1.1	1
066	D116 1.4-1.5	1
067	D117 0-0.1	1
068	D117 0.2-0.3	1
069	D118 0-0.1	1
070	D118 0.2-0.3	1
071	D119 0-0.1	1
072	D119 0.2-0.3	1

_ CONTINUED OVERLEAF

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document.

The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details.

Testing as per this table shall commence immediately unless the client intervenes with a correction .

CLIENT DETAILS -Project 12675-4 Googong NH1A-7 and NH2-Add Client Geotechnique

SUMMARY	OF ANALYSIS	3

No.	Sample ID	Total Recoverable Metals in Soil/Waste
073	D120 0-0.1	1
074	D120 0.2-0.3	1
075	D121 0-0.1	1
076	D121 0.2-0.3	1
077	D122 0-0.1	1
078	D122 0.2-0.3	1
079	D123 0-0.1	1
080	D123 0.2-0.3	1
081	D124 0-0.1	1
082	D124 0.2-0.3	1
083	D125 0-0.1	1
084	D125 0.2-0.3	1
085	D126 0-0.1	1
086	D126 0.2-0.3	1
087	D127 0-0.1	1
088	D127 0.2-0.3	1
089	D128 0-0.1	1
090	D128 0.2-0.3	1
091	D129 0-0.1	1
092	D129 0.2-0.03	1
093	D130 0-0.1	1
094	D130 0.2-0.3	1
095	D130 1.0-1.1	1
096	D131 0-0.1	1

_ CONTINUED OVERLEAF

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document.

The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details.

- SUMMARY OF ANALYSIS

SAMPLE RECEIPT ADVICE

Client Geotechnique Project 12675-4 Googong NH1A-7 and NH2-Add

No.	Sample ID	Total Recoverable Metals in Soil/Waste
097	D131 0.2-0.3	1
098	D132 0-0.1	1
099	D132 0.2-0.3	1
100	D132 1.0-1.1	1
101	D132 1.9-2.0	1
102	D133 0-0.1	1
103	D133 0.2-0.3	1
104	D134 0-0.1	1
105	D134 0.2-0.03	1
106	D135 0-0.1	1
107	D135 0.2-0.3	1
108	D136 0-0.1	1
109	D136 0.2-0.3	1
110	D137 0-0.1	1
111	D137 0.2-0.3	1
112	D138 0-0.1	1
113	D138 0.2-0.3	1
114	D139 0-0.1	1

_ CONTINUED OVERLEAF

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document.

D139 0.2-0.3

D139 1.0-1.1

D139 1.4-1.5

D140 0.2-0.3

D141 0-0.1

115

116

117

118

120

1

1

1

1

1

1

The numbers shown in the table indicate the number of results requested in each package.

Please indicate as soon as possible should your request differ from these details

CLIENT DETAILS _ Project 12675-4 Googong NH1A-7 and NH2-Add Client Geotechnique

SUMMARY OF ANALYSI

No.	Sample ID	Total Recoverable Metals in Soil/Waste
121	D141 0.2-0.3	1
122	D142 0-0.1	1
123	D142 0.2-0.3	1
124	D142 1.0-1.1	1
125	D142 1.9-2.0	1
126	D143 0-0.1	1
127	D143 0.2-0.3	1
128	D144 0-0.1	1
129	D144 0.2-0.3	1
130	D145 0-0.1	1
131	D145 0.2-0.3	1
132	D146 0-0.1	1
133	D146 0.2-0.3	1
134	D147 0-0.1	1
135	D147 0.2-0.3	1
136	D148 0-0.1	1
137	D148 0.2-0.3	1
138	D149 0-0.1	1
139	D149 0.2-0.3	1
140	D150 0-0.1	1
141	D150 0.2-0.3	1
142	D151 0-0.1	1
143	D151 0.2-0.3	1
144	D152 0-0.1	1

_ CONTINUED OVERLEAF

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document.

The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details.

Testing as per this table shall commence immediately unless the client intervenes with a correction .

Client Geotechnique Project 12675-4 Googong NH1A-7 and NH2-Add

SUMMARY OF ANALYSIS

No.	Sample ID	Total Recoverable Metals in Soil/Waste
145	D152 0.2-0.3	1
146	D152 1.0-1.1	1
147	D152 1.9-2.0	1
148	D153 0-0.1	1
149	D153 0.2-0.3	1
150	D154 0-0.1	1
151	D154 0.2-0.3	1
152	D155 0-0.1	1
153	D155 0.2-0.3	1
154	D156 0-0.1	1
155	D156 0.2-0.3	1
156	D157 0-0.1	1
157	D157 0.2-0.3	1
158	D157 1.0-1.1	1
159	D157 1.9-2.0	1

CONTINUED OVERLEAF

CLIENT	F DETAILS		
Client	Geotechnique	Project	12675-4 Googong NH1A-7 and NH2-Add

SUMMARY	OF ANALYSIS —	
No.	Sample ID	Total Recoverable Metals in Soil/Waste
186	Duplicate D1	1
187	Duplicate D2	1
188	Duplicate D3	1
189	Duplicate D4	1
190	Duplicate D5	1
191	Duplicate D6	1
192	Duplicate D7	1

_ CONTINUED OVERLEAF

CLIENT DETAILS _ Project 12675-4 Googong NH1A-7 and NH2-Add Client Geotechnique

Sl	JMN	ЛARY	OF	ANALY	SIS

No.	Sample ID	Metals in Water (Dissolved) by ICPOES	Trace Metals (Dissolved) in Water by ICPMS	Trace Metals (Total) in Water by ICPMS
196	Rinsate R1	1	-	-
197	Rinsate R2	1	-	-
198	Dam Water W1	-	1	1

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details.

Testing as per this table shall commence immediately unless the client intervenes with a correction .

20/12/2016 Page 10 of 10

ANALYTICAL REPORT

CLIENT DETAILS

LABORATORY DETAILS

John Xu Contact Geotechnique Client P.O. Box 880 Address

PENRITH NSW 2751

Huong Crawford Manager

SGS Alexandria Environmental Laboratory Unit 16. 33 Maddox St Address

Alexandria NSW 2015

Telephone 02 4722 2700 02 4722 6161 Facsimile

john.xu@geotech.com.au Email

Googong NH1A-7 & NH2 Project

Order Number (Not specified) 117 Samples

Telephone +61 2 8594 0400 +61 2 8594 0499 Facsimile

au.environmental.sydney@sgs.com Email

SGS Reference SE162156 R0 Date Received 20/2/2017 27/2/2017 Date Reported

COMMENTS

Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562(4354).

SIGNATORIES

Bennet Lo

Senior Organic Chemist/Metals Chemist

Huong Crawford

Production Manager

Kamrul Ahsan

Senior Chemist

Ly Kim Ha

Organic Section Head

Shane McDermott

Senior Laboratory Technician

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC

Alexandria NSW 2015 Alexandria NSW 2015

Australia Australia

t +61 2 8594 0400 f +61 2 8594 0499 www.sgs.com.au

SE162156 R0

pH in soil (1:5) [AN101] Tested: 20/2/2017

			D201 0-0.1	D201 1.9-2.0	D204 0-0.1	D204 0.2-0.3	D206 0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			13/2/2017	13/2/2017	14/2/2017	14/2/2017	14/2/2017
PARAMETER	UOM	LOR	SE162156.001	SE162156.004	SE162156.011	SE162156.012	SE162156.017
рН	pH Units	-	6.5	7.3	5.7	6.7	5.5

			D206 0.2-0.3	D209 0-0.1	D211 0-0.1	D212 1.0-1.1	D213 0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			14/2/2017	13/2/2017	14/2/2017	14/2/2017	13/2/2017
PARAMETER	UOM	LOR	SE162156.018	SE162156.026	SE162156.033	SE162156.039	SE162156.041
pH	pH Units	-	7.1	5.9	5.8	6.2	5.8

			D213 1.0-1.1	D215 0.2-0.3	D215 1.0-1.1	D216 0.2-0.3	D216 1.0-1.1
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			13/2/2017	14/2/2017	14/2/2017	14/2/2017	14/2/2017
PARAMETER	UOM	LOR	SE162156.042	SE162156.048	SE162156.049	SE162156.052	SE162156.053
рН	pH Units	-	7.1	6.8	7.6	7.3	7.9

			D217 1.0-1.1	D219 1.9-2.0	D223 0-0.1	D223 0.2-0.3	D223 1.0-1.1
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			14/2/2017	14/2/2017	14/2/2017	14/2/2017	14/2/2017
PARAMETER	UOM	LOR	SE162156.056	SE162156.064	SE162156.075	SE162156.076	SE162156.077
рН	pH Units	-	7.1	8.2	5.5	5.6	8.0

			D225 1.9-2.0	D232 1.0-1.1
			SOIL	SOIL
			- 14/2/2017	- 14/2/2017
PARAMETER	UOM	LOR	SE162156.084	SE162156.087
рН	pH Units	-	7.7	8.4

27/02/2017 Page 2 of 23

Exchangeable Cations and Cation Exchange Capacity (CEC/ESP/SAR) [AN122] Tested: 21/2/2017

			D201 0-0.1	D201 1.9-2.0	D206 0-0.1	D206 0.2-0.3	D209 0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 13/2/2017	- 13/2/2017	- 14/2/2017	- 14/2/2017	- 13/2/2017
PARAMETER	UOM	LOR	SE162156.001	SE162156.004	SE162156.017	SE162156.018	SE162156.026
Exchangeable Sodium, Na	mg/kg	2	13	46	17	81	10
Exchangeable Sodium, Na	meq/100g	0.01	0.05	0.20	0.08	0.35	0.04
Exchangeable Sodium Percentage*	%	0.1	0.8	1.3	1.3	2.8	1.3
Exchangeable Potassium, K	mg/kg	2	310	140	78	50	170
Exchangeable Potassium, K	meq/100g	0.01	0.80	0.37	0.20	0.13	0.43
Exchangeable Potassium Percentage*	%	0.1	11.9	2.3	3.5	1.0	13.1
Exchangeable Calcium, Ca	mg/kg	2	880	1900	520	48	430
Exchangeable Calcium, Ca	meq/100g	0.01	4.4	9.7	2.6	0.24	2.1
Exchangeable Calcium Percentage*	%	0.1	66.0	60.4	45.9	1.9	64.3
Exchangeable Magnesium, Mg	mg/kg	2	170	700	340	1500	86
Exchangeable Magnesium, Mg	meq/100g	0.02	1.4	5.8	2.8	12	0.70
Exchangeable Magnesium Percentage*	%	0.1	21.3	36.0	49.2	94.4	21.3
Cation Exchange Capacity	meq/100g	0.02	6.7	16	5.6	13	3.3

			D211 0-0.1	D212 1.0-1.1	D213 0.2-0.3	D213 1.0-1.1	D215 0.2-0.3
		100	SOIL - 14/2/2017	SOIL - 14/2/2017	SOIL - 13/2/2017	SOIL - 13/2/2017	SOIL - 14/2/2017
PARAMETER Exchangeable Sodium, Na	UOM mg/kg	LOR 2	SE162156.033	SE162156.039	SE162156.041	SE162156.042	SE162156.048
-			75	63	15	170	98
Exchangeable Sodium, Na	meq/100g	0.01	0.33	0.27	0.06	0.73	0.42
Exchangeable Sodium Percentage*	%	0.1	2.7	3.9	1.4	2.9	3.4
Exchangeable Potassium, K	mg/kg	2	150	69	170	230	130
Exchangeable Potassium, K	meq/100g	0.01	0.38	0.18	0.44	0.58	0.33
Exchangeable Potassium Percentage*	%	0.1	3.1	2.5	10.0	2.3	2.6
Exchangeable Calcium, Ca	mg/kg	2	1700	850	610	2000	1100
Exchangeable Calcium, Ca	meq/100g	0.01	8.5	4.3	3.0	10	5.5
Exchangeable Calcium Percentage*	%	0.1	70.4	60.7	68.4	39.0	44.5
Exchangeable Magnesium, Mg	mg/kg	2	350	280	110	1700	750
Exchangeable Magnesium, Mg	meq/100g	0.02	2.9	2.3	0.90	14	6.1
Exchangeable Magnesium Percentage*	%	0.1	23.8	32.9	20.2	55.8	49.5
Cation Exchange Capacity	meq/100g	0.02	12	7.0	4.5	26	12

			D215 1.0-1.1	D216 0.2-0.3	D216 1.0-1.1	D217 0.2-0.3	D217 1.0-1.1
			SOIL - 14/2/2017	SOIL - 14/2/2017	SOIL - 14/2/2017	SOIL - 14/2/2017	SOIL - 14/2/2017
PARAMETER	UOM	LOR	SE162156.049	SE162156.052	SE162156.053	SE162156.055	SE162156.056
Exchangeable Sodium, Na	mg/kg	2	380	170	480	56	500
Exchangeable Sodium, Na	meq/100g	0.01	1.6	0.72	2.1	0.24	2.2
Exchangeable Sodium Percentage*	%	0.1	5.6	4.1	7.8	3.4	9.3
Exchangeable Potassium, K	mg/kg	2	160	130	160	77	140
Exchangeable Potassium, K	meq/100g	0.01	0.41	0.34	0.41	0.20	0.37
Exchangeable Potassium Percentage*	%	0.1	1.4	1.9	1.5	2.7	1.6
Exchangeable Calcium, Ca	mg/kg	2	2000	1800	1800	700	1300
Exchangeable Calcium, Ca	meq/100g	0.01	9.8	8.8	8.9	3.5	6.3
Exchangeable Calcium Percentage*	%	0.1	33.2	49.2	33.0	48.7	27.3
Exchangeable Magnesium, Mg	mg/kg	2	2100	970	1900	400	1700
Exchangeable Magnesium, Mg	meq/100g	0.02	18	8.0	16	3.3	14
Exchangeable Magnesium Percentage*	%	0.1	59.8	44.8	57.7	45.3	61.8
Cation Exchange Capacity	meq/100g	0.02	29	18	27	7.2	23

27/02/2017 Page 3 of 23

Exchangeable Cations and Cation Exchange Capacity (CEC/ESP/SAR) [AN122] Tested: 21/2/2017 (continued)

			D218 0-0.1	D218 0.2-0.3	D218 1.0-1.1	D219 0-0.1	D219 1.9-2.0
PARAMETER	UOM	LOR	SOIL - 14/2/2017 SE162156.058	SOIL - 14/2/2017 SE162156.059	SOIL - 14/2/2017 SE162156.060	SOIL - 14/2/2017 SE162156.061	SOIL - 14/2/2017 SE162156.064
Exchangeable Sodium, Na	mg/kg	2	12	36	230	14	470
Exchangeable Sodium, Na	meq/100g	0.01	0.05	0.16	1.0	0.06	2.0
Exchangeable Sodium Percentage*	%	0.1	3.0	7.7	4.8	2.5	9.9
Exchangeable Potassium, K	mg/kg	2	54	61	140	230	120
Exchangeable Potassium, K	meq/100g	0.01	0.14	0.16	0.35	0.58	0.32
Exchangeable Potassium Percentage*	%	0.1	8.3	7.7	1.7	24.1	1.5
Exchangeable Calcium, Ca	mg/kg	2	200	230	1200	240	910
Exchangeable Calcium, Ca	meq/100g	0.01	0.99	1.2	6.2	1.2	4.5
Exchangeable Calcium Percentage*	%	0.1	59.3	57.5	30.3	49.9	22.1
Exchangeable Magnesium, Mg	mg/kg	2	60	67	1600	69	1700
Exchangeable Magnesium, Mg	meq/100g	0.02	0.49	0.55	13	0.56	14
Exchangeable Magnesium Percentage*	%	0.1	29.5	27.1	63.1	23.4	66.5
Cation Exchange Capacity	meq/100g	0.02	1.7	2.0	21	2.4	21

			D223 0-0.1	D223 0.2-0.3	D223 1.0-1.1	D224 1.0-1.1	D225 1.9-2.0
			SOIL - 14/2/2017	SOIL - 14/2/2017	SOIL - 14/2/2017	SOIL - 14/2/2017	SOIL - 14/2/2017
PARAMETER	UOM	LOR	SE162156.075	SE162156.076	SE162156.077	SE162156.080	SE162156.084
Exchangeable Sodium, Na	mg/kg	2	24	120	370	31	200
Exchangeable Sodium, Na	meq/100g	0.01	0.11	0.50	1.6	0.13	0.86
Exchangeable Sodium Percentage*	%	0.1	4.0	6.2	10.0	1.5	2.5
Exchangeable Potassium, K	mg/kg	2	33	75	82	61	150
Exchangeable Potassium, K	meq/100g	0.01	0.08	0.19	0.21	0.16	0.39
Exchangeable Potassium Percentage*	%	0.1	3.2	2.4	1.3	1.7	1.1
Exchangeable Calcium, Ca	mg/kg	2	240	270	210	410	1800
Exchangeable Calcium, Ca	meq/100g	0.01	1.2	1.3	1.1	2.0	8.8
Exchangeable Calcium Percentage*	%	0.1	45.5	16.8	6.7	22.4	25.6
Exchangeable Magnesium, Mg	mg/kg	2	150	730	1600	820	3000
Exchangeable Magnesium, Mg	meq/100g	0.02	1.3	6.0	13	6.8	24
Exchangeable Magnesium Percentage*	%	0.1	47.3	74.6	82.0	74.4	70.8
Cation Exchange Capacity	meq/100g	0.02	2.7	8.0	16	9.1	34

			D232 1.0-1.1	D235 0-0.1	D235 0.2-0.3	D235 1.0-1.1	D235 1.9-2.0
			SOIL -	SOIL -	SOIL -	SOIL -	SOIL -
			14/2/2017	14/2/2017	14/2/2017	14/2/2017	14/2/2017
PARAMETER	UOM	LOR	SE162156.087	SE162156.095	SE162156.096	SE162156.097	SE162156.098
Exchangeable Sodium, Na	mg/kg	2	390	32	45	36	71
Exchangeable Sodium, Na	meq/100g	0.01	1.7	0.14	0.19	0.16	0.31
Exchangeable Sodium Percentage*	%	0.1	11.3	1.4	1.1	1.7	1.5
Exchangeable Potassium, K	mg/kg	2	66	49	110	76	180
Exchangeable Potassium, K	meq/100g	0.01	0.17	0.13	0.28	0.20	0.47
Exchangeable Potassium Percentage*	%	0.1	1.1	1.3	1.6	2.1	2.2
Exchangeable Calcium, Ca	mg/kg	2	15	940	790	190	170
Exchangeable Calcium, Ca	meq/100g	0.01	0.07	4.7	3.9	0.97	0.84
Exchangeable Calcium Percentage*	%	0.1	0.5	49.8	22.2	10.7	4.0
Exchangeable Magnesium, Mg	mg/kg	2	1600	550	1600	950	2400
Exchangeable Magnesium, Mg	meq/100g	0.02	13	4.5	13	7.8	20
Exchangeable Magnesium Percentage*	%	0.1	87.1	47.5	75.1	85.5	92.4
Cation Exchange Capacity	meq/100g	0.02	15	9.5	18	9.1	21

27/02/2017 Page 4 of 23

Exchangeable Cations and Cation Exchange Capacity (CEC/ESP/SAR) [AN122] Tested: 21/2/2017 (continued)

			D236 0-0.1	D236 0.2-0.3	D237 1.9-2.0	D238 0.2-0.3	D238 1.0-1.1
			D230 0-0.1	D230 0.2-0.3	D237 1.3-2.0	D230 0.2-0.3	D230 1.0-1.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			14/2/2017	14/2/2017	14/2/2017	14/2/2017	14/2/2017
PARAMETER	UOM	LOR	SE162156.099	SE162156.100	SE162156.105	SE162156.107	SE162156.108
Exchangeable Sodium, Na	mg/kg	2	32	24	81	29	73
Exchangeable Sodium, Na	meq/100g	0.01	0.14	0.10	0.35	0.13	0.32
Exchangeable Sodium Percentage*	%	0.1	1.9	1.3	2.6	1.5	1.8
Exchangeable Potassium, K	mg/kg	2	61	34	69	38	100
Exchangeable Potassium, K	meq/100g	0.01	0.16	0.09	0.18	0.10	0.27
Exchangeable Potassium Percentage*	%	0.1	2.1	1.1	1.3	1.2	1.6
Exchangeable Calcium, Ca	mg/kg	2	820	390	120	900	330
Exchangeable Calcium, Ca	meq/100g	0.01	4.1	1.9	0.59	4.5	1.7
Exchangeable Calcium Percentage*	%	0.1	56.1	23.7	4.5	54.1	9.7
Exchangeable Magnesium, Mg	mg/kg	2	350	740	1500	440	1800
Exchangeable Magnesium, Mg	meq/100g	0.02	2.9	6.1	12	3.6	15
Exchangeable Magnesium Percentage*	%	0.1	39.9	73.9	91.6	43.2	86.9
Cation Exchange Capacity	meq/100g	0.02	7.3	8.2	13	8.3	17

27/02/2017 Page 5 of 23

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES [AN040/AN320] Tested: 21/2/2017

			D201 0-0.1	D201 0.2-0.3	D201 1.0-1.1	D201 1.9-2.0	D202 0-0.1
			2011	00"			00"
			SOIL -	SOIL -	SOIL -	SOIL -	SOIL -
			13/2/2017	13/2/2017	13/2/2017	13/2/2017	13/2/2017
PARAMETER	UOM	LOR	SE162156.001	SE162156.002	SE162156.003	SE162156.004	SE162156.005
Arsenic, As	mg/kg	3	190	300	450	530	200
Cadmium, Cd	mg/kg	0.3	0.8	0.8	1.1	1.0	4.0
Chromium, Cr	mg/kg	0.3	36	33	34	38	31
Copper, Cu	mg/kg	0.5	35	51	86	82	150
Lead, Pb	mg/kg	1	120	100	64	59	36
Manganese, Mn	mg/kg	1	2600	2900	2000	730	1900
Nickel, Ni	mg/kg	0.5	10	11	11	11	21
Zinc, Zn	mg/kg	0.5	220	390	450	310	460

			D202 0.2-0.3	D202 1.0-1.1	D203 0-0.1	D203 0.2-0.3	D203 0.9-1.0
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
			13/2/2017	13/2/2017	14/2/2017	14/2/2017	14/2/2017
PARAMETER	UOM	LOR	SE162156.006	SE162156.007	SE162156.008	SE162156.009	SE162156.010
Arsenic, As	mg/kg	3	500	670	180	120	82
Cadmium, Cd	mg/kg	0.3	0.9	2.4	1.9	0.6	0.5
Chromium, Cr	mg/kg	0.3	38	45	37	42	35
Copper, Cu	mg/kg	0.5	52	91	43	43	60
Lead, Pb	mg/kg	1	130	100	280	110	98
Manganese, Mn	mg/kg	1	1300	13000	3100	420	170
Nickel, Ni	mg/kg	0.5	13	18	14	11	17
Zinc, Zn	mg/kg	0.5	270	1000	490	240	380

			D204 0-0.1	D204 0.2-0.3	D204 1.0-1.1	D205 0-0.1	D205 0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			14/2/2017	14/2/2017	14/2/2017	14/2/2017	14/2/2017
PARAMETER	UOM	LOR	SE162156.011	SE162156.012	SE162156.013	SE162156.014	SE162156.015
Arsenic, As	mg/kg	3	14	37	24	14	15
Cadmium, Cd	mg/kg	0.3	<0.3	0.4	0.3	<0.3	0.5
Chromium, Cr	mg/kg	0.3	15	11	27	17	24
Copper, Cu	mg/kg	0.5	7.8	35	27	13	37
Lead, Pb	mg/kg	1	52	22	17	50	43
Manganese, Mn	mg/kg	1	880	280	90	310	210
Nickel, Ni	mg/kg	0.5	8.3	32	21	13	31
Zinc, Zn	mg/kg	0.5	65	120	85	78	130

			D205 0.7-0.8	D206 0-0.1	D206 0.2-0.3	D206 0.6-0.7	D207 0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 14/2/2017	- 14/2/2017	- 14/2/2017	- 14/2/2017	- 14/2/2017
PARAMETER	UOM	LOR	SE162156.016	SE162156.017	SE162156.018	SE162156.019	SE162156.020
Arsenic, As	mg/kg	3	13	9	10	32	27
Cadmium, Cd	mg/kg	0.3	0.3	<0.3	0.3	0.4	0.4
Chromium, Cr	mg/kg	0.3	24	13	20	17	20
Copper, Cu	mg/kg	0.5	16	2.7	2.7	6.2	21
Lead, Pb	mg/kg	1	27	15	6	15	18
Manganese, Mn	mg/kg	1	160	300	130	170	350
Nickel, Ni	mg/kg	0.5	31	10	15	12	13
Zinc, Zn	mg/kg	0.5	110	63	73	87	55

27/02/2017 Page 6 of 23

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES [AN040/AN320] Tested: 21/2/2017 (continued)

			D207 0.2-0.3	D207 1.0-1.1	D208 0-0.1	D208 0.2-0.3	D208 1.0-1.1
			2011	2011	00"	00"	00"
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 14/2/2017	- 14/2/2017	- 14/2/2017	- 14/2/2017	- 14/2/2017
PARAMETER	UOM	LOR	SE162156.021	SE162156.022	SE162156.023	SE162156.024	SE162156.025
Arsenic, As	mg/kg	3	110	130	130	220	1200
Cadmium, Cd	mg/kg	0.3	0.4	0.4	3.4	2.4	100
Chromium, Cr	mg/kg	0.3	32	28	28	42	12
Copper, Cu	mg/kg	0.5	56	56	79	170	100
Lead, Pb	mg/kg	1	13	14	34	29	330
Manganese, Mn	mg/kg	1	220	260	2300	630	34000
Nickel, Ni	mg/kg	0.5	23	23	19	26	27
Zinc, Zn	mg/kg	0.5	50	51	370	390	9600

			D209 0-0.1	D209 0.2-0.3	D209 1.0-1.1	D209 1.9-2.0	D210 0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			SOIL -	SOIL -	SOIL -	SOIL -	50IL -
			13/2/2017	13/2/2017	13/2/2017	13/2/2017	13/2/2017
PARAMETER	UOM	LOR	SE162156.026	SE162156.027	SE162156.028	SE162156.029	SE162156.030
Arsenic, As	mg/kg	3	220	570	1200	1200	100
Cadmium, Cd	mg/kg	0.3	1.9	9.4	8.6	4.7	0.6
Chromium, Cr	mg/kg	0.3	34	38	41	28	30
Copper, Cu	mg/kg	0.5	39	230	390	250	28
Lead, Pb	mg/kg	1	150	380	320	140	78
Manganese, Mn	mg/kg	1	2900	5600	1900	720	3700
Nickel, Ni	mg/kg	0.5	12	20	20	25	12
Zinc, Zn	mg/kg	0.5	390	1900	3800	2500	130

			D210 0.2-0.3	D210 1.0-1.1	D211 0-0.1	S211 0.2-0.3	D211 1.0-1.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
			13/2/2017	13/2/2017	14/2/2017	14/2/2017	14/2/2017
PARAMETER	UOM	LOR	SE162156.031	SE162156.032	SE162156.033	SE162156.034	SE162156.035
Arsenic, As	mg/kg	3	190	590	44	38	34
Cadmium, Cd	mg/kg	0.3	0.8	1.6	0.5	0.3	0.3
Chromium, Cr	mg/kg	0.3	32	38	40	33	23
Copper, Cu	mg/kg	0.5	48	82	21	39	31
Lead, Pb	mg/kg	1	69	190	160	66	60
Manganese, Mn	mg/kg	1	4300	12000	1100	74	870
Nickel, Ni	mg/kg	0.5	17	27	6.1	9.8	20
Zinc, Zn	mg/kg	0.5	170	320	190	86	84

			D211 1.9-2.0	D212 0-0.1	D212 0.2-0.3	D212 1.0-1.1	D213 0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			14/2/2017	14/2/2017	14/2/2017	14/2/2017	13/2/2017
PARAMETER	UOM	LOR	SE162156.036	SE162156.037	SE162156.038	SE162156.039	SE162156.040
Arsenic, As	mg/kg	3	43	56	86	57	73
Cadmium, Cd	mg/kg	0.3	0.4	0.5	0.5	0.4	0.5
Chromium, Cr	mg/kg	0.3	22	41	41	39	31
Copper, Cu	mg/kg	0.5	34	11	40	18	20
Lead, Pb	mg/kg	1	110	210	100	110	270
Manganese, Mn	mg/kg	1	1100	1800	150	520	2600
Nickel, Ni	mg/kg	0.5	12	4.7	10	5.9	7.3
Zinc, Zn	mg/kg	0.5	90	100	140	75	160

27/02/2017 Page 7 of 23

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES [AN040/AN320] Tested: 21/2/2017 (continued)

			D213 0.2-0.3	D213 1.0-1.1	D213 1.9-2.0	D214 0-0.1	D214 0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 13/2/2017	- 13/2/2017	- 13/2/2017	- 13/2/2017	- 13/2/2017
PARAMETER	UOM	LOR	SE162156.041	SE162156.042	SE162156.043	SE162156.044	SE162156.045
Arsenic, As	mg/kg	3	95	120	54	48	49
Cadmium, Cd	mg/kg	0.3	0.6	0.6	0.3	0.6	0.5
Chromium, Cr	mg/kg	0.3	34	36	19	31	34
Copper, Cu	mg/kg	0.5	25	70	28	13	19
Lead, Pb	mg/kg	1	370	140	84	250	230
Manganese, Mn	mg/kg	1	3100	61	390	4200	3500
Nickel, Ni	mg/kg	0.5	8.7	14	20	9.3	8.8
Zinc, Zn	mg/kg	0.5	160	200	260	140	130

			D214 1.0-1.1	D215 0-0.1	D215 0.2-0.3	D215 1.0-1.1	D215 1.9-2.0
			SOIL	SOIL	SOIL	SOIL	SOIL
			13/2/2017	14/2/2017	14/2/2017	14/2/2017	14/2/2017
PARAMETER	UOM	LOR	SE162156.046	SE162156.047	SE162156.048	SE162156.049	SE162156.050
Arsenic, As	mg/kg	3	94	38	44	62	29
Cadmium, Cd	mg/kg	0.3	0.6	0.5	0.5	0.7	2.0
Chromium, Cr	mg/kg	0.3	45	31	31	17	11
Copper, Cu	mg/kg	0.5	19	14	25	32	14
Lead, Pb	mg/kg	1	240	180	140	71	37
Manganese, Mn	mg/kg	1	2800	3100	1500	950	1500
Nickel, Ni	mg/kg	0.5	9.1	9.4	14	16	16
Zinc, Zn	mg/kg	0.5	140	140	160	320	220

			D216 0-0.1	D216 0.2-0.3	D216 1.0-1.1	D217 0-0.1	D217 0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 14/2/2017	- 14/2/2017	- 14/2/2017	- 14/2/2017	- 14/2/2017
PARAMETER	UOM	LOR	SE162156.051	SE162156.052	SE162156.053	SE162156.054	SE162156.055
Arsenic, As	mg/kg	3	40	47	37	66	75
Cadmium, Cd	mg/kg	0.3	0.5	0.5	0.4	0.6	0.6
Chromium, Cr	mg/kg	0.3	38	30	28	45	46
Copper, Cu	mg/kg	0.5	16	43	49	15	25
Lead, Pb	mg/kg	1	120	54	44	190	220
Manganese, Mn	mg/kg	1	3100	230	110	590	500
Nickel, Ni	mg/kg	0.5	11	13	18	8.0	9.9
Zinc, Zn	mg/kg	0.5	90	100	120	110	110

			D217 1.0-1.1	D217 1.9-2.0	D218 0-0.1	D218 0.2-0.3	D218 1.0-1.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 14/2/2017	- 14/2/2017	- 14/2/2017	- 14/2/2017	- 14/2/2017
PARAMETER	UOM	LOR	SE162156.056	SE162156.057	SE162156.058	SE162156.059	SE162156.060
Arsenic, As	mg/kg	3	45	16	59	49	73
Cadmium, Cd	mg/kg	0.3	0.4	0.3	0.6	0.5	0.6
Chromium, Cr	mg/kg	0.3	29	16	56	35	30
Copper, Cu	mg/kg	0.5	56	34	9.5	9.3	41
Lead, Pb	mg/kg	1	56	17	150	140	76
Manganese, Mn	mg/kg	1	74	130	1400	2000	1400
Nickel, Ni	mg/kg	0.5	18	11	5.0	4.4	17
Zinc, Zn	mg/kg	0.5	170	66	88	77	170

27/02/2017 Page 8 of 23

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES [AN040/AN320] Tested: 21/2/2017 (continued)

			D219 0-0.1	D219 0.2-0.3	D219 1.0-1.1	D219 1.9-2.0	D220 0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			14/2/2017	14/2/2017	14/2/2017	14/2/2017	14/2/2017
PARAMETER	UOM	LOR	SE162156.061	SE162156.062	SE162156.063	SE162156.064	SE162156.065
Arsenic, As	mg/kg	3	72	90	90	72	34
Cadmium, Cd	mg/kg	0.3	0.5	0.6	0.5	0.4	0.5
Chromium, Cr	mg/kg	0.3	49	50	31	34	37
Copper, Cu	mg/kg	0.5	8.5	25	51	34	16
Lead, Pb	mg/kg	1	230	200	170	170	120
Manganese, Mn	mg/kg	1	1700	1200	310	450	820
Nickel, Ni	mg/kg	0.5	3.9	7.8	12	12	4.8
Zinc, Zn	mg/kg	0.5	88	100	130	120	240

			D220 0.2-0.3	D220 1.0-1.1	D221 0-0.1	D221 0.2-0.3	D221 1.0-1.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			14/2/2017	14/2/2017	14/2/2017	14/2/2017	14/2/2017
PARAMETER	UOM	LOR	SE162156.066	SE162156.067	SE162156.068	SE162156.069	SE162156.070
Arsenic, As	mg/kg	3	36	38	55	57	250
Cadmium, Cd	mg/kg	0.3	0.4	0.4	0.6	0.5	3.6
Chromium, Cr	mg/kg	0.3	30	28	27	32	28
Copper, Cu	mg/kg	0.5	35	40	24	14	98
Lead, Pb	mg/kg	1	56	56	240	190	420
Manganese, Mn	mg/kg	1	100	64	570	560	4300
Nickel, Ni	mg/kg	0.5	10	9.3	6.2	5.7	52
Zinc, Zn	mg/kg	0.5	69	72	110	83	860

			D221 1.9-2.0	D222 0-0.1	D222 0.2-0.3	D222 1.0-1.1	D223 0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	- 30IL			- 30IL
			14/2/2017	14/2/2017	14/2/2017	14/2/2017	14/2/2017
PARAMETER	UOM	LOR	SE162156.071	SE162156.072	SE162156.073	SE162156.074	SE162156.075
Arsenic, As	mg/kg	3	1600	41	48	21	35
Cadmium, Cd	mg/kg	0.3	50	0.4	0.5	<0.3	0.4
Chromium, Cr	mg/kg	0.3	14	31	43	20	29
Copper, Cu	mg/kg	0.5	460	12	53	28	11
Lead, Pb	mg/kg	1	320	140	130	80	76
Manganese, Mn	mg/kg	1	47000	300	43	230	180
Nickel, Ni	mg/kg	0.5	140	5.2	17	18	5.3
Zinc, Zn	mg/kg	0.5	10000	56	140	84	60

			D223 0.2-0.3	D223 1.0-1.1	D224 0-0.1	D224 0.2-0.3	D224 1.0-1.1
			D223 0.2-0.3	D223 1.0-1.1	D224 U-U.1	D224 0.2-0.3	D224 1.0-1.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			14/2/2017	14/2/2017	14/2/2017	14/2/2017	14/2/2017
PARAMETER	UOM	LOR	SE162156.076	SE162156.077	SE162156.078	SE162156.079	SE162156.080
Arsenic, As	mg/kg	3	53	26	23	32	53
Cadmium, Cd	mg/kg	0.3	0.6	1.2	0.4	0.3	0.5
Chromium, Cr	mg/kg	0.3	42	38	17	23	41
Copper, Cu	mg/kg	0.5	34	25	14	20	49
Lead, Pb	mg/kg	1	120	63	58	75	71
Manganese, Mn	mg/kg	1	99	370	1600	1200	250
Nickel, Ni	mg/kg	0.5	15	30	9.4	12	25
Zinc, Zn	mg/kg	0.5	150	310	89	92	140

27/02/2017 Page 9 of 23

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES [AN040/AN320] Tested: 21/2/2017 (continued)

			D225 0-0.1	D225 0.2-0.3	D225 1.0-1.1	D225 1.9-2.0	D232 0-0.1
			2011	2011			0011
			SOIL -	SOIL -	SOIL -	SOIL -	SOIL -
			14/2/2017	14/2/2017	14/2/2017	14/2/2017	14/2/2017
PARAMETER	UOM	LOR	SE162156.081	SE162156.082	SE162156.083	SE162156.084	SE162156.085
Arsenic, As	mg/kg	3	37	32	60	48	53
Cadmium, Cd	mg/kg	0.3	0.6	0.3	0.6	13	0.4
Chromium, Cr	mg/kg	0.3	31	26	39	36	26
Copper, Cu	mg/kg	0.5	17	11	27	39	23
Lead, Pb	mg/kg	1	81	54	79	54	93
Manganese, Mn	mg/kg	1	1300	430	1400	14000	270
Nickel, Ni	mg/kg	0.5	12	8.9	15	77	11
Zinc, Zn	mg/kg	0.5	120	62	140	2400	51

			D232 0.2-0.3	D232 1.0-1.1	D233 0-0.1	D233 0.2-0.3	D233 1.0-1.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			14/2/2017	14/2/2017	14/2/2017	14/2/2017	14/2/2017
PARAMETER	UOM	LOR	SE162156.086	SE162156.087	SE162156.088	SE162156.089	SE162156.090
Arsenic, As	mg/kg	3	44	96	54	68	130
Cadmium, Cd	mg/kg	0.3	0.3	0.6	0.3	0.4	0.7
Chromium, Cr	mg/kg	0.3	32	30	23	32	24
Copper, Cu	mg/kg	0.5	60	96	37	84	220
Lead, Pb	mg/kg	1	230	550	75	150	180
Manganese, Mn	mg/kg	1	220	930	330	260	410
Nickel, Ni	mg/kg	0.5	19	23	7.0	10	21
Zinc, Zn	mg/kg	0.5	130	330	36	49	130

			D233 1.9-2.0	D234 0-0.1	D234 0.2-0.3	D234 1.0-1.1	D235 0-0.1
			SOIL -	SOIL -	SOIL -	SOIL -	SOIL
			14/2/2017	14/2/2017	14/2/2017	14/2/2017	- 14/2/2017
PARAMETER	UOM	LOR	SE162156.091	SE162156.092	SE162156.093	SE162156.094	SE162156.095
Arsenic, As	mg/kg	3	140	11	14	18	11
Cadmium, Cd	mg/kg	0.3	1.1	<0.3	<0.3	<0.3	0.3
Chromium, Cr	mg/kg	0.3	19	21	24	35	27
Copper, Cu	mg/kg	0.5	170	20	23	35	20
Lead, Pb	mg/kg	1	150	20	22	15	16
Manganese, Mn	mg/kg	1	460	940	1100	120	870
Nickel, Ni	mg/kg	0.5	41	8.6	8.5	14	13
Zinc, Zn	mg/kg	0.5	300	46	39	39	50

			D235 0.2-0.3	D235 1.0-1.1	D235 1.9-2.0	D236 0-0.1	D236 0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 14/2/2017	- 14/2/2017	- 14/2/2017	- 14/2/2017	- 14/2/2017
PARAMETER	UOM	LOR	SE162156.096	SE162156.097	SE162156.098	SE162156.099	SE162156.100
Arsenic, As	mg/kg	3	14	20	15	11	14
Cadmium, Cd	mg/kg	0.3	0.4	<0.3	0.4	<0.3	<0.3
Chromium, Cr	mg/kg	0.3	37	20	16	22	33
Copper, Cu	mg/kg	0.5	24	22	16	24	41
Lead, Pb	mg/kg	1	14	6	5	13	14
Manganese, Mn	mg/kg	1	310	300	770	650	250
Nickel, Ni	mg/kg	0.5	16	17	21	7.8	10
Zinc, Zn	mg/kg	0.5	51	35	61	33	29

27/02/2017 Page 10 of 23

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES [AN040/AN320] Tested: 21/2/2017 (continued)

			D236 1.0-1.1	D237 0-0.1	D237 0.2-0.3	D237 1.0-1.1	D237 1.9-2.0
			2011	2011	2011	00"	00"
			SOIL -	SOIL -	SOIL -	SOIL -	SOIL -
			14/2/2017	14/2/2017	14/2/2017	14/2/2017	14/2/2017
PARAMETER	UOM	LOR	SE162156.101	SE162156.102	SE162156.103	SE162156.104	SE162156.105
Arsenic, As	mg/kg	3	6	10	11	19	16
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	<0.3	0.3	0.3
Chromium, Cr	mg/kg	0.3	39	18	20	25	22
Copper, Cu	mg/kg	0.5	32	13	14	35	25
Lead, Pb	mg/kg	1	10	16	15	9	21
Manganese, Mn	mg/kg	1	240	810	550	83	220
Nickel, Ni	mg/kg	0.5	21	6.9	7.1	19	20
Zinc, Zn	mg/kg	0.5	35	35	33	56	62

			D238 0-0.1	D238 0.2-0.3	D238 1.0-1.1	Duplicate DS1	Duplicate DS2
			SOIL	001	2011	001	2011
				SOIL	SOIL	SOIL	SOIL
			- 14/2/2017	- 14/2/2017	- 14/2/2017	- 14/2/2017	- 14/2/2017
PARAMETER	UOM	LOR	SE162156.106	SE162156.107	SE162156.108	SE162156.109	SE162156.110
Arsenic, As	mg/kg	3	18	10	22	12	15
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	0.3	<0.3	<0.3
Chromium, Cr	mg/kg	0.3	29	23	31	13	16
Copper, Cu	mg/kg	0.5	15	14	37	7.0	8.8
Lead, Pb	mg/kg	1	28	18	31	43	61
Manganese, Mn	mg/kg	1	980	700	110	730	300
Nickel, Ni	mg/kg	0.5	8.8	10	20	8.2	10
Zinc, Zn	mg/kg	0.5	49	52	97	62	74

			Duplicate DS3	Duplicate DS4	Duplicate DS5	Duplicate DS6	Duplicate DS7
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 14/2/2017	- 14/2/2017	- 14/2/2017	- 14/2/2017	- 14/2/2017
PARAMETER	UOM	LOR	SE162156.111	SE162156.112	SE162156.113	SE162156.114	SE162156.115
Arsenic, As	mg/kg	3	11	53	27	12	11
Cadmium, Cd	mg/kg	0.3	<0.3	0.4	0.4	<0.3	<0.3
Chromium, Cr	mg/kg	0.3	15	30	17	21	19
Copper, Cu	mg/kg	0.5	2.5	19	15	19	13
Lead, Pb	mg/kg	1	16	190	68	23	15
Manganese, Mn	mg/kg	1	190	470	1800	950	730
Nickel, Ni	mg/kg	0.5	11	5.5	9.0	8.3	6.8
Zinc, Zn	mg/kg	0.5	68	82	89	43	33

27/02/2017 Page 11 of 23

Mercury in Soil [AN312] Tested: 21/2/2017

			D201 0-0.1	D201 0.2-0.3	D201 1.0-1.1	D201 1.9-2.0	D202 0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			13/2/2017	13/2/2017	13/2/2017	13/2/2017	13/2/2017
PARAMETER	UOM	LOR	SE162156.001	SE162156.002	SE162156.003	SE162156.004	SE162156.005
Mercury	mg/kg	0.05	<0.05	<0.05	0.08	<0.05	<0.05

			D202 0.2-0.3	D202 1.0-1.1	D203 0-0.1	D203 0.2-0.3	D203 0.9-1.0
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			13/2/2017	13/2/2017	14/2/2017	14/2/2017	14/2/2017
PARAMETER	UOM	LOR	SE162156.006	SE162156.007	SE162156.008	SE162156.009	SE162156.010
Mercury	mg/kg	0.05	<0.05	0.15	<0.05	<0.05	<0.05

			D204 0-0.1	D204 0.2-0.3	D204 1.0-1.1	D205 0-0.1	D205 0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			14/2/2017	14/2/2017	14/2/2017	14/2/2017	14/2/2017
PARAMETER	UOM	LOR	SE162156.011	SE162156.012	SE162156.013	SE162156.014	SE162156.015
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05

			D205 0.7-0.8	D206 0-0.1	D206 0.2-0.3	D206 0.6-0.7	D207 0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			14/2/2017	14/2/2017	14/2/2017	14/2/2017	14/2/2017
PARAMETER	UOM	LOR	SE162156.016	SE162156.017	SE162156.018	SE162156.019	SE162156.020
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05

			D207 0.2-0.3	D207 1.0-1.1	D208 0-0.1	D208 0.2-0.3	D208 1.0-1.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			14/2/2017	14/2/2017	14/2/2017	14/2/2017	14/2/2017
PARAMETER	UOM	LOR	SE162156.021	SE162156.022	SE162156.023	SE162156.024	SE162156.025
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	0.11

			D209 0-0.1	D209 0.2-0.3	D209 1.0-1.1	D209 1.9-2.0	D210 0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			13/2/2017	13/2/2017	13/2/2017	13/2/2017	13/2/2017
PARAMETER	UOM	LOR	SE162156.026	SE162156.027	SE162156.028	SE162156.029	SE162156.030
Mercury	mg/kg	0.05	<0.05	0.06	0.08	0.11	<0.05

			D210 0.2-0.3	D210 1.0-1.1	D211 0-0.1	S211 0.2-0.3	D211 1.0-1.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			13/2/2017	13/2/2017	14/2/2017	14/2/2017	14/2/2017
PARAMETER	UOM	LOR	SE162156.031	SE162156.032	SE162156.033	SE162156.034	SE162156.035
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	0.08	<0.05

27/02/2017 Page 12 of 23

Mercury in Soil [AN312] Tested: 21/2/2017 (continued)

			D211 1.9-2.0	D212 0-0.1	D212 0.2-0.3	D212 1.0-1.1	D213 0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			14/2/2017	14/2/2017	14/2/2017	14/2/2017	13/2/2017
PARAMETER	UOM	LOR	SE162156.036	SE162156.037	SE162156.038	SE162156.039	SE162156.040
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05

			D213 0.2-0.3	D213 1.0-1.1	D213 1.9-2.0	D214 0-0.1	D214 0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			13/2/2017	13/2/2017	13/2/2017	13/2/2017	13/2/2017
PARAMETER	UOM	LOR	SE162156.041	SE162156.042	SE162156.043	SE162156.044	SE162156.045
Mercury	mg/kg	0.05	<0.05	0.11	<0.05	<0.05	<0.05

			D214 1.0-1.1	D215 0-0.1	D215 0.2-0.3	D215 1.0-1.1	D215 1.9-2.0
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			13/2/2017	14/2/2017	14/2/2017	14/2/2017	14/2/2017
PARAMETER	UOM	LOR	SE162156.046	SE162156.047	SE162156.048	SE162156.049	SE162156.050
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	0.10	0.08

			D216 0-0.1	D216 0.2-0.3	D216 1.0-1.1	D217 0-0.1	D217 0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			14/2/2017	14/2/2017	14/2/2017	14/2/2017	14/2/2017
PARAMETER	UOM	LOR	SE162156.051	SE162156.052	SE162156.053	SE162156.054	SE162156.055
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05

			D217 1.0-1.1	D217 1.9-2.0	D218 0-0.1	D218 0.2-0.3	D218 1.0-1.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			14/2/2017	14/2/2017	14/2/2017	14/2/2017	14/2/2017
PARAMETER	UOM	LOR	SE162156.056	SE162156.057	SE162156.058	SE162156.059	SE162156.060
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	0.07

			D219 0-0.1	D219 0.2-0.3	D219 1.0-1.1	D219 1.9-2.0	D220 0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			14/2/2017	14/2/2017	14/2/2017	14/2/2017	14/2/2017
PARAMETER	UOM	LOR	SE162156.061	SE162156.062	SE162156.063	SE162156.064	SE162156.065
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	0.07

			D220 0.2-0.3	D220 1.0-1.1	D221 0-0.1	D221 0.2-0.3	D221 1.0-1.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			14/2/2017	14/2/2017	14/2/2017	14/2/2017	14/2/2017
PARAMETER	UOM	LOR	SE162156.066	SE162156.067	SE162156.068	SE162156.069	SE162156.070
Mercury	mg/kg	0.05	0.06	<0.05	<0.05	<0.05	0.17

27/02/2017 Page 13 of 23

Mercury in Soil [AN312] Tested: 21/2/2017 (continued)

			D221 1.9-2.0	D222 0-0.1	D222 0.2-0.3	D222 1.0-1.1	D223 0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			14/2/2017	14/2/2017	14/2/2017	14/2/2017	14/2/2017
PARAMETER	UOM	LOR	SE162156.071	SE162156.072	SE162156.073	SE162156.074	SE162156.075
Mercury	mg/kg	0.05	0.40	<0.05	<0.05	<0.05	<0.05

			D223 0.2-0.3	D223 1.0-1.1	D224 0-0.1	D224 0.2-0.3	D224 1.0-1.1
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			14/2/2017	14/2/2017	14/2/2017	14/2/2017	14/2/2017
PARAMETER	UOM	LOR	SE162156.076	SE162156.077	SE162156.078	SE162156.079	SE162156.080
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05

			D225 0-0.1	D225 0.2-0.3	D225 1.0-1.1	D225 1.9-2.0	D232 0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			14/2/2017	14/2/2017	14/2/2017	14/2/2017	14/2/2017
PARAMETER	UOM	LOR	SE162156.081	SE162156.082	SE162156.083	SE162156.084	SE162156.085
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	0.54	<0.05

			D232 0.2-0.3	D232 1.0-1.1	D233 0-0.1	D233 0.2-0.3	D233 1.0-1.1
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			14/2/2017	14/2/2017	14/2/2017	14/2/2017	14/2/2017
PARAMETER	UOM	LOR	SE162156.086	SE162156.087	SE162156.088	SE162156.089	SE162156.090
Mercury	mg/kg	0.05	<0.05	0.06	<0.05	<0.05	0.15

			D233 1.9-2.0	D234 0-0.1	D234 0.2-0.3	D234 1.0-1.1	D235 0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			14/2/2017	14/2/2017	14/2/2017	14/2/2017	14/2/2017
PARAMETER	UOM	LOR	SE162156.091	SE162156.092	SE162156.093	SE162156.094	SE162156.095
Mercury	mg/kg	0.05	0.09	<0.05	<0.05	<0.05	<0.05

			D235 0.2-0.3	D235 1.0-1.1	D235 1.9-2.0	D236 0-0.1	D236 0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			14/2/2017	14/2/2017	14/2/2017	14/2/2017	14/2/2017
PARAMETER	UOM	LOR	SE162156.096	SE162156.097	SE162156.098	SE162156.099	SE162156.100
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05

			D236 1.0-1.1	D237 0-0.1	D237 0.2-0.3	D237 1.0-1.1	D237 1.9-2.0
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			14/2/2017	14/2/2017	14/2/2017	14/2/2017	14/2/2017
PARAMETER	UOM	LOR	SE162156.101	SE162156.102	SE162156.103	SE162156.104	SE162156.105
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05

27/02/2017 Page 14 of 23

SE162156 R0

Mercury in Soil [AN312] Tested: 21/2/2017 (continued)

			D238 0-0.1	D238 0.2-0.3	D238 1.0-1.1	Duplicate DS1	Duplicate DS2
			SOIL	SOIL	SOIL	SOIL	SOIL
			14/2/2017	14/2/2017	14/2/2017	14/2/2017	14/2/2017
PARAMETER	UOM	LOR	SE162156.106	SE162156.107	SE162156.108	SE162156.109	SE162156.110
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05

			Duplicate DS3	Duplicate DS4	Duplicate DS5	Duplicate DS6	Duplicate DS7
			SOIL	SOIL	SOIL	SOIL	SOIL
			14/2/2017	14/2/2017	14/2/2017	14/2/2017	14/2/2017
PARAMETER	UOM	LOR	SE162156.111	SE162156.112	SE162156.113	SE162156.114	SE162156.115
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05

27/02/2017 Page 15 of 23

Moisture Content [AN002] Tested: 20/2/2017

			D201 0-0.1	D201 0.2-0.3	D201 1.0-1.1	D201 1.9-2.0	D202 0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			13/2/2017	13/2/2017	13/2/2017	13/2/2017	13/2/2017
PARAMETER	UOM	LOR	SE162156.001	SE162156.002	SE162156.003	SE162156.004	SE162156.005
% Moisture	%w/w	0.5	7.5	11	18	17	7.7

			D202 0.2-0.3	D202 1.0-1.1	D203 0-0.1	D203 0.2-0.3	D203 0.9-1.0
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			13/2/2017	13/2/2017	14/2/2017	14/2/2017	14/2/2017
PARAMETER	UOM	LOR	SE162156.006	SE162156.007	SE162156.008	SE162156.009	SE162156.010
% Moisture	%w/w	0.5	18	24	4.4	8.2	18

			D204 0-0.1	D204 0.2-0.3	D204 1.0-1.1	D205 0-0.1	D205 0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			14/2/2017	14/2/2017	14/2/2017	14/2/2017	14/2/2017
PARAMETER	UOM	LOR	SE162156.011	SE162156.012	SE162156.013	SE162156.014	SE162156.015
% Moisture	%w/w	0.5	6.0	7.8	13	5.0	7.7

			D205 0.7-0.8	D206 0-0.1	D206 0.2-0.3	D206 0.6-0.7	D207 0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			14/2/2017	14/2/2017	14/2/2017	14/2/2017	14/2/2017
PARAMETER	UOM	LOR	SE162156.016	SE162156.017	SE162156.018	SE162156.019	SE162156.020
% Moisture	%w/w	0.5	10	2.4	6.3	15	7.5

			D207 0.2-0.3	D207 1.0-1.1	D208 0-0.1	D208 0.2-0.3	D208 1.0-1.1
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			14/2/2017	14/2/2017	14/2/2017	14/2/2017	14/2/2017
PARAMETER	UOM	LOR	SE162156.021	SE162156.022	SE162156.023	SE162156.024	SE162156.025
% Moisture	%w/w	0.5	9.3	6.3	6.4	11	22

			D209 0-0.1	D209 0.2-0.3	D209 1.0-1.1	D209 1.9-2.0	D210 0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			13/2/2017	13/2/2017	13/2/2017	13/2/2017	13/2/2017
PARAMETER	UOM	LOR	SE162156.026	SE162156.027	SE162156.028	SE162156.029	SE162156.030
% Moisture	%w/w	0.5	3.9	8.7	19	18	7.1

			D210 0.2-0.3	D210 1.0-1.1	D211 0-0.1	S211 0.2-0.3	D211 1.0-1.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			13/2/2017	13/2/2017	14/2/2017	14/2/2017	14/2/2017
PARAMETER	UOM	LOR	SE162156.031	SE162156.032	SE162156.033	SE162156.034	SE162156.035
% Moisture	%w/w	0.5	17	26	4.3	18	12

27/02/2017 Page 16 of 23

Moisture Content [AN002] Tested: 20/2/2017 (continued)

			D211 1.9-2.0	D212 0-0.1	D212 0.2-0.3	D212 1.0-1.1	D213 0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			14/2/2017	14/2/2017	14/2/2017	14/2/2017	13/2/2017
PARAMETER	UOM	LOR	SE162156.036	SE162156.037	SE162156.038	SE162156.039	SE162156.040
% Moisture	%w/w	0.5	13	2.1	18	6.6	6.7

			D213 0.2-0.3	D213 1.0-1.1	D213 1.9-2.0	D214 0-0.1	D214 0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			13/2/2017	13/2/2017	13/2/2017	13/2/2017	13/2/2017
PARAMETER	UOM	LOR	SE162156.041	SE162156.042	SE162156.043	SE162156.044	SE162156.045
% Moisture	%w/w	0.5	6.8	22	13	5.1	5.5

			D214 1.0-1.1	D215 0-0.1	D215 0.2-0.3	D215 1.0-1.1	D215 1.9-2.0
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			13/2/2017	14/2/2017	14/2/2017	14/2/2017	14/2/2017
PARAMETER	UOM	LOR	SE162156.046	SE162156.047	SE162156.048	SE162156.049	SE162156.050
% Moisture	%w/w	0.5	11	5.3	11	23	19

			D216 0-0.1	D216 0.2-0.3	D216 1.0-1.1	D217 0-0.1	D217 0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			14/2/2017	14/2/2017	14/2/2017	14/2/2017	14/2/2017
PARAMETER	UOM	LOR	SE162156.051	SE162156.052	SE162156.053	SE162156.054	SE162156.055
% Moisture	%w/w	0.5	5.4	17	24	5.1	8.5

			D217 1.0-1.1	D217 1.9-2.0	D218 0-0.1	D218 0.2-0.3	D218 1.0-1.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			14/2/2017	14/2/2017	14/2/2017	14/2/2017	14/2/2017
PARAMETER	UOM	LOR	SE162156.056	SE162156.057	SE162156.058	SE162156.059	SE162156.060
% Moisture	%w/w	0.5	21	23	7.3	4.3	15

			D219 0-0.1	D219 0.2-0.3	D219 1.0-1.1	D219 1.9-2.0	D220 0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			14/2/2017	14/2/2017	14/2/2017	14/2/2017	14/2/2017
PARAMETER	UOM	LOR	SE162156.061	SE162156.062	SE162156.063	SE162156.064	SE162156.065
% Moisture	%w/w	0.5	2.4	19	18	16	4.0

			D220 0.2-0.3	D220 1.0-1.1	D221 0-0.1	D221 0.2-0.3	D221 1.0-1.1
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			14/2/2017	14/2/2017	14/2/2017	14/2/2017	14/2/2017
PARAMETER	UOM	LOR	SE162156.066	SE162156.067	SE162156.068	SE162156.069	SE162156.070
% Moisture	%w/w	0.5	21	21	9.0	3.2	18

27/02/2017 Page 17 of 23

Moisture Content [AN002] Tested: 20/2/2017 (continued)

			D221 1.9-2.0	D222 0-0.1	D222 0.2-0.3	D222 1.0-1.1	D223 0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			14/2/2017	14/2/2017	14/2/2017	14/2/2017	14/2/2017
PARAMETER	UOM	LOR	SE162156.071	SE162156.072	SE162156.073	SE162156.074	SE162156.075
% Moisture	%w/w	0.5	30	7.8	20	14	5.4

			D223 0.2-0.3	D223 1.0-1.1	D224 0-0.1	D224 0.2-0.3	D224 1.0-1.1
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			14/2/2017	14/2/2017	14/2/2017	14/2/2017	14/2/2017
PARAMETER	UOM	LOR	SE162156.076	SE162156.077	SE162156.078	SE162156.079	SE162156.080
% Moisture	%w/w	0.5	16	14	7.4	7.8	7.7

			D225 0-0.1	D225 0.2-0.3	D225 1.0-1.1	D225 1.9-2.0	D232 0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			14/2/2017	14/2/2017	14/2/2017	14/2/2017	14/2/2017
PARAMETER	UOM	LOR	SE162156.081	SE162156.082	SE162156.083	SE162156.084	SE162156.085
% Moisture	%w/w	0.5	2.6	4.1	17	23	1.8

			D232 0.2-0.3	D232 1.0-1.1	D233 0-0.1	D233 0.2-0.3	D233 1.0-1.1
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			14/2/2017	14/2/2017	14/2/2017	14/2/2017	14/2/2017
PARAMETER	UOM	LOR	SE162156.086	SE162156.087	SE162156.088	SE162156.089	SE162156.090
% Moisture	%w/w	0.5	21	16	3.8	7.5	28

			D233 1.9-2.0	D234 0-0.1	D234 0.2-0.3	D234 1.0-1.1	D235 0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			14/2/2017	14/2/2017	14/2/2017	14/2/2017	14/2/2017
PARAMETER	UOM	LOR	SE162156.091	SE162156.092	SE162156.093	SE162156.094	SE162156.095
% Moisture	%w/w	0.5	20	4.5	7.5	14	7.2

			D235 0.2-0.3	D235 1.0-1.1	D235 1.9-2.0	D236 0-0.1	D236 0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			14/2/2017	14/2/2017	14/2/2017	14/2/2017	14/2/2017
PARAMETER	UOM	LOR	SE162156.096	SE162156.097	SE162156.098	SE162156.099	SE162156.100
% Moisture	%w/w	0.5	15	13	19	6.0	6.7

			D236 1.0-1.1	D237 0-0.1	D237 0.2-0.3	D237 1.0-1.1	D237 1.9-2.0
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			14/2/2017	14/2/2017	14/2/2017	14/2/2017	14/2/2017
PARAMETER	UOM	LOR	SE162156.101	SE162156.102	SE162156.103	SE162156.104	SE162156.105
% Moisture	%w/w	0.5	10	5.1	7.0	16	14

27/02/2017 Page 18 of 23

SE162156 R0

Moisture Content [AN002] Tested: 20/2/2017 (continued)

			D238 0-0.1	D238 0.2-0.3	D238 1.0-1.1	Duplicate DS1	Duplicate DS2
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			14/2/2017	14/2/2017	14/2/2017	14/2/2017	14/2/2017
PARAMETER	UOM	LOR	SE162156.106	SE162156.107	SE162156.108	SE162156.109	SE162156.110
% Moisture	%w/w	0.5	6.8	6.1	15	5.9	4.0

			Duplicate DS3	Duplicate DS4	Duplicate DS5	Duplicate DS6	Duplicate DS7
			SOIL	SOIL	SOIL	SOIL	SOIL
			14/2/2017	14/2/2017	14/2/2017	14/2/2017	14/2/2017
PARAMETER	UOM	LOR	SE162156.111	SE162156.112	SE162156.113	SE162156.114	SE162156.115
% Moisture	%w/w	0.5	2.3	3.9	8.2	5.6	4.0

27/02/2017 Page 19 of 23

SE162156 R0

Metals in Water (Dissolved) by ICPOES [AN320/AN321] Tested: 24/2/2017

			Rinsate RS1	Rinsate RS2
			WATER	WATER
			- 14/2/2017	- 14/2/2017
PARAMETER	UOM	LOR	SE162156.116	SE162156.117
Arsenic, As	mg/L	0.02	<0.02	<0.02
Cadmium, Cd	mg/L	0.001	<0.001	0.001
Chromium, Cr	mg/L	0.005	<0.005	<0.005
Copper, Cu	mg/L	0.005	<0.005	<0.005
Lead, Pb	mg/L	0.02	<0.02	<0.02
Manganese, Mn	mg/L	0.005	<0.005	<0.005
Nickel, Ni	mg/L	0.005	<0.005	<0.005
Zinc, Zn	mg/L	0.01	<0.01	<0.01

27/02/2017 Page 20 of 23

SE162156 R0

Mercury (dissolved) in Water [AN311(Perth)/AN312] Tested: 23/2/2017

			Rinsate RS1	Rinsate RS2
			WATER	WATER
			14/2/2017	14/2/2017
PARAMETER	UOM	LOR	SE162156.116	SE162156.117
Mercury	mg/L	0.0001	<0.0001	<0.0001

27/02/2017 Page 21 of 23

METHOD SUMMARY

SE162156 R0

METHOD -

METHODOLOGY SUMMARY

AN002

The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.

AN020

Unpreserved water sample is filtered through a 0.45µm membrane filter and acidified with nitric acid similar to APHA3030B

AN040/AN320

A portion of sample is digested with nitric acid to decompose organic matter and hydrochloric acid to complete the digestion of metals. The digest is then analysed by ICP OES with metals results reported on the dried sample basis. Based on USEPA method 200.8 and 6010C.

AN040

A portion of sample is digested with Nitric acid to decompose organic matter and Hydrochloric acid to complete the digestion of metals and then filtered for analysis by ASS or ICP as per USEPA Method 200.8.

AN101

pH in Soil Sludge Sediment and Water: pH is measured electrometrically using a combination electrode and is calibrated against 3 buffers purchased commercially. For soils, sediments and sludges, an extract with water (or 0.01M CaCl2) is made at a ratio of 1:5 and the pH determined and reported on the extract. Reference APHA 4500-H+.

AN122

Exchangeable Cations, CEC and ESP: Soil sample is extracted in 1M Ammonium Acetate at pH=7 (or 1M Ammonium Chloride at pH=7) with cations (Na, K, Ca & Mg) then determined by ICP OES/ICP MS and reported as Exchangeable Cations. For saline soils, these results can be corrected for water soluble cations and reported as Exchangeable cations in meq/100g or soil can be pre-treated (aqueous ethanol/aqueous glycerol) prior to extraction. Cation Exchange Capacity (CEC) is the sum of the exchangeable cations in meq/100g.

AN122

The Exchangeable Sodium Percentage (ESP) is calculated as the exchangeable sodium divided by the CEC (all in meq/100g) times 100.

ESP can be used to categorise the sodicity of the soil as below:

ESP < 6% non-sodic ESP 6-15% sodic ESP >15% strongly sodic

Method is refernced to Rayment and Higginson, 1992, sections 15D3 and 15N1.-

AN311(Perth)/AN312

Mercury by Cold Vapour AAS in Waters: Mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500.

AN312

Mercury by Cold Vapour AAS in Soils: After digestion with nitric acid, hydrogen peroxide and hydrochloric acid, mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500

AN320/AN321

Metals by ICP-OES: Samples are preserved with 10% nitric acid for a wide range of metals and some non-metals. This solution is measured by Inductively Coupled Plasma. Solutions are aspirated into an argon plasma at 8000-10000K and emit characteristic energy or light as a result of electron transitions through unique energy levels. The emitted light is focused onto a diffraction grating where it is separated into components.

AN320/AN321

Photomultipliers or CCDs are used to measure the light intensity at specific wavelengths. This intensity is directly proportional to concentration. Corrections are required to compensate for spectral overlap between elements . Reference APHA 3120 B.

27/02/2017 Page 22 of 23

FOOTNOTES SE162156 R0

FOOTNOTES -

NATA accreditation does not cover the performance of this service.

** Indicative data, theoretical holding time exceeded.

Not analysed.NVL Not validated.

IS Insufficient sample for analysis.

LNR Sample listed, but not received.

UOM Unit of Measure.

LOR Limit of Reporting.

↑↓ Raised/lowered Limit of

Reporting.

Samples analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/en/terms-and-conditions. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein

Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full.

27/02/2017 Page 23 of 23

STATEMENT OF QA/QC PERFORMANCE

CLIENT DETAILS _____ LABORATORY DETAILS

Contact John Xu Manager Huong Crawford

Client Geotechnique Laboratory SGS Alexandria Environmental
Address P.O. Box 880 Address Unit 16, 33 Maddox St

P.O. Box 880 Address Unit 16, 33 Maddox St PENRITH NSW 2751 Alexandria NSW 2015

Telephone 02 4722 2700 Telephone +61 2 8594 0400

Facsimile 02 4722 6161 Facsimile +61 2 8594 0499

Email john.xu@geotech.com.au Email au.environmental.sydney@sgs.com

ProjectGoogong NH1A-7 & NH2SGS ReferenceSE162156 R0Order Number(Not specified)Date Received20 Feb 2017Samples117Date Reported27 Feb 2017

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document and was supplied by the Client.

This QA/QC Statement must be read in conjunction with the referenced Analytical Report.

The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met with the exception of the following:

Duplicate Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES 1 item

Matrix Spike Mercury in Soil 1 item

Mercury in Soil 1 item

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES 2 items

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES

1 item

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES

1 item

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES

1 item

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES 3 items

SAMPLE SUMMARY

Samples clearly labelled Yes Complete documentation received Yes Sample container provider SGS Sample cooling method Ice Bricks 115 Soil, 2 Water Samples received in correct containers Yes Sample counts by matrix 20/2/2017 Date documentation received Type of documentation received COC Samples received in good order Samples received without headspace Yes Yes Sample temperature upon receipt 17.3°C Sufficient sample for analysis Yes

Standard

SGS Australia Pty Ltd ABN 44 000 964 278

Turnaround time requested

27/2/2017

Environment, Health and Safety Unit 16 33 Maddox St Alexandria NSW 2015 Australia t +61 2 8594 0400 www.sgs.com.au
PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Australia f +61 2 8594 0499

Member of the SGS Group

HOLDING TIME SUMMARY

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Exchangeable Cations and Cation Exchange Capacity (CEC/ESP/SAR)

Method: ME-(AU)-[ENV]AN122

Excitatigoable Cations at	d Cation Exchange Capach	y (OLO/LOI /OAT)					Modiod. I	*IL-(/10)-[L144]/114122
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
D201 0-0.1	SE162156.001	LB119044	13 Feb 2017	20 Feb 2017	13 Mar 2017	21 Feb 2017	13 Mar 2017	24 Feb 2017
D201 1.9-2.0	SE162156.004	LB119044	13 Feb 2017	20 Feb 2017	13 Mar 2017	21 Feb 2017	13 Mar 2017	24 Feb 2017
D206 0-0.1	SE162156.017	LB119044	14 Feb 2017	20 Feb 2017	14 Mar 2017	21 Feb 2017	14 Mar 2017	24 Feb 2017
D206 0.2-0.3	SE162156.018	LB119044	14 Feb 2017	20 Feb 2017	14 Mar 2017	21 Feb 2017	14 Mar 2017	24 Feb 2017
D209 0-0.1	SE162156.026	LB119044	13 Feb 2017	20 Feb 2017	13 Mar 2017	21 Feb 2017	13 Mar 2017	24 Feb 2017
D211 0-0.1	SE162156.033	LB119044	14 Feb 2017	20 Feb 2017	14 Mar 2017	21 Feb 2017	14 Mar 2017	24 Feb 2017
D212 1.0-1.1	SE162156.039	LB119044	14 Feb 2017	20 Feb 2017	14 Mar 2017	21 Feb 2017	14 Mar 2017	24 Feb 2017
D213 0.2-0.3	SE162156.041	LB119044	13 Feb 2017	20 Feb 2017	13 Mar 2017	21 Feb 2017	13 Mar 2017	24 Feb 2017
D213 1.0-1.1	SE162156.042	LB119044	13 Feb 2017	20 Feb 2017	13 Mar 2017	21 Feb 2017	13 Mar 2017	24 Feb 2017
D215 0.2-0.3	SE162156.048	LB119044	14 Feb 2017	20 Feb 2017	14 Mar 2017	21 Feb 2017	14 Mar 2017	24 Feb 2017
D215 1.0-1.1	SE162156.049	LB119044	14 Feb 2017	20 Feb 2017	14 Mar 2017	21 Feb 2017	14 Mar 2017	24 Feb 2017
D216 0.2-0.3	SE162156.052	LB119044	14 Feb 2017	20 Feb 2017	14 Mar 2017	21 Feb 2017	14 Mar 2017	24 Feb 2017
D216 1.0-1.1	SE162156.053	LB119044	14 Feb 2017	20 Feb 2017	14 Mar 2017	21 Feb 2017	14 Mar 2017	24 Feb 2017
D217 0.2-0.3	SE162156.055	LB119044	14 Feb 2017	20 Feb 2017	14 Mar 2017	21 Feb 2017	14 Mar 2017	24 Feb 2017
D217 1.0-1.1	SE162156.056	LB119044	14 Feb 2017	20 Feb 2017	14 Mar 2017	21 Feb 2017	14 Mar 2017	24 Feb 2017
D218 0-0.1	SE162156.058	LB119044	14 Feb 2017	20 Feb 2017	14 Mar 2017	21 Feb 2017	14 Mar 2017	24 Feb 2017
D218 0.2-0.3	SE162156.059	LB119044	14 Feb 2017	20 Feb 2017	14 Mar 2017	21 Feb 2017	14 Mar 2017	24 Feb 2017
D218 1.0-1.1	SE162156.060	LB119044	14 Feb 2017	20 Feb 2017	14 Mar 2017	21 Feb 2017	14 Mar 2017	24 Feb 2017
D219 0-0.1	SE162156.061	LB119044	14 Feb 2017	20 Feb 2017	14 Mar 2017	21 Feb 2017	14 Mar 2017	24 Feb 2017
D219 1.9-2.0	SE162156.064	LB119135	14 Feb 2017	20 Feb 2017	14 Mar 2017	22 Feb 2017	14 Mar 2017	24 Feb 2017
D223 0-0.1	SE162156.075	LB119135	14 Feb 2017	20 Feb 2017	14 Mar 2017	22 Feb 2017	14 Mar 2017	24 Feb 2017
D223 0.2-0.3	SE162156.076	LB119135	14 Feb 2017	20 Feb 2017	14 Mar 2017	22 Feb 2017	14 Mar 2017	24 Feb 2017
D223 1.0-1.1	SE162156.077	LB119135	14 Feb 2017	20 Feb 2017	14 Mar 2017	22 Feb 2017	14 Mar 2017	24 Feb 2017
D224 1.0-1.1	SE162156.080	LB119135	14 Feb 2017	20 Feb 2017	14 Mar 2017	22 Feb 2017	14 Mar 2017	24 Feb 2017
D225 1.9-2.0	SE162156.084	LB119135	14 Feb 2017	20 Feb 2017	14 Mar 2017	22 Feb 2017	14 Mar 2017	24 Feb 2017
D232 1.0-1.1	SE162156.087	LB119135	14 Feb 2017	20 Feb 2017	14 Mar 2017	22 Feb 2017	14 Mar 2017	24 Feb 2017
D235 0-0.1	SE162156.095	LB119135	14 Feb 2017	20 Feb 2017	14 Mar 2017	22 Feb 2017	14 Mar 2017	24 Feb 2017
D235 0.2-0.3	SE162156.096	LB119135	14 Feb 2017	20 Feb 2017	14 Mar 2017	22 Feb 2017	14 Mar 2017	24 Feb 2017
D235 1.0-1.1	SE162156.097	LB119135	14 Feb 2017	20 Feb 2017	14 Mar 2017	22 Feb 2017	14 Mar 2017	24 Feb 2017
D235 1.9-2.0	SE162156.098	LB119135	14 Feb 2017	20 Feb 2017	14 Mar 2017	22 Feb 2017	14 Mar 2017	24 Feb 2017
D236 0-0.1	SE162156.099	LB119135	14 Feb 2017	20 Feb 2017	14 Mar 2017	22 Feb 2017	14 Mar 2017	24 Feb 2017
D236 0.2-0.3	SE162156.100	LB119135	14 Feb 2017	20 Feb 2017	14 Mar 2017	22 Feb 2017	14 Mar 2017	24 Feb 2017
D237 1.9-2.0	SE162156.105	LB119135	14 Feb 2017	20 Feb 2017	14 Mar 2017	22 Feb 2017	14 Mar 2017	24 Feb 2017
D238 0.2-0.3	SE162156.107	LB119135	14 Feb 2017	20 Feb 2017	14 Mar 2017	22 Feb 2017	14 Mar 2017	24 Feb 2017
D238 1.0-1.1	SE162156.108	LB119135	14 Feb 2017	20 Feb 2017	14 Mar 2017	22 Feb 2017	14 Mar 2017	24 Feb 2017

Mercury (dissolved) in Water

Method: ME-(AU)-[ENV]AN311(Perth)/AN312

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysea
Rinsate RS1	SE162156.116	LB119219	14 Feb 2017	20 Feb 2017	14 Mar 2017	23 Feb 2017	14 Mar 2017	23 Feb 2017
Rinsate RS2	SE162156.117	LB119219	14 Feb 2017	20 Feb 2017	14 Mar 2017	23 Feb 2017	14 Mar 2017	23 Feb 2017

Mercury in Soil

Method: ME-(AU)-[ENV]AN312

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysea
D201 0-0.1	SE162156.001	LB119123	13 Feb 2017	20 Feb 2017	13 Mar 2017	21 Feb 2017	13 Mar 2017	23 Feb 2017
D201 0.2-0.3	SE162156.002	LB119123	13 Feb 2017	20 Feb 2017	13 Mar 2017	21 Feb 2017	13 Mar 2017	23 Feb 2017
D201 1.0-1.1	SE162156.003	LB119123	13 Feb 2017	20 Feb 2017	13 Mar 2017	21 Feb 2017	13 Mar 2017	23 Feb 2017
D201 1.9-2.0	SE162156.004	LB119123	13 Feb 2017	20 Feb 2017	13 Mar 2017	21 Feb 2017	13 Mar 2017	23 Feb 2017
D202 0-0.1	SE162156.005	LB119123	13 Feb 2017	20 Feb 2017	13 Mar 2017	21 Feb 2017	13 Mar 2017	23 Feb 2017
D202 0.2-0.3	SE162156.006	LB119123	13 Feb 2017	20 Feb 2017	13 Mar 2017	21 Feb 2017	13 Mar 2017	23 Feb 2017
D202 1.0-1.1	SE162156.007	LB119123	13 Feb 2017	20 Feb 2017	13 Mar 2017	21 Feb 2017	13 Mar 2017	23 Feb 2017
D203 0-0.1	SE162156.008	LB119123	14 Feb 2017	20 Feb 2017	14 Mar 2017	21 Feb 2017	14 Mar 2017	23 Feb 2017
D203 0.2-0.3	SE162156.009	LB119123	14 Feb 2017	20 Feb 2017	14 Mar 2017	21 Feb 2017	14 Mar 2017	23 Feb 2017
D203 0.9-1.0	SE162156.010	LB119124	14 Feb 2017	20 Feb 2017	14 Mar 2017	21 Feb 2017	14 Mar 2017	23 Feb 2017
D204 0-0.1	SE162156.011	LB119124	14 Feb 2017	20 Feb 2017	14 Mar 2017	21 Feb 2017	14 Mar 2017	23 Feb 2017
D204 0.2-0.3	SE162156.012	LB119124	14 Feb 2017	20 Feb 2017	14 Mar 2017	21 Feb 2017	14 Mar 2017	23 Feb 2017
D204 1.0-1.1	SE162156.013	LB119124	14 Feb 2017	20 Feb 2017	14 Mar 2017	21 Feb 2017	14 Mar 2017	23 Feb 2017
D205 0-0.1	SE162156.014	LB119124	14 Feb 2017	20 Feb 2017	14 Mar 2017	21 Feb 2017	14 Mar 2017	23 Feb 2017
D205 0.2-0.3	SE162156.015	LB119124	14 Feb 2017	20 Feb 2017	14 Mar 2017	21 Feb 2017	14 Mar 2017	23 Feb 2017
D205 0.7-0.8	SE162156.016	LB119124	14 Feb 2017	20 Feb 2017	14 Mar 2017	21 Feb 2017	14 Mar 2017	23 Feb 2017
D206 0-0.1	SE162156.017	LB119124	14 Feb 2017	20 Feb 2017	14 Mar 2017	21 Feb 2017	14 Mar 2017	23 Feb 2017
D206 0.2-0.3	SE162156.018	LB119124	14 Feb 2017	20 Feb 2017	14 Mar 2017	21 Feb 2017	14 Mar 2017	23 Feb 2017

27/2/2017 Page 2 of 21

HOLDING TIME SUMMARY

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Mercury in Soil (continued) Method: ME-(AU)-[ENV]AN312

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
D206 0.6-0.7	SE162156.019	LB119124	14 Feb 2017	20 Feb 2017	14 Mar 2017	21 Feb 2017	14 Mar 2017	23 Feb 2017
D207 0-0.1	SE162156.020	LB119124	14 Feb 2017	20 Feb 2017	14 Mar 2017	21 Feb 2017	14 Mar 2017	23 Feb 2017
D207 0.2-0.3	SE162156.021	LB119124	14 Feb 2017	20 Feb 2017	14 Mar 2017	21 Feb 2017	14 Mar 2017	23 Feb 2017
D207 1.0-1.1	SE162156.022	LB119124	14 Feb 2017	20 Feb 2017	14 Mar 2017	21 Feb 2017	14 Mar 2017	23 Feb 2017
D208 0-0.1	SE162156.023	LB119124	14 Feb 2017	20 Feb 2017	14 Mar 2017	21 Feb 2017	14 Mar 2017	23 Feb 2017
D208 0.2-0.3	SE162156.024	LB119124	14 Feb 2017	20 Feb 2017	14 Mar 2017	21 Feb 2017	14 Mar 2017	23 Feb 2017
D208 1.0-1.1	SE162156.025	LB119124	14 Feb 2017	20 Feb 2017	14 Mar 2017	21 Feb 2017	14 Mar 2017	23 Feb 2017
D209 0-0.1	SE162156.026	LB119124	13 Feb 2017	20 Feb 2017	13 Mar 2017	21 Feb 2017	13 Mar 2017	23 Feb 2017
D209 0.2-0.3	SE162156.027	LB119124	13 Feb 2017	20 Feb 2017	13 Mar 2017	21 Feb 2017	13 Mar 2017	23 Feb 2017
D209 1.0-1.1	SE162156.028	LB119124	13 Feb 2017	20 Feb 2017	13 Mar 2017	21 Feb 2017	13 Mar 2017	23 Feb 2017
D209 1.9-2.0	SE162156.029	LB119125	13 Feb 2017	20 Feb 2017	13 Mar 2017	21 Feb 2017	13 Mar 2017	23 Feb 2017
D210 0-0.1	SE162156.030	LB119125	13 Feb 2017	20 Feb 2017	13 Mar 2017	21 Feb 2017	13 Mar 2017	23 Feb 2017
D210 0.2-0.3	SE162156.031	LB119125	13 Feb 2017	20 Feb 2017	13 Mar 2017	21 Feb 2017	13 Mar 2017	23 Feb 2017
D210 1.0-1.1	SE162156.032	LB119125	13 Feb 2017	20 Feb 2017	13 Mar 2017	21 Feb 2017	13 Mar 2017	23 Feb 2017
D211 0-0.1	SE162156.033	LB119125	14 Feb 2017	20 Feb 2017	14 Mar 2017	21 Feb 2017	14 Mar 2017	23 Feb 2017
S211 0.2-0.3	SE162156.034	LB119125	14 Feb 2017	20 Feb 2017	14 Mar 2017	21 Feb 2017	14 Mar 2017	23 Feb 2017
D211 1.0-1.1	SE162156.035	LB119125	14 Feb 2017	20 Feb 2017	14 Mar 2017	21 Feb 2017	14 Mar 2017	23 Feb 2017
D211 1.9-2.0	SE162156.036	LB119125	14 Feb 2017	20 Feb 2017	14 Mar 2017	21 Feb 2017	14 Mar 2017	23 Feb 2017
D212 0-0.1	SE162156.037	LB119125	14 Feb 2017	20 Feb 2017	14 Mar 2017	21 Feb 2017	14 Mar 2017	23 Feb 2017
D212 0.2-0.3	SE162156.038	LB119125	14 Feb 2017	20 Feb 2017	14 Mar 2017	21 Feb 2017	14 Mar 2017	23 Feb 2017
D212 1.0-1.1	SE162156.039	LB119125	14 Feb 2017	20 Feb 2017	14 Mar 2017	21 Feb 2017	14 Mar 2017	23 Feb 2017
D213 0-0.1	SE162156.040	LB119125	13 Feb 2017	20 Feb 2017	13 Mar 2017	21 Feb 2017	13 Mar 2017	23 Feb 2017
D213 0.2-0.3	SE162156.041	LB119125	13 Feb 2017	20 Feb 2017	13 Mar 2017	21 Feb 2017	13 Mar 2017	23 Feb 2017
D213 1.0-1.1	SE162156.042	LB119125	13 Feb 2017	20 Feb 2017	13 Mar 2017	21 Feb 2017	13 Mar 2017	23 Feb 2017
D213 1.9-2.0	SE162156.043	LB119125	13 Feb 2017	20 Feb 2017	13 Mar 2017	21 Feb 2017	13 Mar 2017	23 Feb 2017
D214 0-0.1	SE162156.044	LB119125	13 Feb 2017	20 Feb 2017	13 Mar 2017	21 Feb 2017	13 Mar 2017	23 Feb 2017
D214 0.2-0.3	SE162156.045	LB119125	13 Feb 2017	20 Feb 2017	13 Mar 2017	21 Feb 2017	13 Mar 2017	23 Feb 2017
D214 1.0-1.1	SE162156.046	LB119125	13 Feb 2017	20 Feb 2017	13 Mar 2017	21 Feb 2017	13 Mar 2017	23 Feb 2017
D215 0-0.1	SE162156.047	LB119125	14 Feb 2017	20 Feb 2017	14 Mar 2017	21 Feb 2017	14 Mar 2017	23 Feb 2017
D215 0.2-0.3	SE162156.048	LB119126	14 Feb 2017	20 Feb 2017	14 Mar 2017	21 Feb 2017	14 Mar 2017	23 Feb 2017
D215 1.0-1.1	SE162156.049	LB119126	14 Feb 2017	20 Feb 2017	14 Mar 2017	21 Feb 2017	14 Mar 2017	23 Feb 2017
D215 1.9-2.0	SE162156.050	LB119126	14 Feb 2017	20 Feb 2017	14 Mar 2017	21 Feb 2017	14 Mar 2017	23 Feb 2017
D216 0-0.1	SE162156.051	LB119126	14 Feb 2017	20 Feb 2017	14 Mar 2017	21 Feb 2017	14 Mar 2017	23 Feb 2017
D216 0.2-0.3	SE162156.052	LB119126	14 Feb 2017	20 Feb 2017	14 Mar 2017	21 Feb 2017	14 Mar 2017	23 Feb 2017
D216 1.0-1.1	SE162156.053	LB119126	14 Feb 2017	20 Feb 2017	14 Mar 2017	21 Feb 2017	14 Mar 2017	23 Feb 2017
D217 0-0.1	SE162156.054	LB119126	14 Feb 2017	20 Feb 2017	14 Mar 2017	21 Feb 2017	14 Mar 2017	23 Feb 2017
D217 0.2-0.3	SE162156.055	LB119126	14 Feb 2017	20 Feb 2017	14 Mar 2017	21 Feb 2017	14 Mar 2017	23 Feb 2017
D217 1.0-1.1	SE162156.056	LB119126	14 Feb 2017	20 Feb 2017	14 Mar 2017	21 Feb 2017	14 Mar 2017	23 Feb 2017
D217 1.9-2.0	SE162156.057	LB119126	14 Feb 2017	20 Feb 2017	14 Mar 2017	21 Feb 2017	14 Mar 2017	23 Feb 2017
D218 0-0.1	SE162156.058	LB119126	14 Feb 2017	20 Feb 2017	14 Mar 2017	21 Feb 2017	14 Mar 2017	23 Feb 2017
D218 0.2-0.3	SE162156.059	LB119126	14 Feb 2017	20 Feb 2017	14 Mar 2017	21 Feb 2017	14 Mar 2017	23 Feb 2017
D218 1.0-1.1	SE162156.060	LB119126	14 Feb 2017	20 Feb 2017	14 Mar 2017	21 Feb 2017	14 Mar 2017	23 Feb 2017
D219 0-0.1	SE162156.061	LB119126	14 Feb 2017	20 Feb 2017	14 Mar 2017	21 Feb 2017	14 Mar 2017	23 Feb 2017
D219 0.2-0.3	SE162156.062	LB119126	14 Feb 2017	20 Feb 2017	14 Mar 2017	21 Feb 2017	14 Mar 2017	23 Feb 2017
D219 1.0-1.1	SE162156.063	LB119126	14 Feb 2017	20 Feb 2017	14 Mar 2017	21 Feb 2017	14 Mar 2017	23 Feb 2017
D219 1.9-2.0	SE162156.064	LB119126	14 Feb 2017	20 Feb 2017	14 Mar 2017	21 Feb 2017	14 Mar 2017	23 Feb 2017
D220 0-0.1	SE162156.065	LB119126	14 Feb 2017	20 Feb 2017	14 Mar 2017	21 Feb 2017	14 Mar 2017	23 Feb 2017
D220 0.2-0.3	SE162156.066	LB119126	14 Feb 2017	20 Feb 2017	14 Mar 2017	21 Feb 2017	14 Mar 2017	23 Feb 2017
D220 1.0-1.1	SE162156.067	LB119127	14 Feb 2017	20 Feb 2017	14 Mar 2017	21 Feb 2017	14 Mar 2017	23 Feb 2017
D221 0-0.1	SE162156.068	LB119127	14 Feb 2017	20 Feb 2017	14 Mar 2017	21 Feb 2017	14 Mar 2017	23 Feb 2017
D221 0.2-0.3	SE162156.069	LB119127	14 Feb 2017	20 Feb 2017	14 Mar 2017	21 Feb 2017	14 Mar 2017	23 Feb 2017
D221 1.0-1.1	SE162156.070	LB119127	14 Feb 2017	20 Feb 2017	14 Mar 2017	21 Feb 2017	14 Mar 2017	23 Feb 2017
D221 1.9-2.0	SE162156.071	LB119127	14 Feb 2017	20 Feb 2017	14 Mar 2017	21 Feb 2017	14 Mar 2017	23 Feb 2017
D222 0-0.1	SE162156.072	LB119127	14 Feb 2017	20 Feb 2017	14 Mar 2017	21 Feb 2017	14 Mar 2017	23 Feb 2017
D222 0.2-0.3	SE162156.073	LB119127	14 Feb 2017	20 Feb 2017	14 Mar 2017	21 Feb 2017	14 Mar 2017	23 Feb 2017
D222 1.0-1.1	SE162156.074	LB119127	14 Feb 2017	20 Feb 2017	14 Mar 2017	21 Feb 2017	14 Mar 2017	23 Feb 2017
D223 0-0.1	SE162156.075	LB119127	14 Feb 2017	20 Feb 2017	14 Mar 2017	21 Feb 2017	14 Mar 2017	23 Feb 2017
D223 0.2-0.3	SE162156.076	LB119127	14 Feb 2017	20 Feb 2017	14 Mar 2017	21 Feb 2017	14 Mar 2017	23 Feb 2017
D223 1.0-1.1	SE162156.077	LB119127	14 Feb 2017	20 Feb 2017	14 Mar 2017	21 Feb 2017	14 Mar 2017	23 Feb 2017
D224 0-0.1	SE162156.078	LB119127	14 Feb 2017	20 Feb 2017	14 Mar 2017	21 Feb 2017	14 Mar 2017	23 Feb 2017

27/2/2017 Page 3 of 21

HOLDING TIME SUMMARY

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Mercury in Soil (continued) Method: ME-(AU)-[ENV]AN312

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
D224 0.2-0.3	SE162156.079	LB119127	14 Feb 2017	20 Feb 2017	14 Mar 2017	21 Feb 2017	14 Mar 2017	23 Feb 2017
D224 1.0-1.1	SE162156.080	LB119127	14 Feb 2017	20 Feb 2017	14 Mar 2017	21 Feb 2017	14 Mar 2017	23 Feb 2017
D225 0-0.1	SE162156.081	LB119127	14 Feb 2017	20 Feb 2017	14 Mar 2017	21 Feb 2017	14 Mar 2017	23 Feb 2017
D225 0.2-0.3	SE162156.082	LB119127	14 Feb 2017	20 Feb 2017	14 Mar 2017	21 Feb 2017	14 Mar 2017	23 Feb 2017
D225 1.0-1.1	SE162156.083	LB119127	14 Feb 2017	20 Feb 2017	14 Mar 2017	21 Feb 2017	14 Mar 2017	23 Feb 2017
D225 1.9-2.0	SE162156.084	LB119127	14 Feb 2017	20 Feb 2017	14 Mar 2017	21 Feb 2017	14 Mar 2017	23 Feb 2017
D232 0-0.1	SE162156.085	LB119127	14 Feb 2017	20 Feb 2017	14 Mar 2017	21 Feb 2017	14 Mar 2017	23 Feb 2017
D232 0.2-0.3	SE162156.086	LB119166	14 Feb 2017	20 Feb 2017	14 Mar 2017	22 Feb 2017	14 Mar 2017	24 Feb 2017
D232 1.0-1.1	SE162156.087	LB119166	14 Feb 2017	20 Feb 2017	14 Mar 2017	22 Feb 2017	14 Mar 2017	24 Feb 2017
D233 0-0.1	SE162156.088	LB119166	14 Feb 2017	20 Feb 2017	14 Mar 2017	22 Feb 2017	14 Mar 2017	24 Feb 2017
D233 0.2-0.3	SE162156.089	LB119166	14 Feb 2017	20 Feb 2017	14 Mar 2017	22 Feb 2017	14 Mar 2017	24 Feb 2017
D233 1.0-1.1	SE162156.090	LB119166	14 Feb 2017	20 Feb 2017	14 Mar 2017	22 Feb 2017	14 Mar 2017	24 Feb 2017
D233 1.9-2.0	SE162156.091	LB119166	14 Feb 2017	20 Feb 2017	14 Mar 2017	22 Feb 2017	14 Mar 2017	24 Feb 2017
D234 0-0.1	SE162156.092	LB119166	14 Feb 2017	20 Feb 2017	14 Mar 2017	22 Feb 2017	14 Mar 2017	24 Feb 2017
D234 0.2-0.3	SE162156.093	LB119166	14 Feb 2017	20 Feb 2017	14 Mar 2017	22 Feb 2017	14 Mar 2017	24 Feb 2017
D234 1.0-1.1	SE162156.094	LB119166	14 Feb 2017	20 Feb 2017	14 Mar 2017	22 Feb 2017	14 Mar 2017	24 Feb 2017
D235 0-0.1	SE162156.095	LB119166	14 Feb 2017	20 Feb 2017	14 Mar 2017	22 Feb 2017	14 Mar 2017	24 Feb 2017
D235 0.2-0.3	SE162156.096	LB119166	14 Feb 2017	20 Feb 2017	14 Mar 2017	22 Feb 2017	14 Mar 2017	24 Feb 2017
D235 1.0-1.1	SE162156.097	LB119166	14 Feb 2017	20 Feb 2017	14 Mar 2017	22 Feb 2017	14 Mar 2017	24 Feb 2017
D235 1.9-2.0	SE162156.098	LB119166	14 Feb 2017	20 Feb 2017	14 Mar 2017	22 Feb 2017	14 Mar 2017	24 Feb 2017
D236 0-0.1	SE162156.099	LB119166	14 Feb 2017	20 Feb 2017	14 Mar 2017	22 Feb 2017	14 Mar 2017	24 Feb 2017
D236 0.2-0.3	SE162156.100	LB119166	14 Feb 2017	20 Feb 2017	14 Mar 2017	22 Feb 2017	14 Mar 2017	24 Feb 2017
D236 1.0-1.1	SE162156.101	LB119166	14 Feb 2017	20 Feb 2017	14 Mar 2017	22 Feb 2017	14 Mar 2017	24 Feb 2017
D237 0-0.1	SE162156.102	LB119166	14 Feb 2017	20 Feb 2017	14 Mar 2017	22 Feb 2017	14 Mar 2017	24 Feb 2017
D237 0.2-0.3	SE162156.103	LB119166	14 Feb 2017	20 Feb 2017	14 Mar 2017	22 Feb 2017	14 Mar 2017	24 Feb 2017
D237 1.0-1.1	SE162156.104	LB119166	14 Feb 2017	20 Feb 2017	14 Mar 2017	22 Feb 2017	14 Mar 2017	24 Feb 2017
D237 1.9-2.0	SE162156.105	LB119167	14 Feb 2017	20 Feb 2017	14 Mar 2017	22 Feb 2017	14 Mar 2017	24 Feb 2017
D238 0-0.1	SE162156.106	LB119167	14 Feb 2017	20 Feb 2017	14 Mar 2017	22 Feb 2017	14 Mar 2017	24 Feb 2017
D238 0.2-0.3	SE162156.107	LB119167	14 Feb 2017	20 Feb 2017	14 Mar 2017	22 Feb 2017	14 Mar 2017	24 Feb 2017
D238 1.0-1.1	SE162156.108	LB119167	14 Feb 2017	20 Feb 2017	14 Mar 2017	22 Feb 2017	14 Mar 2017	24 Feb 2017
Duplicate DS1	SE162156.109	LB119167	14 Feb 2017	20 Feb 2017	14 Mar 2017	22 Feb 2017	14 Mar 2017	24 Feb 2017
Duplicate DS2	SE162156.110	LB119167	14 Feb 2017	20 Feb 2017	14 Mar 2017	22 Feb 2017	14 Mar 2017	24 Feb 2017
Duplicate DS3	SE162156.111	LB119167	14 Feb 2017	20 Feb 2017	14 Mar 2017	22 Feb 2017	14 Mar 2017	24 Feb 2017
Duplicate DS4	SE162156.112	LB119167	14 Feb 2017	20 Feb 2017	14 Mar 2017	22 Feb 2017	14 Mar 2017	24 Feb 2017
Duplicate DS5	SE162156.113	LB119167	14 Feb 2017	20 Feb 2017	14 Mar 2017	22 Feb 2017	14 Mar 2017	24 Feb 2017
Duplicate DS6	SE162156.114	LB119167	14 Feb 2017	20 Feb 2017	14 Mar 2017	22 Feb 2017	14 Mar 2017	24 Feb 2017
Duplicate DS7	SE162156.115	LB119167	14 Feb 2017	20 Feb 2017	14 Mar 2017	22 Feb 2017	14 Mar 2017	24 Feb 2017

Metals in Water (Dissolved) by ICPOES

Method: ME-(AU)-[ENV]AN320/AN321

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
Rinsate RS1	SE162156.116	LB119273	14 Feb 2017	20 Feb 2017	13 Aug 2017	24 Feb 2017	13 Aug 2017	24 Feb 2017
Rinsate RS2	SE162156.117	LB119273	14 Feb 2017	20 Feb 2017	13 Aug 2017	24 Feb 2017	13 Aug 2017	24 Feb 2017

Moisture Content

Method: ME-(AU)-[ENV]AN002

Sample Name	Sample No.	QC Ret	Sampied	Received	Extraction Due	Extracted	Analysis Due	Anaiysea
D201 0-0.1	SE162156.001	LB119000	13 Feb 2017	20 Feb 2017	27 Feb 2017	20 Feb 2017	25 Feb 2017	21 Feb 2017
D201 0.2-0.3	SE162156.002	LB119000	13 Feb 2017	20 Feb 2017	27 Feb 2017	20 Feb 2017	25 Feb 2017	21 Feb 2017
D201 1.0-1.1	SE162156.003	LB119000	13 Feb 2017	20 Feb 2017	27 Feb 2017	20 Feb 2017	25 Feb 2017	21 Feb 2017
D201 1.9-2.0	SE162156.004	LB119000	13 Feb 2017	20 Feb 2017	27 Feb 2017	20 Feb 2017	25 Feb 2017	21 Feb 2017
D202 0-0.1	SE162156.005	LB119000	13 Feb 2017	20 Feb 2017	27 Feb 2017	20 Feb 2017	25 Feb 2017	21 Feb 2017
D202 0.2-0.3	SE162156.006	LB119000	13 Feb 2017	20 Feb 2017	27 Feb 2017	20 Feb 2017	25 Feb 2017	21 Feb 2017
D202 1.0-1.1	SE162156.007	LB119000	13 Feb 2017	20 Feb 2017	27 Feb 2017	20 Feb 2017	25 Feb 2017	21 Feb 2017
D203 0-0.1	SE162156.008	LB119000	14 Feb 2017	20 Feb 2017	28 Feb 2017	20 Feb 2017	25 Feb 2017	21 Feb 2017
D203 0.2-0.3	SE162156.009	LB119000	14 Feb 2017	20 Feb 2017	28 Feb 2017	20 Feb 2017	25 Feb 2017	21 Feb 2017
D203 0.9-1.0	SE162156.010	LB119000	14 Feb 2017	20 Feb 2017	28 Feb 2017	20 Feb 2017	25 Feb 2017	21 Feb 2017
D204 0-0.1	SE162156.011	LB119000	14 Feb 2017	20 Feb 2017	28 Feb 2017	20 Feb 2017	25 Feb 2017	21 Feb 2017
D204 0.2-0.3	SE162156.012	LB119000	14 Feb 2017	20 Feb 2017	28 Feb 2017	20 Feb 2017	25 Feb 2017	21 Feb 2017
D204 1.0-1.1	SE162156.013	LB119000	14 Feb 2017	20 Feb 2017	28 Feb 2017	20 Feb 2017	25 Feb 2017	21 Feb 2017
D205 0-0.1	SE162156.014	LB119000	14 Feb 2017	20 Feb 2017	28 Feb 2017	20 Feb 2017	25 Feb 2017	21 Feb 2017
D205 0.2-0.3	SE162156.015	LB119000	14 Feb 2017	20 Feb 2017	28 Feb 2017	20 Feb 2017	25 Feb 2017	21 Feb 2017
D205 0.7-0.8	SE162156.016	LB119000	14 Feb 2017	20 Feb 2017	28 Feb 2017	20 Feb 2017	25 Feb 2017	21 Feb 2017

27/2/2017 Page 4 of 21

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Moisture Content (continued) Method: ME-(AU)-[ENV]AN002

Decoration Selection Livingoo 14 page 2077 20 page 2077	Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
	D206 0-0.1	SE162156.017	LB119000	14 Feb 2017	20 Feb 2017	28 Feb 2017	20 Feb 2017	25 Feb 2017	21 Feb 2017
Decomposity Series (1980) 18 18 18 18 18 18 18 1	D206 0.2-0.3	SE162156.018	LB119000	14 Feb 2017	20 Feb 2017	28 Feb 2017	20 Feb 2017	25 Feb 2017	21 Feb 2017
Description Description	D206 0.6-0.7	SE162156.019	LB119000	14 Feb 2017	20 Feb 2017	28 Feb 2017	20 Feb 2017	25 Feb 2017	21 Feb 2017
Description	D207 0-0.1	SE162156.020	LB119000	14 Feb 2017	20 Feb 2017	28 Feb 2017	20 Feb 2017	25 Feb 2017	21 Feb 2017
December December	D207 0.2-0.3	SE162156.021	LB119000	14 Feb 2017	20 Feb 2017	28 Feb 2017	20 Feb 2017	25 Feb 2017	21 Feb 2017
2008 20-8.3 SH-167150024 LE110000 14 Fab.2017 20 Fab.2017 20 Fab.2017 25 Fab.2017 27 Fab.2017 20 Fab.2017 20 Fab.2017 27 Fab.2017	D207 1.0-1.1	SE162156.022	LB119000	14 Feb 2017	20 Feb 2017	28 Feb 2017	20 Feb 2017	25 Feb 2017	21 Feb 2017
1988 1988 1989	D208 0-0.1	SE162156.023	LB119000	14 Feb 2017	20 Feb 2017	28 Feb 2017	20 Feb 2017	25 Feb 2017	21 Feb 2017
Description Description	D208 0.2-0.3	SE162156.024	LB119000	14 Feb 2017	20 Feb 2017	28 Feb 2017	20 Feb 2017	25 Feb 2017	21 Feb 2017
2009 20.0.3 20.	D208 1.0-1.1	SE162156.025	LB119000	14 Feb 2017	20 Feb 2017	28 Feb 2017	20 Feb 2017	25 Feb 2017	21 Feb 2017
1,000 1,00	D209 0-0.1	SE162156.026	LB119000	13 Feb 2017	20 Feb 2017	27 Feb 2017	20 Feb 2017	25 Feb 2017	21 Feb 2017
1000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10	D209 0.2-0.3	SE162156.027	LB119000	13 Feb 2017	20 Feb 2017	27 Feb 2017	20 Feb 2017	25 Feb 2017	21 Feb 2017
1921 1921	D209 1.0-1.1	SE162156.028	LB119000	13 Feb 2017	20 Feb 2017	27 Feb 2017	20 Feb 2017	25 Feb 2017	21 Feb 2017
Deciding	D209 1.9-2.0	SE162156.029	LB119000	13 Feb 2017	20 Feb 2017	27 Feb 2017	20 Feb 2017	25 Feb 2017	21 Feb 2017
Deciding Deciding	D210 0-0.1	SE162156.030	LB119000	13 Feb 2017	20 Feb 2017	27 Feb 2017	20 Feb 2017	25 Feb 2017	21 Feb 2017
D211 D21	D210 0.2-0.3	SE162156.031	LB119000	13 Feb 2017	20 Feb 2017	27 Feb 2017	20 Feb 2017	25 Feb 2017	21 Feb 2017
\$271 0.2-43	D210 1.0-1.1	SE162156.032	LB119000	13 Feb 2017	20 Feb 2017	27 Feb 2017	20 Feb 2017	25 Feb 2017	21 Feb 2017
D211 19-20 SER02596.05	D211 0-0.1	SE162156.033	LB119000	14 Feb 2017	20 Feb 2017	28 Feb 2017	20 Feb 2017	25 Feb 2017	21 Feb 2017
D211 D21	S211 0.2-0.3	SE162156.034	LB119000	14 Feb 2017	20 Feb 2017	28 Feb 2017	20 Feb 2017	25 Feb 2017	21 Feb 2017
December 2015 December 2016 December 2017 December 201	D211 1.0-1.1	SE162156.035	LB119000	14 Feb 2017	20 Feb 2017	28 Feb 2017	20 Feb 2017	25 Feb 2017	21 Feb 2017
D212 0.2-0.3 SE162156.038 LB119000 14 Feb 2017 20 Feb 2017 25 Feb 2017 25 Feb 2017 21 Feb 2017 D215 0.0-1 SE162156.039 LB119000 14 Feb 2017 20 Feb 2017 27 F	D211 1.9-2.0	SE162156.036	LB119000	14 Feb 2017	20 Feb 2017	28 Feb 2017	20 Feb 2017	25 Feb 2017	21 Feb 2017
D219	D212 0-0.1	SE162156.037	LB119000	14 Feb 2017	20 Feb 2017	28 Feb 2017	20 Feb 2017	25 Feb 2017	21 Feb 2017
D213 0-0.1 SE162156.040	D212 0.2-0.3	SE162156.038	LB119000	14 Feb 2017	20 Feb 2017	28 Feb 2017	20 Feb 2017	25 Feb 2017	21 Feb 2017
D213 0.2-0.3 SE162156.041 LB119000 13 Feb 2017 20 Feb 2017 27 Feb 2017 20 Feb 2017 25 Feb 2017 21 Feb 2017 20 Feb 2017 27 Feb 2017 20 Feb 2017 27 Feb 2017 20 Feb 2017 27 Feb 2017 2	D212 1.0-1.1	SE162156.039	LB119000	14 Feb 2017	20 Feb 2017	28 Feb 2017	20 Feb 2017	25 Feb 2017	21 Feb 2017
D213 19-20 SE162166.043 LB119000 13 Feb 2017 20 Feb 2017 27 Feb 2017 25 Feb 2017 25 Feb 2017 21 Feb 2017 D214 0-0.1 SE162166.043 LB119000 13 Feb 2017 20 Feb 2017 27 Feb 2017 20 Feb 2017 25 Feb 2017 21 Feb 2017 D214 0-0.1 SE162166.044 LB119000 13 Feb 2017 20 Feb 2017 27 Feb 2017 20 Feb 2017 25 Feb 2017 21 Feb 2017 D214 0-2.0.3 SE162156.045 LB119000 13 Feb 2017 20 Feb 2017 27 Feb 2017 20 Feb 2017 25 Feb 2017 21 Feb 2017 D214 10-1.1 SE162156.046 LB119000 13 Feb 2017 20 Feb 2017 27 Feb 2017 20 Feb 2017 25 Feb 2017 21 Feb 2017 D215 0-0.1 SE162156.046 LB119000 14 Feb 2017 20 Feb 2017 20 Feb 2017 25 Feb 2017 25 Feb 2017 21 Feb 2017 D215 0-0.3 SE162156.048 LB119000 14 Feb 2017 20 Feb 2017 25 Feb 2017 25 Feb 2017 21 Feb 2017 D215 0-0.3 SE162156.049 LB119000 14 Feb 2017 20 Feb 2017 25 Feb 2017 25 Feb 2017 21 Feb 2017 D215 1-0.1 SE162156.050 LB119000 14 Feb 2017 20 Feb 2017 20 Feb 2017 25 Feb 2017 21 Feb 2017 D215 0-0.3 SE162156.050 LB119000 14 Feb 2017 20 Feb 2017 20 Feb 2017 25 Feb 2017 21 Feb 2017 D215 0-0.3 SE162156.050 LB11900 14 Feb 2017 20 Feb 2017 20 Feb 2017 25 Feb 2017 21 Feb 2017 D215 0-0.1 SE162156.050 LB11900 14 Feb 2017 20 Feb 2017 20 Feb 2017 25 Feb 2017 21 Feb 2017 D215 0-0.1 SE162156.050 LB11900 14 Feb 2017 20 Feb 2017 20 Feb 2017 25 Feb 2017 21 Feb 2017 D215 0-0.1 SE162156.050 LB11900 14 Feb 2017 20 Feb 2017 20 Feb 2017 25 Feb 2017 25 Feb 2017 21 Feb 2017 D215 0-0.1 SE162156.055 LB11900 14 Feb 2017 20 Feb 2017 20 Feb 2017 25 Feb 2017 25 Feb 2017 21 Feb 2017 20 Feb 2017 25 Fe	D213 0-0.1	SE162156.040	LB119000	13 Feb 2017	20 Feb 2017	27 Feb 2017	20 Feb 2017	25 Feb 2017	21 Feb 2017
D213 1 9-2 0 SE 162156 043 LB119000 13 Feb 2017 20 Feb 2017 27 Feb 2017 25 Feb 2017 21 Feb 2017 D214 0 0-1 SE 162156 044 LB119000 13 Feb 2017 20 Feb 2017 27 Feb 2017 20 Feb 2017 25 Feb 2017 21 Feb 2017 22 Feb 2017 25 Feb 2017 22	D213 0.2-0.3	SE162156.041	LB119000	13 Feb 2017	20 Feb 2017	27 Feb 2017	20 Feb 2017	25 Feb 2017	21 Feb 2017
D214 0-0.1 SE162156.044 LB119000 13 Feb 2017 20 Feb 2017 27 Feb 2017 25 Feb 2017 21 Feb 2017 22	D213 1.0-1.1	SE162156.042	LB119000	13 Feb 2017	20 Feb 2017	27 Feb 2017	20 Feb 2017	25 Feb 2017	21 Feb 2017
D214 0.2-0.3 SE162156.045 LB119000 13 Feb 2017 20 Feb 2017 27 Feb 2017 20 Feb 2017 25 Feb 2017 21 Feb 2017 D214 1-01-11 SE162156.046 LB119000 14 Feb 2017 20 Feb 2017 27 Feb 2017 27 Feb 2017 27 Feb 2017 27 Feb 2017 27 Feb 2017 27 Feb 2017 D215 0-2-0.3 SE162156.048 LB119000 14 Feb 2017 20 Feb 2017 28 Feb 2017 20 Feb 2017 25 Feb 2017 21 Feb 2017 D215 1-01-11 SE162156.049 LB119000 14 Feb 2017 20 Feb 2017 28 Feb 2017 20 Feb 2017 25 Feb 2017 21 Feb 2017 D215 1-01-11 SE162156.049 LB119000 14 Feb 2017 20 Feb 2017 28 Feb 2017 20 Feb 2017 25 Feb 2017 21 Feb 2017 D215 1-92-20 SE162156.050 LB119000 14 Feb 2017 20 Feb 2017 29 Feb 2017 29 Feb 2017 25 Feb 2017 21 Feb 2017 D216 0-2-0.3 SE162156.051 LB119000 14 Feb 2017 20 Feb 2017 28 Feb 2017 20 Feb 2017 25 Feb 2017 21 Feb 2017 D216 0-2-0.3 SE162156.052 LB119000 14 Feb 2017 20 Feb 2017 28 Feb 2017 20 Feb 2017 25 Feb 2017 21 Feb 2017 D216 0-2-0.3 SE162156.052 LB119000 14 Feb 2017 20 Feb 2017 29 Feb 2017 20 Feb 2017 25 Feb 2017 21 Feb 2017 D217 0-2-0.3 SE162156.054 LB119000 14 Feb 2017 20 Feb 2017 29 Feb 201	D213 1.9-2.0	SE162156.043	LB119000	13 Feb 2017	20 Feb 2017	27 Feb 2017	20 Feb 2017	25 Feb 2017	21 Feb 2017
D214 D.11 SE162156.046	D214 0-0.1	SE162156.044	LB119000	13 Feb 2017	20 Feb 2017	27 Feb 2017	20 Feb 2017	25 Feb 2017	21 Feb 2017
D215 0.0.1 SE162156.047 LB119000	D214 0.2-0.3	SE162156.045	LB119000	13 Feb 2017	20 Feb 2017	27 Feb 2017	20 Feb 2017	25 Feb 2017	21 Feb 2017
D215 0.2-0.3 SE162156.048 LB119000	D214 1.0-1.1	SE162156.046	LB119000	13 Feb 2017	20 Feb 2017	27 Feb 2017	20 Feb 2017	25 Feb 2017	21 Feb 2017
D215 1.0-1.1 SE162156.049 LB119000	D215 0-0.1	SE162156.047	LB119000	14 Feb 2017	20 Feb 2017	28 Feb 2017	20 Feb 2017	25 Feb 2017	21 Feb 2017
D215 1.9-2.0 SE162156.050 LB119000 14 Feb 2017 20 Feb 2017 25 Feb 2017 25 Feb 2017 21 Feb 2017 D216 0.2-0.3 SE162156.051 LB119000 14 Feb 2017 20 Feb 2017 28 Feb 2017 20 Feb 2017 25 Feb 2017 21 Feb 2017 D216 0.2-0.3 SE162156.052 LB119000 14 Feb 2017 20 Feb 2017 28 Feb 2017 20 Feb 2017 25 Feb 2017 21 Feb 2017 D216 0.2-0.3 SE162156.053 LB119000 14 Feb 2017 20 Feb 2017 28 Feb 2017 20 Feb 2017 25 Feb 2017 21 Feb 2017 D217 0.0-1 SE162156.054 LB119000 14 Feb 2017 20 Feb 2017 28 Feb 2017 20 Feb 2017 25 Feb 2017 21 Feb 2017 D217 0.2-0.3 SE162156.055 LB119000 14 Feb 2017 20 Feb 2017 28 Feb 2017 20 Feb 2017 25 Feb 2017 21 Feb 2017 D217 0.1-1 SE162156.056 LB119000 14 Feb 2017 20 Feb 2017 28 Feb 2017 20 Feb 2017 25 Feb 2017 21 Feb 2017 D217 0.9-1 SE162156.056 LB119000 14 Feb 2017 20 Feb 2017 28 Feb 2017 20 Feb 2017 25 Feb 2017 21 Feb 2017 D218 0.0-1 SE162156.056 LB119000 14 Feb 2017 20 Feb 2017 28 Feb 2017 20 Feb 2017 25 Feb 2017 21 Feb 2017 D218 0.0-1 SE162156.058 LB119000 14 Feb 2017 20 Feb 2017 28 Feb 2017 20 Feb 2017 25 Feb 2017 21 Feb 2017 D218 0.0-1 SE162156.059 LB119000 14 Feb 2017 20 Feb 2017 28 Feb 2017 20 Feb 2017 25 Feb 2017 21 Feb 2017 D219 0.0-1 SE162156.060 LB119000 14 Feb 2017 20 Feb 2017 28 Feb 2017 20 Feb 2017 25 Feb 2017 21 Feb 2017 D219 0.2-0.3 SE162156.062 LB119000 14 Feb 2017 20 Feb 2017 28 Feb 2017 20 Feb 2017 25 Feb 2017 21 Feb 2017 D219 0.2-0.3 SE162156.062 LB119000 14 Feb 2017 20 Feb 2017 28 Feb 2017 20 Feb 2017 25 Feb 2017 22 Feb 2017 D219 0.2-0.3 SE162156.062 LB119000 14 Feb 2017 20 Feb 2017 28 Feb 2017 20 Feb 2017 25 Feb 2017 22 Feb 2017 22 Feb 2017 22 Feb 2017 22 Feb 2017 22 Feb 2017 22 Feb 2017 22 Feb 2017 22 Feb 2017 22 Feb 2017 22 Feb 2017 22 Feb 2017 22 Feb 2017 22 Feb 2017 22 Feb 2017 22 Feb 2017 2	D215 0.2-0.3	SE162156.048	LB119000	14 Feb 2017	20 Feb 2017	28 Feb 2017	20 Feb 2017	25 Feb 2017	21 Feb 2017
D216 0-0.1 SE162156.051	D215 1.0-1.1	SE162156.049	LB119000	14 Feb 2017	20 Feb 2017	28 Feb 2017	20 Feb 2017	25 Feb 2017	21 Feb 2017
D216 0.2-0.3 SE162156.052	D215 1.9-2.0	SE162156.050	LB119000	14 Feb 2017	20 Feb 2017	28 Feb 2017	20 Feb 2017	25 Feb 2017	21 Feb 2017
D216 1.0-1.1 SE162156.053 LB119000 14 Feb 2017 20 Feb 2017 28 Feb 2017 20 Feb 2017 25 Feb 2017 21 Feb 2017 D217 0.0-1 SE162156.055 LB119000 14 Feb 2017 20 Feb 2017 28 Feb 2017 20 Feb 2017 25 Feb 2017 21 Feb 201	D216 0-0.1	SE162156.051	LB119000	14 Feb 2017	20 Feb 2017	28 Feb 2017	20 Feb 2017	25 Feb 2017	21 Feb 2017
D217 0-0.1 SE162156.054 LB119000	D216 0.2-0.3	SE162156.052	LB119000	14 Feb 2017	20 Feb 2017	28 Feb 2017	20 Feb 2017	25 Feb 2017	21 Feb 2017
D217 0.2-0.3 SE162156.055 LB119000 14 Feb 2017 20 Feb 2017 28 Feb 2017 20 Feb 2017 25 Feb 2017 21 Feb 2017 D217 1.0-1.1 SE162156.056 LB119000 14 Feb 2017 20 Feb 2017 28 Feb 2017 20 Feb 2017 25 Feb 2017 21 Feb 2017 D217 1.9-2.0 SE162156.058 LB119000 14 Feb 2017 20 Feb 2017 28 Feb 2017 25 Feb 2017 25 Feb 2017 21 Feb 2017 D218 0-0.1 SE162156.058 LB119000 14 Feb 2017 20 Feb 2017 28 Feb 2017 25 Feb 2017 25 Feb 2017 21 Feb 2017 D218 0-2.0.3 SE162156.069 LB119000 14 Feb 2017 20 Feb 2017 28 Feb 2017 20 Feb 2017 25 Feb 2017 21 Feb 2017 D219 0-0.1 SE162156.060 LB119000 14 Feb 2017 20 Feb 2017 28 Feb 2017 20 Feb 2017 25 Feb 2017 25 Feb 2017 21 Feb 2017 D219 0-0.1 SE162156.061 LB119000 14 Feb 2017 20 Feb 2017 28 Feb 2017 20 Feb 2017 25 Feb 2017 25 Feb 2017 25 Feb 2017 25 Feb 2017 25 Feb 2	D216 1.0-1.1	SE162156.053	LB119000	14 Feb 2017	20 Feb 2017	28 Feb 2017	20 Feb 2017	25 Feb 2017	21 Feb 2017
D217 1.0-1.1 SE162156.056 LB119000 14 Feb 2017 20 Feb 2017 28 Feb 2017 20 Feb 2017 25 Feb 2017 21 Feb 2017 D217 1.9-2.0 SE162156.057 LB119000 14 Feb 2017 20 Feb 2017 28 Feb 2017 20 Feb 2017 25 Feb 2017 21 Feb 2017 D218 0-0.1 SE162156.058 LB119000 14 Feb 2017 20 Feb 2017 28 Feb 2017 20 Feb 2017 25 Feb 2017 21 Feb 2017 D218 0.2-0.3 SE162156.059 LB119000 14 Feb 2017 20 Feb 2017 28 Feb 2017 20 Feb 2017 25 Feb 2017 21 Feb 2017 D218 1.0-1.1 SE162156.060 LB119000 14 Feb 2017 20 Feb 2017 28 Feb 2017 20 Feb 2017 25 Feb 2017 21 Feb 2017 D219 0-0.1 SE162156.061 LB119000 14 Feb 2017 20 Feb 2017 28 Feb 2017 25 Feb 2017 21 Feb 2017 D219 0-0.1 SE162156.062 LB119000 14 Feb 2017 20 Feb 2017 28 Feb 2017 25 Feb 2017 25 Feb 2017 21 Feb 2017 D219 1.0-1.1 SE162156.063 LB119000 14 Feb 2017 20 Feb 2017 28 Feb 2017 25 Feb 2017 25 Feb 2017 25 Feb 2017 D219 1.0-1.1 SE162156.063 LB119000 14 Feb 2017 20 Feb 2017 28 Feb 2017 25 Feb 2017 25 Feb 2017 22 Feb 2017 D219 1.9-2.0 SE162156.064 LB119000 14 Feb 2017 20 Feb 2017 28 Feb 2017 20 Feb 2017 25 Feb 2017 22 Feb 2017 D220 0-0.1 SE162156.065 LB119000 14 Feb 2017 20 Feb 2017 28 Feb 2017 20 Feb 2017 25 Feb 2017 22 Feb 2017 D220 0-1.1 SE162156.066 LB119000 14 Feb 2017 20 Feb 2017 28 Feb 2017 20 Feb 2017 25 Feb 2017 22 Feb 2017 D220 0-2.0 SE162156.066 LB119000 14 Feb 2017 20 Feb 2017 28 Feb 2017 20 Feb 2017 25 Feb 2017 22 Feb 2017 D220 0-1.1 SE162156.066 LB119000 14 Feb 2017 20 Feb 2017 28 Feb 2017 20 Feb 2017 25 Feb 2017 22 Feb 2017 D220 0-1.0 SE162156.068 LB119000 14 Feb 2017 20 Feb 2017 28 Feb 2017 25 Feb 2017 2	D217 0-0.1	SE162156.054	LB119000	14 Feb 2017	20 Feb 2017	28 Feb 2017	20 Feb 2017	25 Feb 2017	21 Feb 2017
D217 1.9-2.0 SE162156.057 LB119000 14 Feb 2017 20 Feb 2017 28 Feb 2017 20 Feb 2017 25 Feb 2017 21 Feb 2017 D218 0-0.1 SE162156.058 LB119000 14 Feb 2017 20 Feb 2017 28 Feb 2017 20 Feb 2017 25 Feb 2017 21 Feb 2017 D218 0.2-0.3 SE162156.059 LB119000 14 Feb 2017 20 Feb 2017 28 Feb 2017 20 Feb 2017 25 Feb 2017 21 Feb 2017 D218 1.0-1.1 SE162156.060 LB119000 14 Feb 2017 20 Feb 2017 28 Feb 2017 20 Feb 2017 25 Feb 2017 25 Feb 2017 21 Feb 2017 D219 0-0.1 SE162156.061 LB119000 14 Feb 2017 20 Feb 2017 28 Feb 2017 20 Feb 2017 25 Feb 2017 25 Feb 2017 21 Feb 2017 D219 0-0.3 SE162156.061 LB119000 14 Feb 2017 20 Feb 2017 28 Feb 2017 20 Feb 2017 25 Feb 2017 25 Feb 2017 22 Feb 2017 D219 1.0-1.1 SE162156.063 LB119000 14 Feb 2017 20 Feb 2017 28 Feb 2017 20 Feb 2017 25 Feb 2017 22 Feb 2017	D217 0.2-0.3	SE162156.055	LB119000	14 Feb 2017	20 Feb 2017	28 Feb 2017	20 Feb 2017	25 Feb 2017	21 Feb 2017
D218 0-0.1 SE162156.058 LB119000 14 Feb 2017 20 Feb 2017 28 Feb 2017 25 Feb 2017 21 Feb 2017 D218 0.2-0.3 SE162156.059 LB119000 14 Feb 2017 20 Feb 2017 28 Feb 2017 20 Feb 2017 25 Feb 2017 21 Feb 2017 D218 1.0-1.1 SE162156.060 LB119000 14 Feb 2017 20 Feb 2017 28 Feb 2017 20 Feb 2017 25 Feb 2017 25 Feb 2017 21 Feb 2017 D219 0-0.1 SE162156.061 LB119000 14 Feb 2017 20 Feb 2017 28 Feb 2017 20 Feb 2017 25 Feb 2017 25 Feb 2017 21 Feb 2017 D219 0-0.1 SE162156.062 LB119000 14 Feb 2017 20 Feb 2017 28 Feb 2017 20 Feb 2017 25 Feb 2017 <td>D217 1.0-1.1</td> <td>SE162156.056</td> <td>LB119000</td> <td>14 Feb 2017</td> <td>20 Feb 2017</td> <td>28 Feb 2017</td> <td>20 Feb 2017</td> <td>25 Feb 2017</td> <td>21 Feb 2017</td>	D217 1.0-1.1	SE162156.056	LB119000	14 Feb 2017	20 Feb 2017	28 Feb 2017	20 Feb 2017	25 Feb 2017	21 Feb 2017
D218 0.2-0.3 SE162156.059 LB119000 14 Feb 2017 20 Feb 2017 28 Feb 2017 20 Feb 2017 25 Feb 2017 21 Feb 2017 D218 1.0-1.1 SE162156.060 LB119000 14 Feb 2017 20 Feb 2017 28 Feb 2017 20 Feb 2017 25 Feb 2017 21 Feb 2017 D219 0-0.1 SE162156.061 LB119000 14 Feb 2017 20 Feb 2017 28 Feb 2017 20 Feb 2017 25 Feb 2017 21 Feb 2017 D219 0.2-0.3 SE162156.062 LB119000 14 Feb 2017 20 Feb 2017 28 Feb 2017 20 Feb 2017 25 Feb 2017 22 Feb 2017 D219 1.0-1.1 SE162156.062 LB119000 14 Feb 2017 20 Feb 2017 28 Feb 2017 20 Feb 2017 25 Feb 2017 22 Feb 2017 D219 1.9-2.0 SE162156.063 LB119000 14 Feb 2017 20 Feb 2017 28 Feb 2017 20 Feb 2017 25 Feb 2017 25 Feb 2017 25 Feb 2017 22 Feb 2017 D220 0-0.1 SE162156.066 LB119000 14 Feb 2017 20 Feb 2017 28 Feb 2017 20 Feb 2017 25 Feb 2017 25 Feb 2017 25 Feb 2017 25 Feb	D217 1.9-2.0	SE162156.057	LB119000	14 Feb 2017	20 Feb 2017	28 Feb 2017	20 Feb 2017	25 Feb 2017	21 Feb 2017
D218 1.0-1.1 SE162156.060 LB119000 14 Feb 2017 20 Feb 2017 28 Feb 2017 20 Feb 2017 25 Feb 2017 21 Feb 2017 D219 0-0.1 SE162156.061 LB119000 14 Feb 2017 20 Feb 2017 28 Feb 2017 20 Feb 2017 25 Feb 2017 21 Feb 2017 D219 0.2-0.3 SE162156.062 LB119000 14 Feb 2017 20 Feb 2017 28 Feb 2017 20 Feb 2017 25 Feb 2017 25 Feb 2017 22 Feb 2017 D219 1.0-1.1 SE162156.063 LB119000 14 Feb 2017 20 Feb 2017 28 Feb 2017 20 Feb 2017 25 Feb 2017 25 Feb 2017 22 Feb 2017 D219 1.9-2.0 SE162156.064 LB119000 14 Feb 2017 20 Feb 2017 28 Feb 2017 20 Feb 2017 25 Feb 2017 25 Feb 2017 25 Feb 2017 22 Feb 2017 D220 0.0-1 SE162156.065 LB119000 14 Feb 2017 20 Feb 2017 28 Feb 2017 20 Feb 2017 25 Feb 2017 25 Feb 2017 25 Feb 2017 25 Feb 2017 25 Feb 2017 25 Feb 2017 25 Feb 2017 25 Feb 2017 25 Feb 2017 25 Feb 2017 25 Feb 2017	D218 0-0.1	SE162156.058	LB119000	14 Feb 2017	20 Feb 2017	28 Feb 2017	20 Feb 2017	25 Feb 2017	21 Feb 2017
D219 0-0.1 SE162156.061 LB119000 14 Feb 2017 20 Feb 2017 28 Feb 2017 20 Feb 2017 25 Feb 2017 21 Feb 2017 D219 0.2-0.3 SE162156.062 LB119000 14 Feb 2017 20 Feb 2017 28 Feb 2017 20 Feb 2017 25 Feb 2017 22 Feb 2017 D219 1.0-1.1 SE162156.063 LB119000 14 Feb 2017 20 Feb 2017 28 Feb 2017 20 Feb 2017 25 Feb 2017 25 Feb 2017 25 Feb 2017 22 Feb 2017 D219 1.9-2.0 SE162156.064 LB119000 14 Feb 2017 20 Feb 2017 28 Feb 2017 20 Feb 2017 25 Feb 2017 25 Feb 2017 25 Feb 2017 22 Feb 2017 D220 0.0-1 SE162156.065 LB119000 14 Feb 2017 20 Feb 2017 28 Feb 2017 20 Feb 2017 25 Feb 2017 </td <td>D218 0.2-0.3</td> <td>SE162156.059</td> <td>LB119000</td> <td>14 Feb 2017</td> <td>20 Feb 2017</td> <td></td> <td>20 Feb 2017</td> <td></td> <td></td>	D218 0.2-0.3	SE162156.059	LB119000	14 Feb 2017	20 Feb 2017		20 Feb 2017		
D219 0.2-0.3 SE162156.062 LB119000 14 Feb 2017 20 Feb 2017 28 Feb 2017 20 Feb 2017 25 Feb 2017 22 Feb 2017 D219 1.0-1.1 SE162156.063 LB119000 14 Feb 2017 20 Feb 2017 28 Feb 2017 20 Feb 2017 25 Feb 2017 22 Feb 2017 D219 1.9-2.0 SE162156.064 LB119000 14 Feb 2017 20 Feb 2017 28 Feb 2017 20 Feb 2017 25 Feb 2017	D218 1.0-1.1	SE162156.060	LB119000	14 Feb 2017	20 Feb 2017	28 Feb 2017	20 Feb 2017	25 Feb 2017	21 Feb 2017
D219 1.0-1.1 SE162156.063 LB119000 14 Feb 2017 20 Feb 2017 28 Feb 2017 20 Feb 2017 25 Feb 2017 22 Feb 2017 D219 1.9-2.0 SE162156.064 LB119000 14 Feb 2017 20 Feb 2017 28 Feb 2017 20 Feb 2017 25 Feb 2017 22 Feb 2017 D220 0-0.1 SE162156.065 LB119000 14 Feb 2017 20 Feb 2017 28 Feb 2017 20 Feb 2017 25 Feb 2017	D219 0-0.1	SE162156.061	LB119000	14 Feb 2017		28 Feb 2017	20 Feb 2017	25 Feb 2017	21 Feb 2017
D219 1.9-2.0 SE162156.064 LB119000 14 Feb 2017 20 Feb 2017 28 Feb 2017 20 Feb 2017 25 Feb 2017 22 Feb 2017 D220 0-0.1 SE162156.065 LB119000 14 Feb 2017 20 Feb 2017 28 Feb 2017 20 Feb 2017 25 Feb 2017 22 Feb 2017 D220 0.2-0.3 SE162156.066 LB119000 14 Feb 2017 20 Feb 2017 28 Feb 2017 20 Feb 2017 25 Feb 2017 25 Feb 2017 22 Feb 2017 D220 1.0-1.1 SE162156.067 LB119000 14 Feb 2017 20 Feb 2017 28 Feb 2017 20 Feb 2017 25 Feb 2017		SE162156.062	LB119000	14 Feb 2017	20 Feb 2017	28 Feb 2017	20 Feb 2017	25 Feb 2017	22 Feb 2017
D220 0-0.1 SE162156.065 LB119000 14 Feb 2017 20 Feb 2017 28 Feb 2017 20 Feb 2017 25 Feb 2017 22 Feb 2017 D220 0.2-0.3 SE162156.066 LB119000 14 Feb 2017 20 Feb 2017 28 Feb 2017 20 Feb 2017 25 Feb 2017 22 Feb 2017 D220 1.0-1.1 SE162156.067 LB119000 14 Feb 2017 20 Feb 2017 28 Feb 2017 20 Feb 2017 25 Feb 2017 25 Feb 2017 22 Feb 2017 D221 0-0.1 SE162156.068 LB119000 14 Feb 2017 20 Feb 2017 28 Feb 2017 20 Feb 2017 25			•						
D220 0.2-0.3 SE162156.066 LB119000 14 Feb 2017 20 Feb 2017 28 Feb 2017 20 Feb 2017 25 Feb 2017 22 Feb 2017 D220 1.0-1.1 SE162156.067 LB119000 14 Feb 2017 20 Feb 2017 28 Feb 2017 20 Feb 2017 25 Feb 2017 22 Feb 2017 D221 0-0.1 SE162156.068 LB119000 14 Feb 2017 20 Feb 2017 28 Feb 2017 20 Feb 2017 25 Feb 2017 25 Feb 2017 22 Feb 2017 D221 0.2-0.3 SE162156.069 LB119000 14 Feb 2017 20 Feb 2017 28 Feb 2017 20 Feb 2017 25 Feb 2017							20 Feb 2017		
D220 1.0-1.1 SE162156.067 LB119000 14 Feb 2017 20 Feb 2017 28 Feb 2017 20 Feb 2017 25 Feb 2017 22 Feb 2017 D221 0-0.1 SE162156.068 LB119000 14 Feb 2017 20 Feb 2017 28 Feb 2017 20 Feb 2017 25 Feb 2017 25 Feb 2017 22 Feb 2017 D221 0.2-0.3 SE162156.069 LB119000 14 Feb 2017 20 Feb 2017 28 Feb 2017 20 Feb 2017 25 Feb 2017 25 Feb 2017 22 Feb 2017 D221 1.0-1.1 SE162156.070 LB119000 14 Feb 2017 20 Feb 2017 28 Feb 2017 20 Feb 2017 25 Feb 2017 25 Feb 2017 25 Feb 2017 22 Feb 2017 D221 1.9-2.0 SE162156.071 LB119000 14 Feb 2017 20 Feb 2017 28 Feb 2017 20 Feb 2017 25 Feb 2017	D220 0-0.1	SE162156.065	LB119000	14 Feb 2017	20 Feb 2017	28 Feb 2017			22 Feb 2017
D221 0-0.1 SE162156.068 LB119000 14 Feb 2017 20 Feb 2017 28 Feb 2017 20 Feb 2017 25 Feb 2017 25 Feb 2017 22 Feb 2017 D221 0.2-0.3 SE162156.069 LB119000 14 Feb 2017 20 Feb 2017 28 Feb 2017 20 Feb 2017 25 Feb 2017 25 Feb 2017 22 Feb 2017 D221 1.0-1.1 SE162156.070 LB119000 14 Feb 2017 20 Feb 2017 28 Feb 2017 20 Feb 2017 25 Feb 2017 25 Feb 2017 22 Feb 2017 D221 1.9-2.0 SE162156.071 LB119000 14 Feb 2017 20 Feb 2017 28 Feb 2017 20 Feb 2017 25 Feb 2017	D220 0.2-0.3		LB119000	14 Feb 2017	20 Feb 2017	28 Feb 2017		25 Feb 2017	22 Feb 2017
D221 0.2-0.3 SE162156.069 LB119000 14 Feb 2017 20 Feb 2017 28 Feb 2017 20 Feb 2017 25 Feb 2017 22 Feb 2017 D221 1.0-1.1 SE162156.070 LB119000 14 Feb 2017 20 Feb 2017 28 Feb 2017 20 Feb 2017 25 Feb 2017 22 Feb 2017 D221 1.9-2.0 SE162156.071 LB119000 14 Feb 2017 20 Feb 2017 28 Feb 2017 20 Feb 2017 25 Feb 2017 25 Feb 2017 22 Feb 2017 D222 0-0.1 SE162156.072 LB119000 14 Feb 2017 20 Feb 2017 28 Feb 2017 20 Feb 2017 25 Feb 2017 25 Feb 2017 25 Feb 2017									
D221 1.0-1.1 SE162156.070 LB119000 14 Feb 2017 20 Feb 2017 28 Feb 2017 20 Feb 2017 25 Feb 2017 22 Feb 2017 D221 1.9-2.0 SE162156.071 LB119000 14 Feb 2017 20 Feb 2017 28 Feb 2017 20 Feb 2017 25 Feb 2017 22 Feb 2017 D222 0-0.1 SE162156.072 LB119000 14 Feb 2017 20 Feb 2017 28 Feb 2017 20 Feb 2017 25 Feb 2017 25 Feb 2017 22 Feb 2017		SE162156.068		14 Feb 2017	20 Feb 2017				22 Feb 2017
D221 1.9-2.0 SE162156.071 LB119000 14 Feb 2017 20 Feb 2017 28 Feb 2017 20 Feb 2017 25 Feb 2017 22 Feb 2017 D222 0-0.1 SE162156.072 LB119000 14 Feb 2017 20 Feb 2017 28 Feb 2017 20 Feb 2017 25 Feb 2017 25 Feb 2017 22 Feb 2017	D221 0.2-0.3	SE162156.069		14 Feb 2017	20 Feb 2017	28 Feb 2017	20 Feb 2017	25 Feb 2017	22 Feb 2017
D222 0-0.1 SE162156.072 LB119000 14 Feb 2017 20 Feb 2017 28 Feb 2017 20 Feb 2017 25 Feb 2017 22 Feb 2017	D221 1.0-1.1	SE162156.070				28 Feb 2017	20 Feb 2017		
	D221 1.9-2.0	SE162156.071		14 Feb 2017	20 Feb 2017	28 Feb 2017	20 Feb 2017	25 Feb 2017	22 Feb 2017
D222 0 2 0 3 0 5 5 5 5 2047 20 5 5 5 5 2047 20 5 5 5 5 2047 20 5 5 5 5 2047 20 5 5 5 5 2047 20 5 5 5 5 2047 20 5 5 5 5 2047 20 5 5 5 5 2047 20 5 5 5 5 2047 20 5 5 5 5 2047 20 5 5 5 5 2047 20 5 5 5 5 2047 20 5 5 5 5 2047 20 5 5 5 5 5 2047 20 5 5 5 5 5 2047 20 5 5 5 5 5 2047 20 5 5 5 5 5 2047 20 5 5 5 5 5 2047 20 5 5 5 5 5 2047 20 5 5 5 5 5 2047 20 5 5 5 5 5 2047 20 5 5 5 5 5 5 5 5 2047 20 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		SE162156.072		14 Feb 2017			20 Feb 2017		22 Feb 2017
	D222 0.2-0.3	SE162156.073	LB119000	14 Feb 2017	20 Feb 2017	28 Feb 2017	20 Feb 2017	25 Feb 2017	22 Feb 2017
D222 1.0-1.1 SE162156.074 LB119000 14 Feb 2017 20 Feb 2017 28 Feb 2017 20 Feb 2017 25 Feb 2017 22 Feb 2017									
D223 0-0.1 SE162156.075 LB119000 14 Feb 2017 20 Feb 2017 28 Feb 2017 20 Feb 2017 25 Feb 2017 22 Feb 2017									
D223 0.2-0.3 SE162156.076 LB119000 14 Feb 2017 20 Feb 2017 28 Feb 2017 20 Feb 2017 25 Feb 2017 22 Feb 2017	D223 0.2-0.3	SE162156.076	LB119000	14 Feb 2017	20 Feb 2017	28 Feb 2017	20 Feb 2017	25 Feb 2017	22 Feb 2017

27/2/2017 Page 5 of 21

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Moisture Content (continued) Method: ME-(AU)-[ENV]AN002

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
D223 1.0-1.1	SE162156.077	LB119000	14 Feb 2017	20 Feb 2017	28 Feb 2017	20 Feb 2017	25 Feb 2017	22 Feb 2017
D224 0-0.1	SE162156.078	LB119000	14 Feb 2017	20 Feb 2017	28 Feb 2017	20 Feb 2017	25 Feb 2017	22 Feb 2017
D224 0.2-0.3	SE162156.079	LB119000	14 Feb 2017	20 Feb 2017	28 Feb 2017	20 Feb 2017	25 Feb 2017	22 Feb 2017
D224 1.0-1.1	SE162156.080	LB119000	14 Feb 2017	20 Feb 2017	28 Feb 2017	20 Feb 2017	25 Feb 2017	22 Feb 2017
D225 0-0.1	SE162156.081	LB119000	14 Feb 2017	20 Feb 2017	28 Feb 2017	20 Feb 2017	25 Feb 2017	22 Feb 2017
D225 0.2-0.3	SE162156.082	LB119000	14 Feb 2017	20 Feb 2017	28 Feb 2017	20 Feb 2017	25 Feb 2017	22 Feb 2017
D225 1.0-1.1	SE162156.083	LB119000	14 Feb 2017	20 Feb 2017	28 Feb 2017	20 Feb 2017	25 Feb 2017	22 Feb 2017
D225 1.9-2.0	SE162156.084	LB119000	14 Feb 2017	20 Feb 2017	28 Feb 2017	20 Feb 2017	25 Feb 2017	22 Feb 2017
D232 0-0.1	SE162156.085	LB119000	14 Feb 2017	20 Feb 2017	28 Feb 2017	20 Feb 2017	25 Feb 2017	22 Feb 2017
D232 0.2-0.3	SE162156.086	LB119000	14 Feb 2017	20 Feb 2017	28 Feb 2017	20 Feb 2017	25 Feb 2017	22 Feb 2017
D232 1.0-1.1	SE162156.087	LB119000	14 Feb 2017	20 Feb 2017	28 Feb 2017	20 Feb 2017	25 Feb 2017	22 Feb 2017
D233 0-0.1	SE162156.088	LB119000	14 Feb 2017	20 Feb 2017	28 Feb 2017	20 Feb 2017	25 Feb 2017	22 Feb 2017
D233 0.2-0.3	SE162156.089	LB119000	14 Feb 2017	20 Feb 2017	28 Feb 2017	20 Feb 2017	25 Feb 2017	22 Feb 2017
D233 1.0-1.1	SE162156.090	LB119000	14 Feb 2017	20 Feb 2017	28 Feb 2017	20 Feb 2017	25 Feb 2017	22 Feb 2017
D233 1.9-2.0	SE162156.091	LB119000	14 Feb 2017	20 Feb 2017	28 Feb 2017	20 Feb 2017	25 Feb 2017	22 Feb 2017
D234 0-0.1	SE162156.092	LB119000	14 Feb 2017	20 Feb 2017	28 Feb 2017	20 Feb 2017	25 Feb 2017	22 Feb 2017
D234 0.2-0.3	SE162156.093	LB119000	14 Feb 2017	20 Feb 2017	28 Feb 2017	20 Feb 2017	25 Feb 2017	22 Feb 2017
D234 1.0-1.1	SE162156.094	LB119000	14 Feb 2017	20 Feb 2017	28 Feb 2017	20 Feb 2017	25 Feb 2017	22 Feb 2017
D235 0-0.1	SE162156.095	LB119000	14 Feb 2017	20 Feb 2017	28 Feb 2017	20 Feb 2017	25 Feb 2017	22 Feb 2017
D235 0.2-0.3	SE162156.096	LB119000	14 Feb 2017	20 Feb 2017	28 Feb 2017	20 Feb 2017	25 Feb 2017	22 Feb 2017
D235 1.0-1.1	SE162156.097	LB119000	14 Feb 2017	20 Feb 2017	28 Feb 2017	20 Feb 2017	25 Feb 2017	22 Feb 2017
D235 1.9-2.0	SE162156.098	LB119000	14 Feb 2017	20 Feb 2017	28 Feb 2017	20 Feb 2017	25 Feb 2017	22 Feb 2017
D236 0-0.1	SE162156.099	LB119000	14 Feb 2017	20 Feb 2017	28 Feb 2017	20 Feb 2017	25 Feb 2017	22 Feb 2017
D236 0.2-0.3	SE162156.100	LB119000	14 Feb 2017	20 Feb 2017	28 Feb 2017	20 Feb 2017	25 Feb 2017	22 Feb 2017
D236 1.0-1.1	SE162156.101	LB119000	14 Feb 2017	20 Feb 2017	28 Feb 2017	20 Feb 2017	25 Feb 2017	22 Feb 2017
D237 0-0.1	SE162156.102	LB119000	14 Feb 2017	20 Feb 2017	28 Feb 2017	20 Feb 2017	25 Feb 2017	22 Feb 2017
D237 0.2-0.3	SE162156.103	LB119000	14 Feb 2017	20 Feb 2017	28 Feb 2017	20 Feb 2017	25 Feb 2017	22 Feb 2017
D237 1.0-1.1	SE162156.104	LB119000	14 Feb 2017	20 Feb 2017	28 Feb 2017	20 Feb 2017	25 Feb 2017	22 Feb 2017
D237 1.9-2.0	SE162156.105	LB119000	14 Feb 2017	20 Feb 2017	28 Feb 2017	20 Feb 2017	25 Feb 2017	22 Feb 2017
D238 0-0.1	SE162156.106	LB119000	14 Feb 2017	20 Feb 2017	28 Feb 2017	20 Feb 2017	25 Feb 2017	22 Feb 2017
D238 0.2-0.3	SE162156.107	LB119000	14 Feb 2017	20 Feb 2017	28 Feb 2017	20 Feb 2017	25 Feb 2017	22 Feb 2017
D238 1.0-1.1	SE162156.108	LB119000	14 Feb 2017	20 Feb 2017	28 Feb 2017	20 Feb 2017	25 Feb 2017	22 Feb 2017
Duplicate DS1	SE162156.109	LB119000	14 Feb 2017	20 Feb 2017	28 Feb 2017	20 Feb 2017	25 Feb 2017	22 Feb 2017
Duplicate DS2	SE162156.110	LB119000	14 Feb 2017	20 Feb 2017	28 Feb 2017	20 Feb 2017	25 Feb 2017	22 Feb 2017
Duplicate DS3	SE162156.111	LB119000	14 Feb 2017	20 Feb 2017	28 Feb 2017	20 Feb 2017	25 Feb 2017	22 Feb 2017
Duplicate DS4	SE162156.112	LB119000	14 Feb 2017	20 Feb 2017	28 Feb 2017	20 Feb 2017	25 Feb 2017	22 Feb 2017
Duplicate DS5	SE162156.113	LB119000	14 Feb 2017	20 Feb 2017	28 Feb 2017	20 Feb 2017	25 Feb 2017	22 Feb 2017
Duplicate DS6	SE162156.114	LB119000	14 Feb 2017	20 Feb 2017	28 Feb 2017	20 Feb 2017	25 Feb 2017	22 Feb 2017
Duplicate DS7	SE162156.115	LB119000	14 Feb 2017	20 Feb 2017	28 Feb 2017	20 Feb 2017	25 Feb 2017	22 Feb 2017

pH in soil (1:5)

Method: ME-(AU)-[ENV]AN101

p								(10) []
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
D201 0-0.1	SE162156.001	LB119004	13 Feb 2017	20 Feb 2017	20 Feb 2017	20 Feb 2017	21 Feb 2017	21 Feb 2017
D201 1.9-2.0	SE162156.004	LB119004	13 Feb 2017	20 Feb 2017	20 Feb 2017	20 Feb 2017	21 Feb 2017	21 Feb 2017
D204 0-0.1	SE162156.011	LB119004	14 Feb 2017	20 Feb 2017	21 Feb 2017	20 Feb 2017	21 Feb 2017	21 Feb 2017
D204 0.2-0.3	SE162156.012	LB119004	14 Feb 2017	20 Feb 2017	21 Feb 2017	20 Feb 2017	21 Feb 2017	21 Feb 2017
D206 0-0.1	SE162156.017	LB119004	14 Feb 2017	20 Feb 2017	21 Feb 2017	20 Feb 2017	21 Feb 2017	21 Feb 2017
D206 0.2-0.3	SE162156.018	LB119004	14 Feb 2017	20 Feb 2017	21 Feb 2017	20 Feb 2017	21 Feb 2017	21 Feb 2017
D209 0-0.1	SE162156.026	LB119004	13 Feb 2017	20 Feb 2017	20 Feb 2017	20 Feb 2017	21 Feb 2017	21 Feb 2017
D211 0-0.1	SE162156.033	LB119004	14 Feb 2017	20 Feb 2017	21 Feb 2017	20 Feb 2017	21 Feb 2017	21 Feb 2017
D212 1.0-1.1	SE162156.039	LB119004	14 Feb 2017	20 Feb 2017	21 Feb 2017	20 Feb 2017	21 Feb 2017	21 Feb 2017
D213 0.2-0.3	SE162156.041	LB119004	13 Feb 2017	20 Feb 2017	20 Feb 2017	20 Feb 2017	21 Feb 2017	21 Feb 2017
D213 1.0-1.1	SE162156.042	LB119004	13 Feb 2017	20 Feb 2017	20 Feb 2017	20 Feb 2017	21 Feb 2017	21 Feb 2017
D215 0.2-0.3	SE162156.048	LB119004	14 Feb 2017	20 Feb 2017	21 Feb 2017	20 Feb 2017	21 Feb 2017	21 Feb 2017
D215 1.0-1.1	SE162156.049	LB119004	14 Feb 2017	20 Feb 2017	21 Feb 2017	20 Feb 2017	21 Feb 2017	21 Feb 2017
D216 0.2-0.3	SE162156.052	LB119004	14 Feb 2017	20 Feb 2017	21 Feb 2017	20 Feb 2017	21 Feb 2017	21 Feb 2017
D216 1.0-1.1	SE162156.053	LB119004	14 Feb 2017	20 Feb 2017	21 Feb 2017	20 Feb 2017	21 Feb 2017	21 Feb 2017
D217 1.0-1.1	SE162156.056	LB119004	14 Feb 2017	20 Feb 2017	21 Feb 2017	20 Feb 2017	21 Feb 2017	21 Feb 2017
D219 1.9-2.0	SE162156.064	LB119004	14 Feb 2017	20 Feb 2017	21 Feb 2017	20 Feb 2017	21 Feb 2017	21 Feb 2017
D223 0-0.1	SE162156.075	LB119004	14 Feb 2017	20 Feb 2017	21 Feb 2017	20 Feb 2017	21 Feb 2017	21 Feb 2017

27/2/2017 Page 6 of 21

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

pH in soil (1:5) (continued) Method: ME-(AU)-[ENV]AN101

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
D223 0.2-0.3	SE162156.076	LB119004	14 Feb 2017	20 Feb 2017	21 Feb 2017	20 Feb 2017	21 Feb 2017	21 Feb 2017
D223 1.0-1.1	SE162156.077	LB119004	14 Feb 2017	20 Feb 2017	21 Feb 2017	20 Feb 2017	21 Feb 2017	21 Feb 2017
D225 1.9-2.0	SE162156.084	LB119004	14 Feb 2017	20 Feb 2017	21 Feb 2017	20 Feb 2017	21 Feb 2017	21 Feb 2017
D232 1.0-1.1	SE162156.087	LB119004	14 Feb 2017	20 Feb 2017	21 Feb 2017	20 Feb 2017	21 Feb 2017	21 Feb 2017

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES

Method: ME-	(AU)	-[ENV	JAN040/AN320
-------------	------	-------	--------------

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
D201 0-0.1	SE162156.001	LB119094	13 Feb 2017	20 Feb 2017	12 Aug 2017	21 Feb 2017	12 Aug 2017	24 Feb 2017
D201 0.2-0.3	SE162156.002	LB119094	13 Feb 2017	20 Feb 2017	12 Aug 2017	21 Feb 2017	12 Aug 2017	24 Feb 2017
D201 1.0-1.1	SE162156.003	LB119094	13 Feb 2017	20 Feb 2017	12 Aug 2017	21 Feb 2017	12 Aug 2017	24 Feb 2017
D201 1.9-2.0	SE162156.004	LB119094	13 Feb 2017	20 Feb 2017	12 Aug 2017	21 Feb 2017	12 Aug 2017	24 Feb 2017
D202 0-0.1	SE162156.005	LB119094	13 Feb 2017	20 Feb 2017	12 Aug 2017	21 Feb 2017	12 Aug 2017	24 Feb 2017
D202 0.2-0.3	SE162156.006	LB119094	13 Feb 2017	20 Feb 2017	12 Aug 2017	21 Feb 2017	12 Aug 2017	24 Feb 2017
D202 1.0-1.1	SE162156.007	LB119094	13 Feb 2017	20 Feb 2017	12 Aug 2017	21 Feb 2017	12 Aug 2017	24 Feb 2017
D203 0-0.1	SE162156.008	LB119094	14 Feb 2017	20 Feb 2017	13 Aug 2017	21 Feb 2017	13 Aug 2017	24 Feb 2017
D203 0.2-0.3	SE162156.009	LB119094	14 Feb 2017	20 Feb 2017	13 Aug 2017	21 Feb 2017	13 Aug 2017	24 Feb 2017
D203 0.9-1.0	SE162156.010	LB119094	14 Feb 2017	20 Feb 2017	13 Aug 2017	21 Feb 2017	13 Aug 2017	24 Feb 2017
D204 0-0.1	SE162156.011	LB119094	14 Feb 2017	20 Feb 2017	13 Aug 2017	21 Feb 2017	13 Aug 2017	24 Feb 2017
D204 0.2-0.3	SE162156.012	LB119094	14 Feb 2017	20 Feb 2017	13 Aug 2017	21 Feb 2017	13 Aug 2017	24 Feb 2017
D204 1.0-1.1	SE162156.013	LB119094	14 Feb 2017	20 Feb 2017	13 Aug 2017	21 Feb 2017	13 Aug 2017	24 Feb 2017
D205 0-0.1	SE162156.014	LB119094	14 Feb 2017	20 Feb 2017	13 Aug 2017	21 Feb 2017	13 Aug 2017	24 Feb 2017
D205 0.2-0.3	SE162156.015	LB119094	14 Feb 2017	20 Feb 2017	13 Aug 2017	21 Feb 2017	13 Aug 2017	24 Feb 2017
D205 0.7-0.8	SE162156.016	LB119094	14 Feb 2017	20 Feb 2017	13 Aug 2017	21 Feb 2017	13 Aug 2017	24 Feb 2017
D206 0-0.1	SE162156.017	LB119094	14 Feb 2017	20 Feb 2017	13 Aug 2017	21 Feb 2017	13 Aug 2017	24 Feb 2017
D206 0.2-0.3	SE162156.018	LB119094	14 Feb 2017	20 Feb 2017	13 Aug 2017	21 Feb 2017	13 Aug 2017	24 Feb 2017
D206 0.6-0.7	SE162156.019	LB119094	14 Feb 2017	20 Feb 2017	13 Aug 2017	21 Feb 2017	13 Aug 2017	24 Feb 2017
D207 0-0.1	SE162156.020	LB119095	14 Feb 2017	20 Feb 2017	13 Aug 2017	21 Feb 2017	13 Aug 2017	24 Feb 2017
D207 0.2-0.3	SE162156.021	LB119095	14 Feb 2017	20 Feb 2017	13 Aug 2017	21 Feb 2017	13 Aug 2017	24 Feb 2017
D207 1.0-1.1	SE162156.022	LB119095	14 Feb 2017	20 Feb 2017	13 Aug 2017	21 Feb 2017	13 Aug 2017	24 Feb 2017
D208 0-0.1	SE162156.023	LB119095	14 Feb 2017	20 Feb 2017	13 Aug 2017	21 Feb 2017	13 Aug 2017	24 Feb 2017
D208 0.2-0.3	SE162156.024	LB119095	14 Feb 2017	20 Feb 2017	13 Aug 2017	21 Feb 2017	13 Aug 2017	24 Feb 2017
D208 1.0-1.1	SE162156.025	LB119095	14 Feb 2017	20 Feb 2017	13 Aug 2017	21 Feb 2017	13 Aug 2017	24 Feb 2017
D209 0-0.1	SE162156.026	LB119095	13 Feb 2017	20 Feb 2017	12 Aug 2017	21 Feb 2017	12 Aug 2017	24 Feb 2017
D209 0.2-0.3	SE162156.027	LB119095	13 Feb 2017	20 Feb 2017	12 Aug 2017	21 Feb 2017	12 Aug 2017	24 Feb 2017
D209 1.0-1.1	SE162156.028	LB119095	13 Feb 2017	20 Feb 2017	12 Aug 2017		12 Aug 2017	24 Feb 2017
D209 1.9-2.0	SE162156.029	LB119095				21 Feb 2017	12 Aug 2017	24 Feb 2017
D210 0-0.1	SE162156.030	LB119095	13 Feb 2017 13 Feb 2017	20 Feb 2017 20 Feb 2017	12 Aug 2017 12 Aug 2017	21 Feb 2017	12 Aug 2017	24 Feb 2017
D210 0-0.1 D210 0.2-0.3	SE162156.031	LB119095	13 Feb 2017	20 Feb 2017		21 Feb 2017		
					12 Aug 2017	21 Feb 2017	12 Aug 2017	24 Feb 2017
D210 1.0-1.1	SE162156.032	LB119095	13 Feb 2017	20 Feb 2017	12 Aug 2017	21 Feb 2017	12 Aug 2017	24 Feb 2017
D211 0-0.1	SE162156.033	LB119095	14 Feb 2017	20 Feb 2017	13 Aug 2017	21 Feb 2017	13 Aug 2017	24 Feb 2017
S211 0.2-0.3	SE162156.034	LB119095	14 Feb 2017	20 Feb 2017	13 Aug 2017	21 Feb 2017	13 Aug 2017	24 Feb 2017
D211 1.0-1.1	SE162156.035	LB119095	14 Feb 2017	20 Feb 2017	13 Aug 2017	21 Feb 2017	13 Aug 2017	24 Feb 2017
D211 1.9-2.0	SE162156.036	LB119095	14 Feb 2017	20 Feb 2017	13 Aug 2017	21 Feb 2017	13 Aug 2017	24 Feb 2017
D212 0-0.1	SE162156.037	LB119095	14 Feb 2017	20 Feb 2017	13 Aug 2017	21 Feb 2017	13 Aug 2017	24 Feb 2017
D212 0.2-0.3	SE162156.038	LB119095	14 Feb 2017	20 Feb 2017	13 Aug 2017	21 Feb 2017	13 Aug 2017	24 Feb 2017
D212 1.0-1.1	SE162156.039	LB119096 LB119096	14 Feb 2017	20 Feb 2017	13 Aug 2017	21 Feb 2017	13 Aug 2017	24 Feb 2017
D213 0-0.1	SE162156.040	·	13 Feb 2017	20 Feb 2017	12 Aug 2017	21 Feb 2017	12 Aug 2017	24 Feb 2017
D213 0.2-0.3	SE162156.041	LB119096	13 Feb 2017	20 Feb 2017	12 Aug 2017	21 Feb 2017	12 Aug 2017	24 Feb 2017
D213 1.0-1.1	SE162156.042	LB119096	13 Feb 2017	20 Feb 2017	12 Aug 2017	21 Feb 2017	12 Aug 2017	24 Feb 2017
D213 1.9-2.0	SE162156.043	LB119096	13 Feb 2017	20 Feb 2017	12 Aug 2017	21 Feb 2017	12 Aug 2017	24 Feb 2017
D214 0-0.1	SE162156.044	LB119096	13 Feb 2017	20 Feb 2017	12 Aug 2017	21 Feb 2017	12 Aug 2017	24 Feb 2017
D214 0.2-0.3	SE162156.045	LB119096	13 Feb 2017	20 Feb 2017	12 Aug 2017	21 Feb 2017	12 Aug 2017	24 Feb 2017
D214 1.0-1.1	SE162156.046	LB119096	13 Feb 2017	20 Feb 2017	12 Aug 2017	21 Feb 2017	12 Aug 2017	24 Feb 2017
D215 0-0.1	SE162156.047	LB119096	14 Feb 2017	20 Feb 2017	13 Aug 2017	21 Feb 2017	13 Aug 2017	24 Feb 2017
D215 0.2-0.3	SE162156.048	LB119096	14 Feb 2017	20 Feb 2017	13 Aug 2017	21 Feb 2017	13 Aug 2017	24 Feb 2017
D215 1.0-1.1	SE162156.049	LB119096	14 Feb 2017	20 Feb 2017	13 Aug 2017	21 Feb 2017	13 Aug 2017	24 Feb 2017
D215 1.9-2.0	SE162156.050	LB119096	14 Feb 2017	20 Feb 2017	13 Aug 2017	21 Feb 2017	13 Aug 2017	24 Feb 2017
D216 0-0.1	SE162156.051	LB119096	14 Feb 2017	20 Feb 2017	13 Aug 2017	21 Feb 2017	13 Aug 2017	24 Feb 2017
D216 0.2-0.3	SE162156.052	LB119096	14 Feb 2017	20 Feb 2017	13 Aug 2017	21 Feb 2017	13 Aug 2017	24 Feb 2017
D216 1.0-1.1	SE162156.053	LB119096	14 Feb 2017	20 Feb 2017	13 Aug 2017	21 Feb 2017	13 Aug 2017	24 Feb 2017

27/2/2017 Page 7 of 21

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES (continued)

Method: ME-(AU)-[ENV]AN040/AN320

2007 COLD Self-10 May 1998	Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
1971 1914	D217 0-0.1	SE162156.054	LB119096	14 Feb 2017	20 Feb 2017	13 Aug 2017	21 Feb 2017	13 Aug 2017	24 Feb 2017
1971 1980	D217 0.2-0.3	SE162156.055	LB119096	14 Feb 2017	20 Feb 2017	13 Aug 2017	21 Feb 2017	13 Aug 2017	24 Feb 2017
2000 1.0	D217 1.0-1.1	SE162156.056	LB119096	14 Feb 2017	20 Feb 2017	13 Aug 2017	21 Feb 2017	13 Aug 2017	24 Feb 2017
1985 1985	D217 1.9-2.0	SE162156.057	LB119096	14 Feb 2017	20 Feb 2017	13 Aug 2017	21 Feb 2017	13 Aug 2017	24 Feb 2017
1989 1.5 1985	D218 0-0.1	SE162156.058	LB119097	14 Feb 2017	20 Feb 2017	13 Aug 2017	21 Feb 2017	13 Aug 2017	24 Feb 2017
1986 1	D218 0.2-0.3	SE162156.059	LB119097	14 Feb 2017	20 Feb 2017	13 Aug 2017	21 Feb 2017	13 Aug 2017	24 Feb 2017
1989 1.5	D218 1.0-1.1	SE162156.060	LB119097	14 Feb 2017	20 Feb 2017	13 Aug 2017	21 Feb 2017	13 Aug 2017	24 Feb 2017
1999 1.1	D219 0-0.1	SE162156.061	LB119097	14 Feb 2017	20 Feb 2017	13 Aug 2017	21 Feb 2017	13 Aug 2017	24 Feb 2017
Depth 20.00 Select 10.00 1.	D219 0.2-0.3	SE162156.062	LB119097	14 Feb 2017	20 Feb 2017	13 Aug 2017	21 Feb 2017	13 Aug 2017	24 Feb 2017
\$200.00.01 \$5.16250.005 \$1.915007	D219 1.0-1.1	SE162156.063	LB119097	14 Feb 2017	20 Feb 2017	13 Aug 2017	21 Feb 2017	13 Aug 2017	24 Feb 2017
\$Display of the control of t	D219 1.9-2.0	SE162156.064	LB119097	14 Feb 2017	20 Feb 2017	13 Aug 2017	21 Feb 2017	13 Aug 2017	24 Feb 2017
10.201 1	D220 0-0.1	SE162156.065	LB119097	14 Feb 2017	20 Feb 2017	13 Aug 2017	21 Feb 2017	13 Aug 2017	24 Feb 2017
1971 1971	D220 0.2-0.3	SE162156.066	LB119097	14 Feb 2017	20 Feb 2017	13 Aug 2017	21 Feb 2017	13 Aug 2017	24 Feb 2017
Decision Decision	D220 1.0-1.1	SE162156.067	LB119097	14 Feb 2017	20 Feb 2017	13 Aug 2017	21 Feb 2017	13 Aug 2017	24 Feb 2017
10221 16-11 16-12 16-1	D221 0-0.1	SE162156.068	LB119097	14 Feb 2017	20 Feb 2017	13 Aug 2017	21 Feb 2017	13 Aug 2017	24 Feb 2017
1921 19-20	D221 0.2-0.3	SE162156.069	LB119097	14 Feb 2017	20 Feb 2017	13 Aug 2017	21 Feb 2017	13 Aug 2017	24 Feb 2017
Decay SERIESTRANCE SERIESTRANC		SE162156.070	LB119097	14 Feb 2017	20 Feb 2017		21 Feb 2017		24 Feb 2017
Deep 0.02 Deep	D221 1.9-2.0	SE162156.071	LB119097	14 Feb 2017	20 Feb 2017	13 Aug 2017	21 Feb 2017	13 Aug 2017	24 Feb 2017
Deep 0.02 Deep									
D222 1-0.1.1 SE162160.07\$ LB119007 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D223 0-2.0.3 SE162160.076 LB119007 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D223 0-2.0.3 SE162160.076 LB119009 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D224 0-2.0.3 SE162160.076 LB119009 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D224 0-2.0.3 SE162160.076 LB119009 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D224 0-2.0.3 SE162160.090 LB119009 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D224 0-2.0.3 SE162160.001 LB119009 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D225 0-0.1 SE162160.001 LB119009 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D225 0-0.1 SE162160.003 LB119009 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D225 0-0.1 SE162160.003 LB119009 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D225 10-2.0 SE162160.003 LB119009 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D225 10-2.0 SE162160.003 LB119009 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D225 10-2.0 SE162160.003 LB119009 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D225 10-2.0 SE162160.003 LB119009 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D225 10-1.1 SE162160.003 LB119009 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D225 10-1.1 SE162160.003 LB119009 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D225 10-1.1 SE162160.003 LB119009 14 Feb 2017 20	D222 0.2-0.3	SE162156.073	LB119097	14 Feb 2017	20 Feb 2017		21 Feb 2017		24 Feb 2017
D223 D2-0.3 SF102766076 BF190967 14 Feb 2017 20 Feb 2017 31 Aug 2017 21 Feb 2017 31 Aug 2017 24 Feb 2017 D224 D2-11 SF10260078 BF19099 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 31 Aug 2017 24 Feb 2017 D224 D2-0.3 SF102766078 BF19099 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D224 D2-0.1 SF102766008 BF19099 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D225 D2-0.1 SF102766008 BF19099 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D225 D2-0.1 SF102766008 BF19099 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D225 D2-0.1 SF102766008 BF19099 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D225 D2-0.1 SF102766008 BF19099 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D225 D2-0.1 SF102766008 BF19099 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D225 D2-0.1 SF102766008 BF19099 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D225 D2-0.3 SF102766008 BF19099 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D225 D2-0.1 SF102766008 BF19099 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D225 D2-0.1 SF102766008 BF19099 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D225 D2-0.1 SF102766008 BF19099 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D225 D2-0.1 SF102766008 BF19099 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D225 D2-0.1 SF102766008 BF19099 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D225 D2-0.1 SF102766008 BF19099 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017	D222 1.0-1.1	SE162156.074	LB119097	14 Feb 2017	20 Feb 2017		21 Feb 2017		24 Feb 2017
D221 0.1-1 SE10255077	D223 0-0.1	SE162156.075	LB119097	14 Feb 2017	20 Feb 2017	13 Aug 2017	21 Feb 2017	13 Aug 2017	24 Feb 2017
D224 0.2.1 SE162165078 L8119089 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 13 Aug 2017 24 Feb 2017 13 Aug 2017 24 Feb 2017 13 Aug 2017 24 Feb 2017 13 Aug 2017 24 Feb 2017 13 Aug 2017 24 Feb 2017 13 Aug 2017 24 Feb 2017 13 Aug 2017 24 Feb 2017 13 Aug 2017 24 Feb 2017 13 Aug 2017 24 Feb 2017 13 Aug 2017 24 Feb 2017 13 Aug 2017 24 Feb 2017 13 Aug 2017 24 Feb 2017 13 Aug 2017 24 Feb 2017 13 Aug 2017 24 Feb 2017 25 F	D223 0.2-0.3	SE162156.076	LB119097	14 Feb 2017	20 Feb 2017	13 Aug 2017	21 Feb 2017	13 Aug 2017	24 Feb 2017
D224 0.2.0.3 SE162156.079 LB119089 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 20 Feb 2017 2	D223 1.0-1.1	SE162156.077	LB119099	14 Feb 2017	20 Feb 2017	13 Aug 2017	21 Feb 2017	13 Aug 2017	24 Feb 2017
D224 10.4-1.1 SE1622168.080 LB119099 14 Feb. 2017 20 Feb. 2017 13 Aug. 2017 21 Feb. 2017 13 Aug. 2017 24 Feb. 2017 12 Aug. 2017 24 Feb. 2017 12 Aug. 2017 24 Feb. 2017 12 Aug. 2017 24 Feb. 2017 12 Aug. 2017 24 Feb. 2017 12 Aug. 2017 24 Feb. 2017 12 Aug. 2017 24 Feb. 2017 12 Aug. 2017 24 Feb. 2017 12 Aug. 2017 24 Feb. 2017 22 Feb. 2017 24 Feb. 2017 22 Feb. 2017 24 Feb. 2017 25 Aug. 2017 24 Feb. 2017 25 Aug. 2017 25 Feb. 2017 25 Aug	D224 0-0.1	SE162156.078	LB119099	14 Feb 2017	20 Feb 2017	13 Aug 2017	21 Feb 2017	13 Aug 2017	24 Feb 2017
D225 0.4.1 SE 162156.081 LB119099 1.4 Feb 2017 2.0 Feb 2017 13. Aug 2017 2.1 Feb 2017 13. Aug 2017 2.4 Feb 2017 2.5 Feb 2017 13. Aug 2017 2.7 Feb 2017 13. Aug 2017 2.7 Feb 2017 13. Aug 2017 2.7 Feb 2	D224 0.2-0.3	SE162156.079	LB119099	14 Feb 2017	20 Feb 2017	13 Aug 2017	21 Feb 2017	13 Aug 2017	24 Feb 2017
December December	D224 1.0-1.1	SE162156.080	LB119099	14 Feb 2017	20 Feb 2017	13 Aug 2017	21 Feb 2017	13 Aug 2017	24 Feb 2017
D225 1.0-1.1 SER02150.03 LB19099	D225 0-0.1	SE162156.081	LB119099	14 Feb 2017	20 Feb 2017	13 Aug 2017	21 Feb 2017	13 Aug 2017	24 Feb 2017
D225 1.9-2.0 SE162156.084 LB119099 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 22 Feb 2017 23 Feb 2017 23 Feb 2017 23 Feb 2017 23 Feb 2017 25 Feb 2017 2	D225 0.2-0.3	SE162156.082	LB119099	14 Feb 2017	20 Feb 2017	13 Aug 2017	21 Feb 2017	13 Aug 2017	24 Feb 2017
D232 0-0.1 SE162156.085 LB119099 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 1023 0.2-0.3 SE162156.086 LB119099 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 12 Aug 2017 24 Feb 2017 13 Aug 2017 24 Feb 2017 13 Aug 2017 24 Feb 2017 13 Aug 2017 24 Feb 2017 13 Aug 2017 24 Feb 2017 13 Aug 2017 24 Feb 2017 13 Aug 2017 24 Feb 2017 13 Aug 2017 24 Feb 2017 13 Aug 2017 24 Feb 2017 13 Aug 2017 24 Feb 2017 13 Aug 2017 24 Feb 2017 13 Aug 2017 24 Feb 2017 13 Aug 2017 24 Feb 2017 20 Feb 2017 20 Feb 2017 20 Feb 2017 21 Feb 2017 20 F	D225 1.0-1.1	SE162156.083	LB119099	14 Feb 2017	20 Feb 2017	13 Aug 2017	21 Feb 2017	13 Aug 2017	24 Feb 2017
D232 0.2-0.3 SE162156.086 LB119099 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D232 1.0-1.1 SE162156.087 LB119099 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D233 0.0-1 SE162156.089 LB119099 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D233 1.0-1.1 SE162156.099 LB119099 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D233 1.0-1.1 SE162156.090 LB119099 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D234 0.0-1.1 SE162156.090 LB119099 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D234 0.0-1.1 SE162156.091 LB119099 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D234 0.0-1.1 SE162156.092 LB119099 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D234 0.0-1.1 SE162156.094 LB119099 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D234 0.0-1.1 SE162156.094 LB119099 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D235 0.0-1 SE162156.095 LB119099 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D235 0.2-0.3 SE162156.095 LB11900 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D235 0.2-0.3 SE162156.096 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D236 0.0-1 SE162156.098 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D236 0.0-1 SE162156.098 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D236 0.0-1 SE162156.009 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D236 0.0-1 SE162156.001 LB119100 14 Feb 2017 20	D225 1.9-2.0	SE162156.084	LB119099	14 Feb 2017	20 Feb 2017	13 Aug 2017	21 Feb 2017	13 Aug 2017	24 Feb 2017
D232 1.0-1.1 SE162156.087 LB119099 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D233 0.0-1 SE162156.088 LB119099 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 12 Ape 2017 24 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb	D232 0-0.1	SE162156.085	LB119099	14 Feb 2017	20 Feb 2017	13 Aug 2017	21 Feb 2017	13 Aug 2017	24 Feb 2017
D233 0-0.1 SE162156.088 LB119099 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D233 0-0.3 SE162156.090 LB119099 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D233 1.0-1.1 SE162156.090 LB119099 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D234 0-0.1 SE162156.091 LB119099 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D234 0-0.1 SE162156.092 LB119099 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D234 0-0.1 SE162156.093 LB119099 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D234 1.0-1.1 SE162156.094 LB119099 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D235 0-0.1 SE162156.096 LB119099 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D235 0-0.1 SE162156.096 LB119099 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D235 1.0-1.1 SE162156.096 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D235 1.0-1.1 SE162156.096 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D235 1.0-1.1 SE162156.099 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D236 0-0.1 SE162156.099 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D236 0-0.1 SE162156.099 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D236 0-0.1 SE162156.099 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D236 0-0.1 SE162156.100 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D237 0-0.3 SE162156.100 LB119100 14 Feb 2017 20 Feb 2017	D232 0.2-0.3	SE162156.086	LB119099	14 Feb 2017	20 Feb 2017	13 Aug 2017	21 Feb 2017	13 Aug 2017	24 Feb 2017
D233 0.2-0.3 SE162156.089 LB119099 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D233 1.0-1.1 SE162156.090 LB119099 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D234 0.0-1 SE162156.092 LB119099 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D234 0.2-0.3 SE162156.092 LB119099 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D234 0.2-0.3 SE162156.093 LB119099 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D234 0.2-0.3 SE162156.093 LB119099 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D234 0.0-1 SE162156.095 LB119099 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D235 0.0-1 SE162156.095 LB119099 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D235 0.2-0.3 SE162156.095 LB119099 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D235 0.2-0.3 SE162156.095 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D235 1.0-1.1 SE162156.095 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D236 0.0-1 SE162156.098 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D236 0.0-1 SE162156.099 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D236 0.0-1 SE162156.099 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D236 0.0-1 SE162156.099 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D236 0.0-1 SE162156.009 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D236 0.0-1 SE162156.009 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D237 0.0-1 SE162156.101 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D237 0.0-1 SE162156.104 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D237 1.0-1 SE162156.104 LB119100 14	D232 1.0-1.1	SE162156.087	LB119099	14 Feb 2017	20 Feb 2017	13 Aug 2017	21 Feb 2017	13 Aug 2017	24 Feb 2017
D233 1.0-1.1 SE162156.090 LB119099 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D234 19-2.0 SE162156.091 LB119099 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D234 0-0.1 SE162156.093 LB119099 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D234 1.0-1.1 SE162156.093 LB119099 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D234 1.0-1.1 SE162156.094 LB119099 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D235 0-0.1 SE162156.096 LB119099 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D235 0-0.1 SE162156.096 LB119090 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D235 1.0-1.1 SE162156.097 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D235 1.0-1.1 SE162156.097 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D235 1.0-1.1 SE162156.099 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D236 0-0.1 SE162156.099 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D236 0-0.1 SE162156.099 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D236 0-0.1 SE162156.090 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D236 0-0.1 SE162156.00 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D236 0-0.1 SE162156.100 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D237 0-0.1 SE162156.101 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D237 0-0.1 SE162156.102 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D237 1.0-2.0 SE162156.103 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D237 1.0-2.0 SE162156.103 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D238 0-0.1 SE162156.103 LB119100 14	D233 0-0.1	SE162156.088	LB119099	14 Feb 2017	20 Feb 2017	13 Aug 2017	21 Feb 2017	13 Aug 2017	24 Feb 2017
D233 1-9-2.0 SE162156.091 LB119099 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D234 0-0.1 SE162156.092 LB119099 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D234 1.0-1.1 SE162156.093 LB119099 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D234 1.0-1.1 SE162156.094 LB119099 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D235 0-0.1 SE162156.095 LB119099 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D235 0-0.1 SE162156.096 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D235 1.0-1.1 SE162156.097 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D235 1.9-2.0 SE162156.098 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D236 1.9-2.0 SE162156.098 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D236 1.9-2.0 SE162156.098 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D236 1.0-2.0 SE162156.099 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D236 1.0-1.1 SE162156.100 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D236 1.0-1.1 SE162156.100 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D237 0.0-1 SE162156.100 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D237 0.0-1 SE162156.100 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D237 0.0-1 SE162156.100 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D237 1.9-2.0 SE162156.100 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D237 1.9-2.0 SE162156.100 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D237 1.9-2.0 SE162156.100 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D238 1.0-1.1 SE162156.100	D233 0.2-0.3	SE162156.089	LB119099	14 Feb 2017	20 Feb 2017	13 Aug 2017	21 Feb 2017	13 Aug 2017	24 Feb 2017
D234 0-0.1 SE162156.092 LB119099 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 24 Feb 2017 D234 0-2-0.3 SE162156.093 LB119099 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D234 1-0-1.1 SE162156.095 LB119099 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D235 0-2-0.3 SE162156.096 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D235 1-0-1.1 SE162156.097 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D235 1-9-2.0 SE162156.098 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D236 1-0-1 SE162156.099 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D236 0-2-0.3 SE162156.009 <td>D233 1.0-1.1</td> <td>SE162156.090</td> <td>LB119099</td> <td>14 Feb 2017</td> <td>20 Feb 2017</td> <td>13 Aug 2017</td> <td>21 Feb 2017</td> <td>13 Aug 2017</td> <td>24 Feb 2017</td>	D233 1.0-1.1	SE162156.090	LB119099	14 Feb 2017	20 Feb 2017	13 Aug 2017	21 Feb 2017	13 Aug 2017	24 Feb 2017
D234 0.2-0.3 SE162156.093 LB119099 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D234 1.0-1.1 SE162156.096 LB119099 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D235 0.0-1 SE162156.096 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D235 1.0-1.1 SE162156.097 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D235 1.0-1.1 SE162156.098 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D235 1.9-2.0 SE162156.098 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D236 0.0-1 SE162156.099 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D236 0.0-1 SE162156.099 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D236 0.0-1 SE162156.099 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D236 0.0-1 SE162156.100 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D236 1.0-1.1 SE162156.101 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D237 0.0-1 SE162156.102 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D237 0.0-1 SE162156.103 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D237 0.2-0.3 SE162156.103 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D237 1.9-2.0 SE162156.105 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D238 0.0-1 SE162156.106 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D238 0.0-1 SE162156.106 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D238 0.0-1 SE162156.106 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D238 0.0-1 SE162156.109 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D238 0.0-1 SE162156.109 LB119100 14	D233 1.9-2.0	SE162156.091	LB119099	14 Feb 2017	20 Feb 2017	13 Aug 2017	21 Feb 2017	13 Aug 2017	24 Feb 2017
D234 1.0-1.1 SE162156.094 LB119099 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D235 0-0.1 SE162156.095 LB119099 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D235 0-2-0.3 SE162156.096 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D235 1-9-2.0 SE162156.097 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D235 1-9-2.0 SE162156.098 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D236 0-0.1 SE162156.099 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D236 1-0-1.1 SE162156.100 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D237 0-0.1 SE162156.101 LB119100	D234 0-0.1	SE162156.092	LB119099	14 Feb 2017	20 Feb 2017	13 Aug 2017	21 Feb 2017	13 Aug 2017	24 Feb 2017
D235 0-0.1 SE162156.095 LB119099 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D235 0.2-0.3 SE162156.096 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D235 1.0-1.1 SE162156.097 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D235 1.9-2.0 SE162156.098 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D236 0.0-1.1 SE162156.099 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D236 0.2-0.3 SE162156.100 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D236 1.0-1.1 SE162156.101 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D237 0.0-1 SE162156.102 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D237 0.0-1 SE162156.102 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D237 1.0-1.1 SE162156.103 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D237 1.0-1.1 SE162156.103 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D237 1.0-1.1 SE162156.104 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D237 1.9-2.0 SE162156.105 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D238 0.0-1 SE162156.106 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D238 0.0-1 SE162156.108 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D238 0.0-1 SE162156.108 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D238 0.0-1 SE162156.108 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D238 0.0-1 SE162156.109 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D238 0.0-1 SE162156.109 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D238 0.0-1 SE162156.109 LB11910	D234 0.2-0.3	SE162156.093	LB119099	14 Feb 2017	20 Feb 2017	13 Aug 2017	21 Feb 2017	13 Aug 2017	24 Feb 2017
D235 0.2-0.3 SE162156.096 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 255 1.0-1.1 SE162156.097 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 255 1.9-2.0 SE162156.098 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 20 Feb 2017	D234 1.0-1.1	SE162156.094	LB119099	14 Feb 2017	20 Feb 2017	13 Aug 2017	21 Feb 2017	13 Aug 2017	24 Feb 2017
D235 1.0-1.1 SE162156.097 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D235 1.9-2.0 SE162156.098 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D236 0-0.1 SE162156.099 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D236 0-2-0.3 SE162156.100 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D236 1.0-1.1 SE162156.101 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D237 0-0.1 SE162156.101 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D237 0-0.3 SE162156.102 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D237 0-0.3 SE162156.102 LB119100	D235 0-0.1	SE162156.095	LB119099	14 Feb 2017	20 Feb 2017	13 Aug 2017	21 Feb 2017	13 Aug 2017	24 Feb 2017
D235 1.9-2.0 SE162156.098 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 22 Feb 2017 23 Aug 2017 21 Feb 2017 24 Feb 2017 22 Feb 2017 25 Feb 2017 24 Feb 2017 25 Feb	D235 0.2-0.3	SE162156.096	LB119100	14 Feb 2017	20 Feb 2017	13 Aug 2017	21 Feb 2017	13 Aug 2017	24 Feb 2017
D236 0-0.1 SE162156.099 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D236 0.2-0.3 SE162156.100 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D236 1.0-1.1 SE162156.101 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D237 0-0.1 SE162156.102 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D237 0.2-0.3 SE162156.103 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D237 1.0-1.1 SE162156.104 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D237 1.9-2.0 SE162156.105 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D238 0.0.1 SE162156.106 LB119100	D235 1.0-1.1	SE162156.097	LB119100	14 Feb 2017	20 Feb 2017	13 Aug 2017	21 Feb 2017	13 Aug 2017	24 Feb 2017
D236 0.2-0.3 SE162156.100 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D236 1.0-1.1 SE162156.101 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D237 0-0.1 SE162156.102 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D237 0.2-0.3 SE162156.103 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D237 1.0-1.1 SE162156.104 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D237 1.9-2.0 SE162156.105 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D238 0-0.1 SE162156.106 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D238 1.0-1.1 SE162156.108 LB119100	D235 1.9-2.0	SE162156.098	LB119100	14 Feb 2017	20 Feb 2017	13 Aug 2017	21 Feb 2017	13 Aug 2017	24 Feb 2017
D236 1.0-1.1 SE162156.101 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D237 0-0.1 SE162156.102 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D237 0.2-0.3 SE162156.103 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D237 1.0-1.1 SE162156.104 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D237 1.9-2.0 SE162156.105 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D238 0-0.1 SE162156.106 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D238 0.2-0.3 SE162156.107 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D238 1.0-1.1 SE162156.108 LB119100	D236 0-0.1	SE162156.099	LB119100	14 Feb 2017	20 Feb 2017	13 Aug 2017	21 Feb 2017	13 Aug 2017	24 Feb 2017
D237 0-0.1 SE162156.102 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D237 0.2-0.3 SE162156.103 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D237 1.0-1.1 SE162156.104 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D237 1.9-2.0 SE162156.105 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D238 0-0.1 SE162156.106 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D238 0.2-0.3 SE162156.107 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D238 1.0-1.1 SE162156.108 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 Duplicate DS1 SE162156.110 LB119100	D236 0.2-0.3	SE162156.100	LB119100	14 Feb 2017	20 Feb 2017	13 Aug 2017	21 Feb 2017	13 Aug 2017	24 Feb 2017
D237 0.2-0.3 SE162156.103 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D237 1.0-1.1 SE162156.104 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D237 1.9-2.0 SE162156.105 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D238 0-0.1 SE162156.106 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D238 0.2-0.3 SE162156.107 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D238 1.0-1.1 SE162156.108 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 Duplicate DS1 SE162156.109 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 Duplicate DS2 SE162156.110 LB119100 </td <td>D236 1.0-1.1</td> <td>SE162156.101</td> <td>LB119100</td> <td>14 Feb 2017</td> <td>20 Feb 2017</td> <td>13 Aug 2017</td> <td>21 Feb 2017</td> <td>13 Aug 2017</td> <td>24 Feb 2017</td>	D236 1.0-1.1	SE162156.101	LB119100	14 Feb 2017	20 Feb 2017	13 Aug 2017	21 Feb 2017	13 Aug 2017	24 Feb 2017
D237 1.0-1.1 SE162156.104 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D237 1.9-2.0 SE162156.105 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D238 0-0.1 SE162156.106 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D238 0.2-0.3 SE162156.107 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D238 1.0-1.1 SE162156.108 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 Duplicate DS1 SE162156.109 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 Duplicate DS2 SE162156.110 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 Duplicate DS3 SE162156.111 LB119100<	D237 0-0.1	SE162156.102	LB119100	14 Feb 2017	20 Feb 2017	13 Aug 2017	21 Feb 2017	13 Aug 2017	24 Feb 2017
D237 1.9-2.0 SE162156.105 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D238 0-0.1 SE162156.106 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D238 0.2-0.3 SE162156.107 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D238 1.0-1.1 SE162156.108 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 Duplicate DS1 SE162156.109 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 Duplicate DS2 SE162156.110 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 Duplicate DS3 SE162156.111 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 Duplicate DS4 SE162156.111 LB119100	D237 0.2-0.3	SE162156.103	LB119100	14 Feb 2017	20 Feb 2017	13 Aug 2017	21 Feb 2017	13 Aug 2017	24 Feb 2017
D238 0-0.1 SE162156.106 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D238 0.2-0.3 SE162156.107 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D238 1.0-1.1 SE162156.108 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 Duplicate DS1 SE162156.109 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 Duplicate DS2 SE162156.110 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 Duplicate DS3 SE162156.111 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 Duplicate DS4 SE162156.112 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017	D237 1.0-1.1	SE162156.104	LB119100	14 Feb 2017	20 Feb 2017	13 Aug 2017	21 Feb 2017	13 Aug 2017	24 Feb 2017
D238 0.2-0.3 SE162156.107 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 D238 1.0-1.1 SE162156.108 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 Duplicate DS1 SE162156.109 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 Duplicate DS2 SE162156.110 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 Duplicate DS3 SE162156.111 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 Duplicate DS4 SE162156.112 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017	D237 1.9-2.0	SE162156.105	LB119100	14 Feb 2017	20 Feb 2017	13 Aug 2017	21 Feb 2017	13 Aug 2017	24 Feb 2017
D238 1.0-1.1 SE162156.108 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 Duplicate DS1 SE162156.109 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 Duplicate DS2 SE162156.110 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 Duplicate DS3 SE162156.111 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 Duplicate DS4 SE162156.112 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017	D238 0-0.1	SE162156.106	LB119100	14 Feb 2017	20 Feb 2017	13 Aug 2017	21 Feb 2017	13 Aug 2017	24 Feb 2017
Duplicate DS1 SE162156.109 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 Duplicate DS2 SE162156.110 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 Duplicate DS3 SE162156.111 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 Duplicate DS4 SE162156.112 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017	D238 0.2-0.3	SE162156.107	LB119100	14 Feb 2017	20 Feb 2017	13 Aug 2017	21 Feb 2017	13 Aug 2017	24 Feb 2017
Duplicate DS2 SE162156.110 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 Duplicate DS3 SE162156.111 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 Duplicate DS4 SE162156.112 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017	D238 1.0-1.1	SE162156.108	LB119100	14 Feb 2017	20 Feb 2017	13 Aug 2017	21 Feb 2017	13 Aug 2017	24 Feb 2017
Duplicate DS3 SE162156.111 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017 Duplicate DS4 SE162156.112 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017	Duplicate DS1	SE162156.109	LB119100	14 Feb 2017	20 Feb 2017	13 Aug 2017	21 Feb 2017	13 Aug 2017	24 Feb 2017
Duplicate DS4 SE162156.112 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017		SE162156.110	LB119100	14 Feb 2017	20 Feb 2017	13 Aug 2017	21 Feb 2017	13 Aug 2017	24 Feb 2017
	Duplicate DS3	SE162156.111	LB119100	14 Feb 2017	20 Feb 2017	13 Aug 2017	21 Feb 2017	13 Aug 2017	24 Feb 2017
Duplicate DS5 SE162156.113 LB119100 14 Feb 2017 20 Feb 2017 13 Aug 2017 21 Feb 2017 13 Aug 2017 24 Feb 2017	Duplicate DS4	SE162156.112	LB119100	14 Feb 2017	20 Feb 2017	13 Aug 2017	21 Feb 2017	13 Aug 2017	24 Feb 2017
	Duplicate DS5	SE162156.113	LB119100	14 Feb 2017	20 Feb 2017	13 Aug 2017	21 Feb 2017	13 Aug 2017	24 Feb 2017

27/2/2017 Page 8 of 21

SE162156 R0

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES (continued)

Method: ME-(AU)-[ENV]AN040/AN320

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
Duplicate DS6	SE162156.114	LB119100	14 Feb 2017	20 Feb 2017	13 Aug 2017	21 Feb 2017	13 Aug 2017	24 Feb 2017
Duplicate DS7	SE162156.115	LB119100	14 Feb 2017	20 Feb 2017	13 Aug 2017	21 Feb 2017	13 Aug 2017	24 Feb 2017

27/2/2017 Page 9 of 21

SURROGATES

SE162156 R0

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No surrogates were required for this job.

27/2/2017 Page 10 of 21

METHOD BLANKS

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Exchangeable Cations and Cation Exchange Capacity (CEC/ESP/SAR)

Method: ME-(AU)-[ENV]AN122

Sample Number	Parameter	Units	LOR

Mercury (dissolved) in Water

Method: ME-(AU)-[ENV]AN311(Perth)/AN312

Sample Number	Parameter	Units	LOR	Result
LB119219.001	Mercury	mg/L	0.0001	<0.0001

Mercury in Soil

Method: ME-(AU)-[ENV]AN312

Sample Number	Parameter	Units	LOR	Result
LB119123.001	Mercury	mg/kg	0.05	<0.05
LB119124.001	Mercury	mg/kg	0.05	<0.05
LB119125.001	Mercury	mg/kg	0.05	<0.05
LB119126.001	Mercury	mg/kg	0.05	<0.05
LB119127.001	Mercury	mg/kg	0.05	<0.05
LB119166.001	Mercury	mg/kg	0.05	<0.05
LB119167.001	Mercury	mg/kg	0.05	<0.05

Metals in Water (Dissolved) by ICPOES

Method: ME-(AU)-[ENV]AN320/AN321

Sample Number	Parameter	Units	LOR	Result
LB119273.001	Arsenic, As	mg/L	0.02	<0.02
	Cadmium, Cd	mg/L	0.001	<0.001
	Chromium, Cr	mg/L	0.005	<0.005
	Copper, Cu	mg/L	0.005	<0.005
	Lead, Pb	mg/L	0.02	<0.02
	Manganese, Mn	mg/L	0.005	<0.005
	Nickel, Ni	mg/L	0.005	<0.005
	Zinc, Zn	mg/L	0.01	<0.01

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES

Method: ME-(AU)-[ENV]AN040/AN320

Cadmium, Cd mg/kg 0.3 <0.3	Sample Number	Parameter	Units	LOR	Result
Chromium, Cr mg/kg 0.3 <0.3 Coper, Cu mg/kg 0.5 <0.5 Coper, Cu mg/kg 0.5 <0.5 Coper, Cu mg/kg 1 <1 <1 Coper, Cu mg/kg 1 <1 <1 Coper, Cu mg/kg 1 <1 <1 Coper, Cu mg/kg 0.5 <0.5 Coper, Cu mg/kg 0.5 <0.5 Coper, Cu mg/kg 0.5 <0.5 Coper, Cu mg/kg 0.5 <0.5 Coper, Cu mg/kg 0.5 <0.5 Coper, Cu mg/kg 0.5 <0.5 Coper, Cu mg/kg 0.5 <0.5 Coper, Cu mg/kg 0.5 <0.5 Coper, Cu mg/kg 0.5 <0.5 Coper, Cu mg/kg 0.5 <0.5 Coper, Cu mg/kg 0.5 <0.5 Coper, Cu mg/kg 0.5 <0.5 Coper, Cu mg/kg 0.5 <0.5 Coper, Cu mg/kg 0.5 <0.5 Coper, Cu mg/kg 0.5 <0.5 Coper, Cu mg/kg 0.5 <0.5 Coper, Cu mg/kg 0.5 <0.5 Coper, Cu mg/kg 0.5 <0.5 Coper, Cu mg/kg 0.5 <0.5 Coper, Cu mg/kg 0.5 <0.5 Coper, Cu mg/kg 0.5 <0.5 Coper, Cu mg/kg 0.5 <0.5 Coper, Cu mg/kg 0.5 <0.5 Coper, Cu mg/kg 0.5 <0.5 Coper, Cu mg/kg 0.5 <0.5 Coper, Cu mg/kg 0.5 <0.5 Coper, Cu mg/kg 0.5 <0.5 Coper, Cu mg/kg 0.5 <0.5 Coper, Cu mg/kg 0.5 <0.5 Coper, Cu mg/kg 0.5 <0.5 Coper, Cu mg/kg 0.5 <0.5 Coper, Cu mg/kg 0.5 <0.5 Coper, Cu mg/kg 0.5 <0.5 Coper, Cu mg/kg 0.5 <0.5 Coper, Cu mg/kg 0.5 <0.5 Coper, Cu mg/kg 0.5 <0.5 Coper, Cu mg/kg 0.5 <0.5 Coper, Cu mg/kg 0.5 <0.5 Coper, Cu mg/kg 0.5 <0.5 Coper, Cu mg/kg 0.5 <0.5 Coper, Cu mg/kg 0.5 <0.5 Coper, Cu mg/kg 0.5 <0.5 Coper, Cu mg/kg 0.5 <0.5 Coper, Cu mg/kg 0.5 <0.5 Coper, Cu mg/kg 0.5 <0.5 Coper, Cu mg/kg 0.5 <0.5 Coper, Cu mg/kg 0.5 <0.5 Coper, Cu mg/kg 0.5 <0.5 Coper, Cu mg/kg 0.5 <0.5 Coper, Cu mg/kg 0.5 <0.5 Coper, Cu mg/kg 0.5 <0.5 Coper, Cu mg/kg 0.5 <0.5 Coper, Cu mg/kg 0.5 <0.5 Coper, Cu mg/kg 0.5 <0.5 Coper, Cu mg/kg 0.5 <0.5 Coper, Cu mg/kg 0.5 <0.5 Coper, Cu mg/kg 0.5 <0.5 Coper, Cu mg/kg 0.5 <0.5 Coper, Cu mg/kg 0.5 <0.5 Coper, Cu mg/kg 0.5 <0.5 Coper, Cu mg/kg 0.5 <0.5 Coper, Cu mg/kg 0.5 <0.5 Coper, Cu mg/kg 0.5 <0.5 Coper, Cu mg/kg 0.5 <0.5 Coper, Cu mg/kg 0.5 <0.5 Coper, Cu mg/kg 0.5 <0.5 Coper, Cu mg/kg 0.5 <0.5 Coper, Cu mg/kg 0.5 <0.5 Coper, Cu mg/kg 0.5 <0.5 Coper, Cu mg/kg 0.5	LB119094.001	Arsenic, As	mg/kg	3	<3
Copper, Cu		Cadmium, Cd	mg/kg	0.3	<0.3
Lead, Pb		Chromium, Cr	mg/kg	0.3	<0.3
Manganese, Mn		Copper, Cu	mg/kg	0.5	<0.5
Nickel, Ni		Lead, Pb	mg/kg	1	<1
Zinc, Zn mg/kg 0.5 <0.5 B119995.001 Arsenic, As mg/kg 3 <3 Cadmium, Cd mg/kg 0.3 <0.3 Chromium, Cr mg/kg 0.3 <0.3 Copper, Cu mg/kg 0.5 <0.5 Lead, Pb mg/kg 1 <1 Manganses, Mn mg/kg 0.5 <0.5 Zinc, Zn mg/kg 0.5 <0.5 Zinc, Zn mg/kg 0.5 <0.5 Cadmium, Cd mg/kg 0.5 <0.5 Zinc, Zn mg/kg 0.5 <0.5 Cadmium, Cd mg/kg 0.5 <0.5 Cadmium, Cd mg/kg 0.3 <0.3 Chromium, Cr mg/kg 0.3 <0.3 Chromium, Cr mg/kg 0.3 <0.3 Copper, Cu mg/kg 0.5 <0.5 Lead, Pb mg/kg 0.5 <0.5 Lead, Pb mg/kg 0.5 <0.5 Lead, Pb mg/kg 0.5 <0.5 Lead, Pb mg/kg 0.5 <0.5 Lead, Pb mg/kg 0.5 <0.5 Lead, Pb mg/kg 0.5 <0.5 Lead, Pb mg/kg 0.5 <0.5 Copper, Cu mg/kg 0.5 <0.5 Cinc, Zn mg/kg 0.5 <0.5 Arsenic, As mg/kg 0.5 <0.5 Cinc, Zn mg/kg 0.5 <0.5 Cinc, Zn mg/kg 0.5 <0.5 Cinc, Zn mg/kg 0.3 <0.3 Cincmium, Cr mg/kg 0.3 <0.3 Cincmium, Cr mg/kg 0.3 <0.3 Cincmium, Cr mg/kg 0.3 <0.3 Cincmium, Cr mg/kg 0.5 <0.5 Copper, Cu mg/kg 0.5 <0.5 Copper, Cu mg/kg 0.5 <0.5 Copper, Cu mg/kg 0.5 <0.5 Copper, Cu mg/kg 0.5 <0.5 Copper, Cu mg/kg 0.5 <0.5 Copper, Cu mg/kg 0.5 <0.5 Copper, Cu mg/kg 0.5 <0.5 Copper, Cu mg/kg 0.5 <0.5 Copper, Cu mg/kg 0.5 <0.5 Copper, Cu mg/kg 0.5 <0.5 Copper, Cu mg/kg 0.5 <0.5 Copper, Cu mg/kg 0.5 <0.5 Copper, Cu mg/kg 0.5 <0.5 Copper, Cu mg/kg 0.5 <0.5 Copper, Cu mg/kg 0.5 <0.5 Copper, Cu mg/kg 0.5 <0.5 Copper, Cu mg/kg 0.5 <0.5 Copper, Cu mg/kg 0.5 <0.5 Copper, Cu mg/kg 0.5 <0.5 Copper, Cu mg/kg 0.5 <0.5 Copper, Cu mg/kg 0.5 <0.5 Copper, Cu mg/kg 0.5 <0.5 Copper, Cu mg/kg 0.5 <0.5 Copper, Cu mg/kg 0.5 <0.5		Manganese, Mn	mg/kg	1	<1
B119095.001 Arsenic, As mg/kg 3 <3 Cadmium, Cd mg/kg 0.3 <0.3		Nickel, Ni	mg/kg	0.5	<0.5
Cadmium, Cd mg/kg 0.3 <0.3 Chromium, Cr mg/kg 0.3 <0.3		Zinc, Zn	mg/kg	0.5	<0.5
Chromium, Cr mg/kg 0.3 <0.3 Copper, Cu mg/kg 0.5 <0.5	LB119095.001	Arsenic, As	mg/kg	3	<3
Copper, Cu mg/kg 0.5 <0.5 Lead, Pb mg/kg 1 <1		Cadmium, Cd	mg/kg	0.3	<0.3
Lead, Pb mg/kg 1 <1 Manganese, Mn mg/kg 1 <1 Nickel, Ni mg/kg 0.5 <0.5 Zinc, Zn mg/kg 0.5 <0.5 Zinc, Zn mg/kg 0.5 <0.5 Zinc, Zn mg/kg 0.5 <0.5 Cadmium, Cd mg/kg 0.3 <0.3 Chromium, Cr mg/kg 0.3 <0.3 Copper, Cu mg/kg 0.5 <0.5 Lead, Pb mg/kg 1 <1 Manganese, Mn mg/kg 1 <1 Manganese, Mn mg/kg 1 <1 Manganese, Mn mg/kg 1 <1 Manganese, Mn mg/kg 0.5 <0.5 Zinc, Zn mg/kg 0.5 <0.5 Zinc, Zn mg/kg 0.5 <0.5 Cadmium, Cd mg/kg 0.5 <0.5 Cadmium, Cd mg/kg 0.3 <0.3 Chromium, Cr mg/kg 0.3 <0.3 Chromium, Cr mg/kg 0.3 <0.3 Chromium, Cr mg/kg 0.3 <0.3 Chromium, Cr mg/kg 0.5 <0.5 Copper, Cu mg/kg 0.5 <0.5 Lead, Pb mg/kg 0.5 <0.5 Lead, Pb mg/kg 0.5 <0.5 Lead, Pb mg/kg 0.5 <0.5 Lead, Pb mg/kg 0.5 <0.5 Lead, Pb mg/kg 0.5 <0.5 Lead, Pb mg/kg 0.5 <0.5 Lead, Pb mg/kg 0.5 <0.5 Lead, Pb mg/kg 0.5 <0.5 Lead, Pb mg/kg 0.5 <0.5 Lead, Pb mg/kg 0.5 <0.5 Lead, Pb mg/kg 0.5 <0.5 Lead, Pb mg/kg 0.5 <0.5 Lead, Pb mg/kg 0.5 <0.5 Lead, Pb mg/kg 0.5 <0.5 Lead, Pb mg/kg 0.5 <0.5 Lead, Pb mg/kg 0.5 <0.5 Lead, Pb mg/kg 0.5 <0.5 Lead, Pb mg/kg 0.5 <0.5 Lead, Pb mg/kg 0.5 <0.5 Lead, Pb mg/kg 0.5 <0.5 Lead, Pb mg/kg 0.5 <0.5 Lead, Pb mg/kg 0.5 <0.5 Lead, Pb mg/kg 0.5 <0.5 Lead, Pb mg/kg 0.5 <0.5 Lead, Pb mg/kg 0.5 <0.5 Lead, Pb mg/kg 0.5 <0.5 Lead, Pb mg/kg 0.5 <0.5 Lead, Pb mg/kg 0.5 <0.5 Lead, Pb mg/kg 0.5 <0.5 Lead, Pb mg/kg 0.5 <0.5 Lead, Pb mg/kg 0.5 <0.5 Lead, Pb mg/kg 0.5 <0.5 Lead, Pb mg/kg 0.5 <0.5 Lead, Pb mg/kg 0.5 <0.5 Lead, Pb mg/kg 0.5 <0.5 Lead, Pb mg/kg mg/kg 0.5 <0.		Chromium, Cr	mg/kg	0.3	<0.3
Manganese, Mn mg/kg 1 <1 Nickel, Ni mg/kg 0.5 <0.5		Copper, Cu	mg/kg	0.5	<0.5
Nickel, Ni mg/kg 0.5 <0.5 Zinc, Zn mg/kg 0.5 <0.5		Lead, Pb	mg/kg	1	<1
Zinc, Zn mg/kg 0.5 <0.5 B119096.001 Arsenic, As mg/kg 3 <3		Manganese, Mn	mg/kg	1	<1
B119096.001 Arsenic, As mg/kg 3 <3 Cadmium, Cd mg/kg 0.3 <0.3		Nickel, Ni	mg/kg	0.5	<0.5
Cadmium, Cd mg/kg 0.3 <0.3 Chromium, Cr mg/kg 0.3 <0.3		Zinc, Zn	mg/kg	0.5	<0.5
Chromium, Cr mg/kg 0.3 <0.3 Copper, Cu mg/kg 0.5 <0.5	LB119096.001	Arsenic, As	mg/kg	3	<3
Copper, Cu mg/kg 0.5 <0.5 Lead, Pb mg/kg 1 <1		Cadmium, Cd	mg/kg	0.3	<0.3
Lead, Pb mg/kg 1 <1 Manganese, Mn mg/kg 1 <1		Chromium, Cr	mg/kg	0.3	<0.3
Manganese, Mn mg/kg 1 <1 Nickel, Ni mg/kg 0.5 <0.5		Copper, Cu	mg/kg	0.5	<0.5
Nickel, Ni mg/kg 0.5 <0.5 Zinc, Zn mg/kg 0.5 <0.5		Lead, Pb	mg/kg	1	<1
Zinc, Zn mg/kg 0.5 <0.5 B119097.001 Arsenic, As mg/kg 3 <3		Manganese, Mn	mg/kg	1	<1
B119097.001 Arsenic, As mg/kg 3 <3 Cadmium, Cd mg/kg 0.3 <0.3		Nickel, Ni	mg/kg	0.5	<0.5
Cadmium, Cd mg/kg 0.3 <0.3 Chromium, Cr mg/kg 0.3 <0.3		Zinc, Zn	mg/kg	0.5	<0.5
Chromium, Cr mg/kg 0.3 <0.3 Copper, Cu mg/kg 0.5 <0.5	LB119097.001	Arsenic, As	mg/kg	3	<3
Copper, Cu mg/kg 0.5 < 0.5 Lead, Pb mg/kg 1 < 1		Cadmium, Cd	mg/kg	0.3	<0.3
Lead, Pb mg/kg 1 <1		Chromium, Cr	mg/kg	0.3	<0.3
		Copper, Cu	mg/kg	0.5	<0.5
Manganese, Mn mg/kg 1 <1		Lead, Pb	mg/kg	1	<1
		Manganese, Mn	mg/kg	1	<1

27/2/2017 Page 11 of 21

METHOD BLANKS

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES (continued)

Method: ME-(AU)-[ENV]AN040/AN320

Sample Number	Parameter	Units	LOR	Result
LB119097.001	Nickel, Ni	mg/kg	0.5	<0.5
	Zinc, Zn	mg/kg	0.5	<0.5
LB119099.001	Arsenic, As	mg/kg	3	<3
	Cadmium, Cd	mg/kg	0.3	<0.3
	Chromium, Cr	mg/kg	0.3	<0.3
	Copper, Cu	mg/kg	0.5	<0.5
	Lead, Pb	mg/kg	1	<1
	Manganese, Mn	mg/kg	1	<1
	Nickel, Ni	mg/kg	0.5	<0.5
	Zinc, Zn	mg/kg	0.5	<0.5
LB119100.001	Arsenic, As	mg/kg	3	<3
	Cadmium, Cd	mg/kg	0.3	<0.3
	Chromium, Cr	mg/kg	0.3	<0.3
	Copper, Cu	mg/kg	0.5	<0.5
	Lead, Pb	mg/kg	1	<1
	Manganese, Mn	mg/kg	1	<1
	Nickel, Ni	mg/kg	0.5	<0.5
	Zinc, Zn	mg/kg	0.5	<0.5

27/2/2017 Page 12 of 21

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury (dissolved) in Water

Method: ME-(AU)-[ENV]AN311(Perth)/AN312

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE162275.019	LB119219.010	Mercury	μg/L	0.0001	<0.0001	<0.0001	200	0

Mercury in Soil

Method: ME-(AU)-[ENV]AN312

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE162154.010	LB119123.014	Mercury	mg/kg	0.05	0.26	0.27	49	3
SE162156.009	LB119123.024	Mercury	mg/kg	0.05	<0.05	<0.05	200	0
SE162156.019	LB119124.014	Mercury	mg/kg	0.05	<0.05	<0.05	200	0
SE162156.028	LB119124.024	Mercury	mg/kg	0.05	0.08	0.09	91	11
SE162156.038	LB119125.014	Mercury	mg/kg	0.05	<0.05	0.05	132	3
SE162156.047	LB119125.024	Mercury	mg/kg	0.05	<0.05	<0.05	200	0
SE162156.057	LB119126.014	Mercury	mg/kg	0.05	<0.05	<0.05	147	0
SE162156.066	LB119126.024	Mercury	mg/kg	0.05	0.06	0.06	114	13
SE162156.076	LB119127.014	Mercury	mg/kg	0.05	<0.05	<0.05	162	0
SE162156.085	LB119127.024	Mercury	mg/kg	0.05	<0.05	< 0.05	200	0
SE162156.095	LB119166.014	Mercury	mg/kg	0.05	<0.05	< 0.05	200	0
SE162156.104	LB119166.024	Mercury	mg/kg	0.05	<0.05	<0.05	193	0
SE162156.114	LB119167.014	Mercury	mg/kg	0.05	<0.05	<0.05	200	0
SE162175.008	LB119167.024	Mercury	mg/kg	0.05	<0.05	<0.05	200	0

Moisture Content

Method: ME-(AU)-[ENV]AN002

								-
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE162156.010	LB119000.011	% Moisture	%w/w	0.5	18	16	36	12
SE162156.020	LB119000.022	% Moisture	%w/w	0.5	7.5	7.4	43	2
SE162156.030	LB119000.033	% Moisture	%w/w	0.5	7.1	7.2	44	0
SE162156.040	LB119000.044	% Moisture	%w/w	0.5	6.7	6.3	45	5
SE162156.050	LB119000.055	% Moisture	%w/w	0.5	19	15	36	23
SE162156.060	LB119000.066	% Moisture	%w/w	0.5	15	21	35	31
SE162156.070	LB119000.077	% Moisture	%w/w	0.5	18	19	35	5
SE162156.080	LB119000.088	% Moisture	%w/w	0.5	7.7	8.9	42	14
SE162156.090	LB119000.099	% Moisture	%w/w	0.5	28	23	34	19
SE162156.100	LB119000.110	% Moisture	%w/w	0.5	6.7	6.8	45	2
SE162156.110	LB119000.121	% Moisture	%w/w	0.5	4.0	4.2	54	4
SE162156.115	LB119000.127	% Moisture	%w/w	0.5	4.0	4.4	54	10

pH in soil (1:5)

Method: ME-(AU)-[ENV]AN101

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE162156.041	LB119004.014	рН	pH Units	-	5.8	5.6	32	2
SE162156.077	LB119004.025	pH	pH Units	-	8.0	8.3	31	2

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES

Method: ME-(AU)-[ENV]AN040/AN320

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE162156.010	LB119094.014	Arsenic, As	mg/kg	3	82	86	31	6
		Cadmium, Cd	mg/kg	0.3	0.5	0.5	86	1
		Chromium, Cr	mg/kg	0.3	35	36	31	3
		Copper, Cu	mg/kg	0.5	60	66	31	11
		Lead, Pb	mg/kg	1	98	100	31	3
		Manganese, Mn	mg/kg	1	170	170	31	4
		Nickel, Ni	mg/kg	0.5	17	17	33	0
		Zinc, Zn	mg/kg	0.5	380	360	31	4
SE162156.019	LB119094.024	Arsenic, As	mg/kg	3	32	31	33	2
		Cadmium, Cd	mg/kg	0.3	0.4	0.4	100	2
		Chromium, Cr	mg/kg	0.3	17	19	33	7
		Copper, Cu	mg/kg	0.5	6.2	7.3	37	17
		Lead, Pb	mg/kg	1	15	13	37	15
		Manganese, Mn	mg/kg	1	170	140	31	22
		Nickel, Ni	mg/kg	0.5	12	12	34	1
		Zinc, Zn	mg/kg	0.5	87	94	32	8
SE162156.029	LB119095.014	Arsenic, As	mg/kg	3	1200	1100	30	4
		Cadmium, Cd	mg/kg	0.3	4.7	3.8	37	22

27/2/2017 Page 13 of 21

DUPLICATES

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES (continued)

Method: ME-(AU)-[ENV]AN040/AN320

		_						
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate		RPD %
SE162156.029	LB119095.014	Chromium, Cr	mg/kg	0.3	28	31	32	9
		Copper, Cu	mg/kg	0.5	250	230	30	10
		Lead, Pb	mg/kg	1	140	140	31	4
		Manganese, Mn	mg/kg	1	720	680	30	6
		Nickel, Ni	mg/kg	0.5	25	22	32	11
		Zinc, Zn	mg/kg	0.5	2500	2300	30	8
SE162156.038	LB119095.024	Arsenic, As	mg/kg	3	86	91	31	5
		Cadmium, Cd	mg/kg	0.3	0.5	0.5	88	0
		Chromium, Cr	mg/kg	0.3	41	42	31	3
		Copper, Cu	mg/kg	0.5	40	42	31	4
		Lead, Pb	mg/kg	1	100	100	31	3
		Manganese, Mn	mg/kg	1	150	130	31	18
		Nickel, Ni	mg/kg	0.5	10	9.9	35	1
		Zinc, Zn		0.5			31	5
05400450 040	L D440000 044		mg/kg		140	140		7
SE162156.048	LB119096.014	Arsenic, As	mg/kg	3	44	47	32	
		Cadmium, Cd	mg/kg	0.3	0.5	0.5	93	4
		Chromium, Cr	mg/kg	0.3	31	34	32	11
		Copper, Cu	mg/kg	0.5	25	25	32	1
		Lead, Pb	mg/kg	1	140	120	31	12
		Manganese, Mn	mg/kg	1	1500	1300	30	12
		Nickel, Ni	mg/kg	0.5	14	14	34	1
		Zinc, Zn	mg/kg	0.5	160	170	31	3
SE162156.057	LB119096.024	Arsenic, As	mg/kg	3	16	15	36	7
		Cadmium, Cd	mg/kg	0.3	0.3	<0.3	127	7
		Chromium, Cr	mg/kg	0.3	16	15	33	7
		Copper, Cu	mg/kg	0.5	34	33	32	4
		Lead, Pb	mg/kg	1	17	17	36	3
		Manganese, Mn	mg/kg	1	130	140	31	9
		Nickel, Ni	mg/kg	0.5	11	11	35	4
25100150007	1.00007.014	Zinc, Zn	mg/kg	0.5	66	64	33	2
SE162156.067	LB119097.014	Arsenic, As	mg/kg	3	38	40	33	5
		Cadmium, Cd	mg/kg	0.3	0.4	0.4	113	7
		Chromium, Cr	mg/kg	0.3	28	30	32	6
		Copper, Cu	mg/kg	0.5	40	40	31	1
		Lead, Pb	mg/kg	1	56	62	32	11
		Manganese, Mn	mg/kg	1	64	68	32	6
		Nickel, Ni	mg/kg	0.5	9.3	9.5	35	2
		Zinc, Zn	mg/kg	0.5	72	74	33	2
SE162156.076	LB119097.024	Arsenic, As	mg/kg	3	53	57	32	8
		Cadmium, Cd	mg/kg	0.3	0.6	0.7	73	14
		Chromium, Cr	mg/kg	0.3	42	49	31	16
		Copper, Cu	mg/kg	0.5	34	34	31	2
		Lead, Pb	mg/kg	1	120	120	31	0
		Manganese, Mn		1	99	120	31	22
			mg/kg	0.5	15		33	3
		Nickel, Ni	mg/kg			16		
25400450 222	L D440000 0 1 1	Zinc, Zn	mg/kg	0.5	150	160	31	8
SE162156.086	LB119099.014	Arsenic, As	mg/kg	3	44	53	32	20
		Cadmium, Cd	mg/kg	0.3	0.3	0.4	115	7
		Chromium, Cr	mg/kg	0.3	32	32	32	1
		Copper, Cu	mg/kg	0.5	60	83	31	31 @
		Lead, Pb	mg/kg	1	230	240	30	1
		Manganese, Mn	mg/kg	1	220	220	30	2
		Nickel, Ni	mg/kg	0.5	19	20	33	7
		Zinc, Zn	mg/kg	0.5	130	140	32	5
SE162156.095	LB119099.024	Arsenic, As	mg/kg	3	11	10	40	14
		Cadmium, Cd	mg/kg	0.3	0.3	<0.3	128	4
		Chromium, Cr	mg/kg	0.3	27	27	32	2
		Copper, Cu	mg/kg	0.5	20	18	33	11
		Lead, Pb	mg/kg	1	16	16	36	1
					870	900		4
		Manganese, Mn Nickel, Ni	mg/kg	1			30	5
			mg/kg	0.5	13	12	34	

27/2/2017 Page 14 of 21

DUPLICATES

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES (continued)

Method: ME-(AU)-[ENV]AN040/AN320

Total Necoverable	s Metals III Coll Waste Collas IV	latorials by for OLO (continuou)				Modiod. ML	(to) [mitt] a	10 10// 1101
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE162156.095	LB119099.024	Zinc, Zn	mg/kg	0.5	50	48	34	4
SE162156.105	LB119100.014	Arsenic, As	mg/kg	3	16	14	37	8
		Cadmium, Cd	mg/kg	0.3	0.3	0.3	127	4
		Chromium, Cr	mg/kg	0.3	22	21	32	5
		Copper, Cu	mg/kg	0.5	25	23	32	9
		Lead, Pb	mg/kg	1	21	20	35	5
		Manganese, Mn	mg/kg	1	220	260	30	14
		Nickel, Ni	mg/kg	0.5	20	19	33	4
		Zinc, Zn	mg/kg	0.5	62	62	33	1
SE162156.114	LB119100.024	Arsenic, As	mg/kg	3	12	12	38	2
		Cadmium, Cd	mg/kg	0.3	<0.3	0.3	135	1
		Chromium, Cr	mg/kg	0.3	21	22	32	7
		Copper, Cu	mg/kg	0.5	19	20	33	5
		Lead, Pb	mg/kg	1	23	22	34	5
		Manganese, Mn	mg/kg	1	950	1200	30	21
		Nickel, Ni	mg/kg	0.5	8.3	8.9	36	7
		Zinc, Zn	mg/kg	0.5	43	45	35	5

27/2/2017 Page 15 of 21

LABORATORY CONTROL SAMPLES

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Exchangeable Cations and Cation Exchange Capacity (CEC/ESP/SAR)

Method: ME-(AU)-[ENV]AN122

Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB119044.002	Exchangeable Sodium, Na	mg/kg	2	NA	390	80 - 120	96
	Exchangeable Potassium, K	mg/kg	2	NA	343	80 - 120	93
	Exchangeable Calcium, Ca	mg/kg	2	NA	2570	80 - 120	93
	Exchangeable Magnesium, Mg	mg/kg	2	NA	635	80 - 120	92
LB119135.002	Exchangeable Sodium, Na	mg/kg	2	NA	390	80 - 120	93
	Exchangeable Potassium, K	mg/kg	2	NA	343	80 - 120	90
	Exchangeable Calcium, Ca	mg/kg	2	NA	2570	80 - 120	93
	Exchangeable Magnesium, Mg	mg/kg	2	NA	635	80 - 120	91

Mercury in Soil

Method: ME-(AU)-[ENV]AN312

Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB119123.002	Mercury	mg/kg	0.05	0.19	0.2	70 - 130	95
LB119124.002	Mercury	mg/kg	0.05	0.19	0.2	70 - 130	93
LB119125.002	Mercury	mg/kg	0.05	0.17	0.2	70 - 130	87
LB119126.002	Mercury	mg/kg	0.05	0.18	0.2	70 - 130	90
LB119127.002	Mercury	mg/kg	0.05	0.20	0.2	70 - 130	102
LB119166.002	Mercury	mg/kg	0.05	0.18	0.2	70 - 130	91
LB119167.002	Mercury	ma/ka	0.05	0.20	0.2	70 - 130	101

Metals in Water (Dissolved) by ICPOES

Method: ME-(AU)-[ENV]AN320/AN321

Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB119273.002	Arsenic, As	mg/L	0.02	2.0	2	80 - 120	99
	Cadmium, Cd	mg/L	0.001	2.0	2	80 - 120	100
	Chromium, Cr	mg/L	0.005	2.0	2	80 - 120	101
	Copper, Cu	mg/L	0.005	2.0	2	80 - 120	100
	Lead, Pb	mg/L	0.02	2.0	2	80 - 120	101
	Manganese, Mn	mg/L	0.005	2.0	2	80 - 120	100
	Nickel, Ni	mg/L	0.005	2.0	2	80 - 120	101
	Zinc, Zn	mg/L	0.01	2.0	2	80 - 120	100

pH in soil (1:5)

Method: ME-(AU)-[ENV]AN101

Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB119004.003	рН	pH Units	-	7.4	7.415	98 - 102	100

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES

Sample Number Parameter

Method: ME-(AU)-[ENV]AN040/AN320

52 54 51 51 53	50 50 50 50	80 - 120 80 - 120 80 - 120 80 - 120	104 107 103
51 51 53	50 50	80 - 120	
51 53	50		103
53		90 120	
		00 - 120	103
	50	80 - 120	105
51	50	80 - 120	103
53	50	80 - 120	106
52	50	80 - 120	104
53	50	80 - 120	105
53	50	80 - 120	106
52	50	80 - 120	103
51	50	80 - 120	102
53	50	80 - 120	106
52	50	80 - 120	104
54	50	80 - 120	107
52	50	80 - 120	104
53	50	80 - 120	106
54	50	80 - 120	108
52	50	80 - 120	103
52	50	80 - 120	104
53	50	80 - 120	105
52	50	80 - 120	104
54	50	80 - 120	107
53	50	80 - 120	105
51	50	80 - 120	102
	51 53 52 54 52 53 54 52 52 53 52 53 54 52 52 53 52	51 50 53 50 52 50 54 50 52 50 53 50 54 50 52 50 52 50 52 50 53 50 52 50 53 50 54 50 53 50	51 50 80 - 120 53 50 80 - 120 52 50 80 - 120 54 50 80 - 120 52 50 80 - 120 53 50 80 - 120 54 50 80 - 120 52 50 80 - 120 52 50 80 - 120 53 50 80 - 120 52 50 80 - 120 52 50 80 - 120 54 50 80 - 120 54 50 80 - 120 53 50 80 - 120

27/2/2017 Page 16 of 21

LABORATORY CONTROL SAMPLES

SE162156 R0

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES (continued)

Method: ME-(AU)-[ENV]AN040/AN320

							- ~
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB119097.002	Cadmium, Cd	mg/kg	0.3	50	50	80 - 120	100
	Chromium, Cr	mg/kg	0.3	52	50	80 - 120	104
	Copper, Cu	mg/kg	0.5	52	50	80 - 120	105
	Lead, Pb	mg/kg	1	51	50	80 - 120	101
	Manganese, Mn	mg/kg	1	52	50	80 - 120	104
	Nickel, Ni	mg/kg	0.5	52	50	80 - 120	105
	Zinc, Zn	mg/kg	0.5	53	50	80 - 120	106
LB119099.002	Arsenic, As	mg/kg	3	45	50	80 - 120	91
	Cadmium, Cd	mg/kg	0.3	45	50	80 - 120	90
	Chromium, Cr	mg/kg	0.3	45	50	80 - 120	89
	Copper, Cu	mg/kg	0.5	44	50	80 - 120	88
	Lead, Pb	mg/kg	1	45	50	80 - 120	90
	Manganese, Mn	mg/kg	1	46	50	80 - 120	91
	Nickel, Ni	mg/kg	0.5	45	50	80 - 120	89
	Zinc, Zn	mg/kg	0.5	45	50	80 - 120	90
LB119100.002	Arsenic, As	mg/kg	3	52	50	80 - 120	104
	Cadmium, Cd	mg/kg	0.3	52	50	80 - 120	104
	Chromium, Cr	mg/kg	0.3	52	50	80 - 120	104
	Copper, Cu	mg/kg	0.5	51	50	80 - 120	103
	Lead, Pb	mg/kg	1	52	50	80 - 120	104
	Manganese, Mn	mg/kg	1	52	50	80 - 120	105
	Nickel, Ni	mg/kg	0.5	52	50	80 - 120	104
	Zinc, Zn	mg/kg	0.5	53	50	80 - 120	105

27/2/2017 Page 17 of 21

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury (dissolved) in Water

Method: ME-(AU)-[ENV]AN311(Perth)/AN312

QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE162156.116	LB119219.004	Mercury	mg/L	0.0001	0.0082	<0.0001	0.008	103

Mercury in Soil

Method: ME-(AU)-[ENV]AN312

QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE162154.001	LB119123.004	Mercury	mg/kg	0.05	0.43	0.27	0.2	80
SE162156.010	LB119124.004	Mercury	mg/kg	0.05	0.16	<0.05	0.2	73
SE162156.029	LB119125.004	Mercury	mg/kg	0.05	0.27	0.11	0.2	82
SE162156.048	LB119126.004	Mercury	mg/kg	0.05	0.20	<0.05	0.2	86
SE162156.067	LB119127.004	Mercury	mg/kg	0.05	0.16	<0.05	0.2	54 ④
SE162156.086	LB119166.004	Mercury	mg/kg	0.05	0.18	<0.05	0.2	66 ④
SE162156.105	LB119167.004	Mercury	mg/kg	0.05	0.20	<0.05	0.2	93

Metals in Water (Dissolved) by ICPOES

Method: ME-(AU)-[ENV]AN320/AN321

	(=, =,							,
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery
SE162156.116	LB119273.004	Arsenic, As	mg/L	0.02	2.0	<0.02	2	100
		Cadmium, Cd	mg/L	0.001	2.0	<0.001	2	100
		Chromium, Cr	mg/L	0.005	2.0	<0.005	2	100
		Copper, Cu	mg/L	0.005	2.0	<0.005	2	101
		Lead, Pb	mg/L	0.02	2.0	<0.02	2	102
		Manganese, Mn	mg/L	0.005	2.0	<0.005	2	100
		Nickel, Ni	mg/L	0.005	2.0	<0.005	2	101
		Zinc, Zn	mg/L	0.01	2.0	<0.01	2	100
SE162321.014	LB119273.030	Arsenic, As	mg/L	0.02	2.1	<0.02	2	104
		Cadmium, Cd	mg/L	0.001	2.1	<0.001	2	104
		Chromium, Cr	mg/L	0.005	2.1	<0.005	2	104
		Copper, Cu	mg/L	0.005	2.1	<0.005	2	105
		Lead, Pb	mg/L	0.02	2.1	<0.02	2	106
		Nickel, Ni	mg/L	0.005	2.1	<0.005	2	105
		Zinc, Zn	mg/L	0.01	2.1	<0.01	2	105

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES

Method: ME-(AU)-[ENV]AN040/AN320

QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE162156.001	LB119094.004	Arsenic, As	mg/kg	3	240	190	50	90
		Cadmium, Cd	mg/kg	0.3	43	0.8	50	85
		Chromium, Cr	mg/kg	0.3	75	36	50	79
		Copper, Cu	mg/kg	0.5	79	35	50	89
		Lead, Pb	mg/kg	1	150	120	50	49 ⑨
		Manganese, Mn	mg/kg	1	2600	2600	50	-116 ⑤
		Nickel, Ni	mg/kg	0.5	54	10	50	86
		Zinc, Zn	mg/kg	0.5	260	220	50	79
SE162156.020	LB119095.004	Arsenic, As	mg/kg	3	66	27	50	77
		Cadmium, Cd	mg/kg	0.3	41	0.4	50	81
		Chromium, Cr	mg/kg	0.3	59	20	50	77
		Copper, Cu	mg/kg	0.5	68	21	50	95
		Lead, Pb	mg/kg	1	58	18	50	78
		Manganese, Mn	mg/kg	1	380	350	50	53 ⑨
		Nickel, Ni	mg/kg	0.5	53	13	50	80
		Zinc, Zn	mg/kg	0.5	97	55	50	84
SE162156.039	LB119096.004	Arsenic, As	mg/kg	3	100	57	50	89
		Cadmium, Cd	mg/kg	0.3	45	0.4	50	90
		Chromium, Cr	mg/kg	0.3	82	39	50	85
		Copper, Cu	mg/kg	0.5	64	18	50	92
		Lead, Pb	mg/kg	1	150	110	50	90
		Manganese, Mn	mg/kg	1	620	520	50	214 ⑤
		Nickel, Ni	mg/kg	0.5	51	5.9	50	90
		Zinc, Zn	mg/kg	0.5	140	75	50	121
SE162156.058	LB119097.004	Arsenic, As	mg/kg	3	110	59	50	104
		Cadmium, Cd	mg/kg	0.3	45	0.6	50	88
		Chromium, Cr	mg/kg	0.3	97	56	50	82
		Copper, Cu	mg/kg	0.5	60	9.5	50	101

27/2/2017 Page 18 of 21

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES (continued)

Method: ME-(AU)-[ENV]AN040/AN320

rotal recordings	io iniciale in Coll Tracte Collacti	national by for OLO (continuou)				mouloui ma	(, 10) [-11]	p 440-10// 440E0
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE162156.058	LB119097.004	Lead, Pb	mg/kg	1	200	150	50	106
		Manganese, Mn	mg/kg	1	1500	1400	50	167 ⑤
		Nickel, Ni	mg/kg	0.5	52	5.0	50	93
		Zinc, Zn	mg/kg	0.5	130	88	50	82
SE162156.077	LB119099.004	Arsenic, As	mg/kg	3	65	26	50	78
		Cadmium, Cd	mg/kg	0.3	39	1.2	50	75
		Chromium, Cr	mg/kg	0.3	72	38	50	68 ⑨
		Copper, Cu	mg/kg	0.5	65	25	50	81
		Lead, Pb	mg/kg	1	110	63	50	91
		Manganese, Mn	mg/kg	1	460	370	50	183 ⑤
		Nickel, Ni	mg/kg	0.5	67	30	50	73
		Zinc, Zn	mg/kg	0.5	290	310	50	-45 ⑤

27/2/2017 Page 19 of 21

MATRIX SPIKE DUPLICATES

SE162156 R0

Matrix spike duplicates are calculated as Relative Percent Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spike duplicates were required for this job.

27/2/2017 Page 20 of 21

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover tthe performance of this service .
- Sample not analysed for this analyte.
- IS Insufficient sample for analysis. LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
 QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- ② RPD failed acceptance criteria due to sample heterogeneity.
- 3 Results less than 5 times LOR preclude acceptance criteria for RPD.
- Recovery failed acceptance criteria due to matrix interference.
- ® Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- © LOR was raised due to sample matrix interference.
- ① LOR was raised due to dilution of significantly high concentration of analyte in sample.
- ® Reanalysis of sample in duplicate confirmed sample heterogeneity and inconsistency of results.
- Recovery failed acceptance criteria due to sample heterogeneity.
- © LOR was raised due to high conductivity of the sample (required dilution).
- † Refer to Analytical Report comments for further information.

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service, available on request and accessible at http://www.sgs.com/en/terms-and-conditions. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained herein reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This test report shall not be reproduced, except in full.

27/2/2017 Page 21 of 21

Laboratory Test Request / Chain of Custody Record

Lemko PENRI	TH NSW 275			PENF	PO RITH NS	Box 880 W 2751	Fax: (02) 4722 2700 r) 4722 6161 fo@geotech.com.au				Page	1	of	9
TO: PH:	UNIT 16 33 MADD	VIRONMENTAL S OX STREET DRIA NSW 201			FAX:	02 8594	0499	Sampling By: Project Manager:		SS/JH JX	Job No: Project: Location:	12675/4 Googong NH	10.7 & NH2		
						02 000 1		r roject manager.			Location.	Googong III	in ani		
ATTN:	MS EMIL	Y YIN Sampling de	taile		Samo	le type									
		Sampling de	talis		Samp	le type		F	Results re	eauired	by: Normal T	AT			
	Location	Depth (m)	Date	Time	Soil	Water			9,000,000,000		, , , , , , , , , , , , , , , , , , ,				
							Heavy Metals As, Cd, Cr, Cu, Pb, Mn, Hg, Ni and Zn	рН	CEC						KEEP SAMPLE
-1	D201	0-0.1	13/02/2017		SG		✓	✓	1				1		YES
2	D201	0.2-0.3	13/02/2017	24	SG		✓								YES
3	D201	1.0-1.1	13/02/2017	*	SG		✓								YES
4	D201	1,9-2,0	13/02/2017	4	SG		✓	/	/						YES
5	D202	0-0.1	13/02/2017		SG	-	√		7.000						YES
6	D202	0.2-0.3	13/02/2017	4	SG		✓								YES
7	D202	1.0-1.1	13/02/2017		SG		√								YES
8	D203	0-0.1	14/02/2017	-	SG		✓								YES
1	D203	0.2-0.3	14/02/2017	-1	SG		√							- A	YES
Ö	D203	0.9-1.0	14/02/2017		SG		✓				31				YES
li	D204	0-0.1	14/02/2017	5-	SG		✓	✓							YES
12	D204	0.2-0.3	14/02/2017	0.00	SG		✓	/							YES
13	D204	1.0-1.1	14/02/2017		SG		✓								YES
			Relino	quished by							Received by				
	Name			Signature	Y		Date	, Na	ame		Signatu	re	1 .	Date	
		(U		jx			20/02/2017	Su	uba		D.Du	huy	12012	1.4 (8	11:30
Legend WG WP	JOHN > Water sar				SG	Soil sam	Date 20/02/2017 ple (glass jar)	, Na	SP S	Soil sample ((plastic bag)	h ~ 1	20 2 * Purge & Tra	Date P	2

Laboratory Test Request / Chain of Custody Record

Tel: (02) 4722 2700 P O Box 880 Fax: (02) 4722 6161 Lemko Place Page of PENRITH NSW 2750 PENRITH NSW 2751 email: info@geotech.com.au SS/JH SGS ENVIRONMENTAL SERVICES Sampling By: Job No: 12675/4 **UNIT 16** 33 MADDOX STREET Project: **ALEXANDRIA NSW 2015** PH: 02 8594 0400 FAX: 02 8594 0499 Project Manager: JX Location: Googong NH1A-7 & NH2 ATTN: MS EMILY YIN Sampling details Sample type Results required by: Normal TAT Location Depth (m) Date Time Soil Water **Heavy Metals** KEEP pH CEC As, Cd, Cr, Cu, Pb, SAMPLE Mn, Hg, Ni and Zn D205 14/02/2017 SG YES 0-0.1 YES D205 0.2-0.3 14/02/2017 SG 15 D205 0.7-0.8 14/02/2017 SG YES D206 14/02/2017 SG YES 17 0-0.1 SG YES D206 0.2-0.3 14/02/2017 20 D206 0.6-0.7 14/02/2017 SG YES D207 0-0.1 14/02/2017 SG YES D207 0.2-0.3 14/02/2017 SG YES YES 22 D207 14/02/2017 SG 1.0-1.1 YES D208 0-0.1 14/02/2017 SG D208 0.2-0.3 14/02/2017 SG YES D208 14/02/2017 SG YES 1.0-1.1 Relinquished by Received by Date Name Date Signature Name Signature Suba 20/02/17 @ 11.30 20/02/2017 JOHN XU 17/02/2017 Legend: WG Water sample, glass bottle SG SP Soil sample (plastic bag) * Purge & Trap Soil sample (glass jar) WP Water sample, plastic bottle Test required

Laboratory Test Request / Chain of Custody Record

Tel: (02) 4722 2700 P O Box 880 Fax: (02) 4722 6161 Lemko Place Page of PENRITH NSW 2750 PENRITH NSW 2751 email: info@geotech.com.au SS/JH SGS ENVIRONMENTAL SERVICES Sampling By: Job No: 12675/4 UNIT 16 33 MADDOX STREET Project: ALEXANDRIA NSW 2015 PH: 02 8594 0400 FAX: 02 8594 0499 Project Manager: JX Location: Googong NH1A-7 & NH2 ATTN: MS EMILY YIN Sampling details Sample type Results required by: Normal TAT Water Location Depth (m) Date Time Soil **Heavy Metals** KEEP pH CEC As, Cd, Cr, Cu, Pb, SAMPLE Mn, Hg, Ni and Zn 26 27 28 29 30 31 32 33 34 35 37 SG 0-0.1 13/02/2017 D209 YES 1 D209 0.2-0.3 13/02/2017 SG YES SG D209 1.0-1.1 13/02/2017 YES D209 1.9-2.0 13/02/2017 SG YES D210 0-0.1 13/02/2017 SG YES SG ~ D210 13/02/2017 0.2-0.3 YES V D210 1.0-1.1 13/02/2017 SG YES D211 0-0.1 14/02/2017 SG YES D211 0.2-0.3 14/02/2017 SG YES D211 SG 1.0-1.1 14/02/2017 YES D211 1.9-2.0 14/02/2017 SG YES D212 0-0.1 14/02/2017 SG YES D212 0.2-0.3 14/02/2017 SG ~ YES D212 1.0-1.1 14/02/2017 SG YES Relinquished by Received by Date Name Signature Name Signature 20 2117 JOHN XU 20/02/2017 ix Legend: WG Water sample, glass bottle SG Soil sample (glass jar) SP Soil sample (plastic bag) * Purge & Trap WP Water sample, plastic bottle Test required

Laboratory Test Request / Chain of Custody Record

Tel: (02) 4722 2700 Lemko Place P O Box 880 Fax: (02) 4722 6161 Page of PENRITH NSW 2751 email: info@geotech.com.au PENRITH NSW 2750 SGS ENVIRONMENTAL SERVICES Sampling By: SS/JH 12675/4 Job No: UNIT 16 33 MADDOX STREET Project: ALEXANDRIA NSW 2015 PH: 02 8594 0400 FAX: 02 8594 0499 Project Manager: JX Location: Googong NH1A-7 & NH2 ATTN: MS EMILY YIN Sampling details Sample type Results required by: Normal TAT Location Depth (m) Date Time Soil Water **Heavy Metals** KEEP рН CEC As, Cd, Cr, Cu, Pb, SAMPLE Mn, Hg, Ni and Zn 42 43 44 D213 0-0.1 13/02/2017 SG YES 1 1 D213 0.2-0.3 13/02/2017 SG YES D213 YES 1.0-1.1 13/02/2017 SG D213 1.9-2.0 13/02/2017 SG YES D214 0-0.1 13/02/2017 SG YES D214 0.2-0.3 13/02/2017 SG YES YES 447 44 49 57 D214 1.0-1.1 13/02/2017 SG D215 14/02/2017 SG YES 0-0.1 D215 0.2-0.3 14/02/2017 SG ~ YES 1 YES D215 1.0-1.1 14/02/2017 SG YES D215 1.9-2.0 14/02/2017 SG SG YES D216 0-0.1 14/02/2017 0.2-0.3 14/02/2017 SG ~ YES D216 D216 1.0-1.1 14/02/2017 SG YES Relinquished by Received by Date Name Signature Signature 2012117 JOHN XU 20/02/2017 Legend: WG Water sample, glass bottle Soil sample (glass jar) SP Soil sample (plastic bag) * Purge & Trap WP Water sample, plastic bottle Test required

Laboratory Test Request / Chain of Custody Record

Tel: (02) 4722 2700 Lemko Place P O Box 880 Fax: (02) 4722 6161 Page of PENRITH NSW 2750 PENRITH NSW 2751 email: info@geotech.com.au 5 SGS ENVIRONMENTAL SERVICES Sampling By: SS/JH Job No: 12675/4 UNIT 16 33 MADDOX STREET Project: ALEXANDRIA NSW 2015 PH: 02 8594 0400 FAX: 02 8594 0499 Project Manager: JX Location: Googong NH1A-7 & NH2 ATTN: MS EMILY YIN Sampling details Sample type Results required by: Normal TAT Location Water Depth (m) Date Time Soil **Heavy Metals** KEEP pH CEC As, Cd, Cr, Cu, Pb, SAMPLE Mn, Hg, Ni and Zn D217 5455 0-0.1 14/02/2017 SG YES D217 V 14/02/2017 0.2-0.3 SG YES 1 D217 14/02/2017 SG 1.0-1.1 YES D217 1.9-2.0 14/02/2017 SG YES D218 0-0.1 SG V 14/02/2017 1 YES D218 0.2-0.3 14/02/2017 SG YES D218 1.0-1.1 14/02/2017 SG YES D219 0-0.1 14/02/2017 SG YES D219 0.2-0.3 14/02/2017 SG YES D219 V 1.0 - 1.114/02/2017 SG YES D219 1.9-2.0 14/02/2017 SG YES D220 0-0.1 14/02/2017 SG YES D220 0.2-0.3 14/02/2017 SG V YES D220 1.0-1.1 14/02/2017 SG YES Relinquished by Received by Name Date Signature Name Date JOHN XU 20/02/2017 ix Suba 20 2 11:30 Legend: WG Water sample, glass bottle Soil sample (glass jar) SP Soil sample (plastic bag) * Purge & Trap WP 1 Water sample, plastic bottle Test required

Laboratory Test Request / Chain of Custody Record

Tel: (02) 4722 2700 P O Box 880 Fax: (02) 4722 6161 Lemko Place Page of PENRITH NSW 2750 email: info@geotech.com.au 6 9 PENRITH NSW 2751 SGS ENVIRONMENTAL SERVICES TO: Sampling By: SS/JH Job No: 12675/4 UNIT 16 33 MADDOX STREET Project: ALEXANDRIA NSW 2015 PH: 02 8594 0400 FAX: 02 8594 0499 Project Manager: JX Googong NH1A-7 & NH2 Location: ATTN: MS EMILY YIN Sampling details Sample type Results required by: Normal TAT Location Depth (m) Soil Water Date Time **Heavy Metals** KEEP pH CEC As, Cd, Cr, Cu, Pb, SAMPLE Mn, Hg, Ni and Zn D221 14/02/2017 SG YES 0-0.1 D221 0.2-0.3 14/02/2017 SG YES ~ D221 14/02/2017 SG 1.0-1.1 YES D221 14/02/2017 SG YES 1.9-2.0 72 D222 0-0.1 14/02/2017 SG YES 73 74 D222 0.2-0.3 14/02/2017 SG YES D222 1.0-1.1 14/02/2017 SG YES 75 D223 0-0.1 14/02/2017 SG YES 76 D223 0.2-0.3 14/02/2017 SG YES 77 D223 SG 14/02/2017 YES 1.0-1.1 78 D224 0-0.1 14/02/2017 SG YES 79 D224 0.2-0.3 14/02/2017 SG YES 85 D224 YES 1.0-1.1 14/02/2017 SG Relinquished by Received by Name Signature Date Signature Name 2012/17 JOHN XU 20/02/2017 11:30 Legend: WG Water sample, glass bottle SG Soil sample (glass jar) SP Soil sample (plastic bag) * Purge & Trap WP Water sample, plastic bottle Test required

Laboratory Test Request / Chain of Custody Record

Tel: (02) 4722 2700 Lemko Place P O Box 880 Fax: (02) 4722 6161 Page of PENRITH NSW 2751 PENRITH NSW 2750 email: info@geotech.com.au SGS ENVIRONMENTAL SERVICES Sampling By: SS/JH 12675/4 Job No: UNIT 16 33 MADDOX STREET Project: ALEXANDRIA NSW 2015 PH: 02 8594 0400 FAX: 02 8594 0499 Project Manager: JX Location: Googong NH1A-7 & NH2 ATTN: MS EMILY YIN Sampling details Sample type Results required by: Normal TAT Location Depth (m) Time Soil Water Date **Heavy Metals** KEEP pH CEC As, Cd, Cr, Cu, Pb, SAMPLE Mn, Hg, Ni and Zn 81 D225 0-0.1 14/02/2017 SG YES ~ D225 0.2-0.3 14/02/2017 SG YES 83 YES D225 1.0-1.1 14/02/2017 SG 84 D225 1.9-2.0 14/02/2017 SG YES 1 YES D232 0-0.1 14/02/2017 SG 86 D232 14/02/2017 SG YES 0.2-0.3 87 YES D232 1.0-1.1 14/02/2017 SG 88 SG YES D233 0-0.1 14/02/2017 39 14/02/2017 SG YES D233 0.2-0.3 1 95 D233 1.0-1.1 14/02/2017 SG YES YES D233 1.9-2.0 14/02/2017 SG 12 YES D234 0-0.1 14/02/2017 SG 1 YES D234 0.2-0.3 14/02/2017 SG D234 1.0-1.1 14/02/2017 SG YES Relinquished by Received by Date Name Signature Date Name Signature 17 @ 11:30 20/02/2017 JOHN XU jx Legend: WG Soil sample (glass jar) SP Soil sample (plastic bag) Water sample, glass bottle * Purge & Trap 1 WP Test required Water sample, plastic bottle

Laboratory Test Request / Chain of Custody Record

Tel: (02) 4722 2700 Lemko Place P O Box 880 Fax: (02) 4722 6161 Page of PENRITH NSW 2751 email: info@geotech.com.au PENRITH NSW 2750 SGS ENVIRONMENTAL SERVICES Sampling By: SS/JH 12675/4 Job No: UNIT 16 33 MADDOX STREET Project: ALEXANDRIA NSW 2015 PH: 02 8594 0400 FAX: 02 8594 0499 Project Manager: JX Location: Googong NH1A-7 & NH2 ATTN: MS EMILY YIN Sampling details Sample type Results required by: Normal TAT Location Depth (m) Date Time Soil Water **Heavy Metals** KEEP pH CEC As, Cd, Cr, Cu, Pb, SAMPLE Mn, Hg, Ni and Zn 45 YES D235 0-0.1 14/02/2017 SG 1 YES 1 D235 0.2-0.3 14/02/2017 SG 97 1 YES SG D235 1.0-1.1 14/02/2017 98 D235 1.9-2.0 14/02/2017 SG YES 99 YES D236 0-0.1 14/02/2017 SG YES D236 0.2-0.3 14/02/2017 SG 100 YES D236 1.0-1.1 14/02/2017 SG 101 D237 0-0.1 14/02/2017 SG YES 102 D237 14/02/2017 SG 1 YES 103 0.2 - 0.3~ YES 104 D237 1.0-1.1 14/02/2017 SG 155 YES D237 1.9-2.0 14/02/2017 SG SG YES D238 0-0.1 14/02/2017 SG V ~ YES D238 0.2-0.3 14/02/2017 107 138 D238 14/02/2017 SG YES 1.0-1.1 Relinquished by Received by Date Date Name Signature Name Signature Subo JOHN XU 20/02/2017 2012 11:30 ix Legend: WG Water sample, glass bottle Soil sample (glass jar) SP Soil sample (plastic bag) * Purge & Trap 1 WP Test required Water sample, plastic bottle

Laboratory Test Request / Chain of Custody Record

Tel: (02) 4722 2700 P O Box 880 Fax: (02) 4722 6161 Lemko Place Page of 9 PENRITH NSW 2750 PENRITH NSW 2751 email: info@geotech.com.au Sampling By: SS/JH 12675/4 SGS ENVIRONMENTAL SERVICES Job No: UNIT 16 Project: 33 MADDOX STREET **ALEXANDRIA NSW 2015** FAX: 02 8594 0499 Project Manager: JX Location: Googong NH1A-7 & NH2 PH: 02 8594 0400 ATTN: MS EMILY YIN Sampling details Sample type Results required by: Normal TAT Water Location Depth (m) Date Time Soil **Heavy Metals** KEEP CEC pH As, Cd, Cr, Cu, Pb, SAMPLE Mn, Hg, Ni and Zn lo1 Duplicate DS1 YES 14/02/2017 SG 1 YES Duplicate DS2 14/02/2017 SG YES Duplicate DS3 14/02/2017 SG SG YES Duplicate DS4 14/02/2017 V YES Duplicate DS5 14/02/2017 SG YES SG Duplicate DS6 14/02/2017 YES 14/02/2017 SG Duplicate DS7 1 YES 13/02/2017 Rinsate RS1 WG YES Rinsate RS2 14/02/2017 WG Received by Relinquished by Signature Name Signature Date Name 20/02/2017 Suha JOHN XU Legend: Soil sample (glass jar) SP Soil sample (plastic bag) * Purge & Trap WG Water sample, glass bottle WP Test required Water sample, plastic bottle

CLIENT DETAILS

Huong Crawford John Xu Contact Manager

Geotechnique SGS Alexandria Environmental Client Laboratory

> P O Box 880 Unit 16 33 Maddox St Address PENRITH NSW 2751 Alexandria NSW 2015

02 4722 2700 +61 2 8594 0400 Telephone Telephone 02 4722 6161 +61 2 8594 0499 Facsimile Facsimile

Email john.xu@geotech.com.au Email au.environmental.sydney@sgs.com

Googong NH1A-7 & NH2 Project Samples Received Mon 20/2/2017

Order Number (Not specified) Report Due Mon 27/2/2017 SE162156 Samples 117 SGS Reference

SUBMISSION DETAILS

Address

This is to confirm that 117 samples were received on Monday 20/2/2017. Results are expected to be ready by Monday 27/2/2017. Please quote SGS reference SE162156 when making enquiries. Refer below for details relating to sample integrity upon receipt.

Samples clearly labelled Yes Complete documentation received Yes Sample container provider SGS Sample cooling method Ice Bricks Samples received in correct containers Sample counts by matrix 115 Soil, 2 Water Yes

20/2/2017 Date documentation received Type of documentation received COC Samples received in good order Yes Samples received without headspace Yes Sample temperature upon receipt 17.3°C Sufficient sample for analysis Yes Turnaround time requested Standard

Unless otherwise instructed, water and bulk samples will be held for one month from date of report, and soil samples will be held for two months.

COMMENTS -

To the extent not inconsistent with the other provisions of this document and unless specifically agreed otherwise in writing by SGS, all SGS services are rendered in accordance with the applicable SGS General Conditions of Service accessible at http://www.sgs.com/en/terms-and-conditions as at the date of this document. Attention is drawn to the limitations of liability and to the clauses of indemnification.

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia Australia t +61 2 8594 0400 f +61 2 8594 0499

www.sgs.com.au

CLIENT DETAILS . Client Geotechnique Project Googong NH1A-7 & NH2

SUMMARY OF ANALYSIS

No.	Sample ID	Exchangeable Cations and Cation Exchange Capacity	Mercury in Soil	Moisture Content	pH in soil (1:5)	Total Recoverable Metals in Soil/Waste
001	D201 0-0.1	13	1	1	1	8
002	D201 0.2-0.3	-	1	1	-	8
003	D201 1.0-1.1	-	1	1	-	8
004	D201 1.9-2.0	13	1	1	1	8
005	D202 0-0.1	-	1	1	-	8
006	D202 0.2-0.3	-	1	1	-	8
007	D202 1.0-1.1	-	1	1	-	8
800	D203 0-0.1	-	1	1	-	8
009	D203 0.2-0.3	-	1	1	-	8
010	D203 0.9-1.0	-	1	1	-	8
011	D204 0-0.1	-	1	1	1	8
012	D204 0.2-0.3	-	1	1	1	8
013	D204 1.0-1.1	-	1	1	-	8
014	D205 0-0.1	-	1	1	-	8
015	D205 0.2-0.3	-	1	1	-	8
016	D205 0.7-0.8	-	1	1	-	8
017	D206 0-0.1	13	1	1	1	8
018	D206 0.2-0.3	13	1	1	1	8
019	D206 0.6-0.7	-	1	1	-	8
020	D207 0-0.1	-	1	1	-	8
021	D207 0.2-0.3	-	1	1	-	8
022	D207 1.0-1.1	-	1	1	-	8
023	D208 0-0.1	-	1	1	-	8
024	D208 0.2-0.3	-	1	1	-	8

CONTINUED OVERLEAF

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document.

The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details.

Testing as per this table shall commence immediately unless the client intervenes with a correction .

CLIENT DETAILS .

Client Geotechnique

Project Googong NH1A-7 & NH2

SUMMARY OF ANALYSIS

		Exchangeable Cations and Cation Exchange Capacity	Mercury in Soil	Moisture Content	pH in soil (1:5)	Total Recoverable Metals in Soil/Waste
		xchar	1ercur	10istur	H in s	otal R Soil/
No. 025	Sample ID	-	1	1	<u>o</u>	8
	D208 1.0-1.1					
026	D209 0-0.1	13	1	1	1	8
027	D209 0.2-0.3	-	1	1	-	8
028	D209 1.0-1.1	-	1	1	-	8
029	D209 1.9-2.0	-	1	1	-	8
030	D210 0-0.1	-	1	1	-	8
031	D210 0.2-0.3	-	1	1	-	8
032	D210 1.0-1.1	-	1	1	-	8
033	D211 0-0.1	13	1	1	1	8
034	S211 0.2-0.3	-	1	1	-	8
035	D211 1.0-1.1	-	1	1	-	8
036	D211 1.9-2.0	-	1	1	-	8
037	D212 0-0.1	-	1	1	-	8
038	D212 0.2-0.3	-	1	1	-	8
039	D212 1.0-1.1	13	1	1	1	8
040	D213 0-0.1	-	1	1	-	8
041	D213 0.2-0.3	13	1	1	1	8
042	D213 1.0-1.1	13	1	1	1	8
043	D213 1.9-2.0	-	1	1	-	8
044	D214 0-0.1	-	1	1	-	8
045	D214 0.2-0.3	-	1	1	-	8
046	D214 1.0-1.1	-	1	1	-	8
047	D215 0-0.1	-	1	1	-	8
048	D215 0.2-0.3	13	1	1	1	8

CONTINUED OVERLEAF

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document.

The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details.

Testing as per this table shall commence immediately unless the client intervenes with a correction .

CLIENT DETAILS .

Client Geotechnique

Project Googong NH1A-7 & NH2

SUMMARY OF ANALYSIS

No.	Sample ID	Exchangeable Cations and Cation Exchange Capacity	Mercury in Soil	Moisture Content	pH in soil (1:5)	Total Recoverable Metals in Soil/Waste
049	D215 1.0-1.1	13	1	1	1	8
050	D215 1.9-2.0	-	1	1	-	8
051	D216 0-0.1	-	1	1	-	8
052	D216 0.2-0.3	13	1	1	1	8
053	D216 1.0-1.1	13	1	1	1	8
054	D217 0-0.1	-	1	1	-	8
055	D217 0.2-0.3	13	1	1	-	8
056	D217 1.0-1.1	13	1	1	1	8
057	D217 1.9-2.0	-	1	1	-	8
058	D218 0-0.1	13	1	1	-	8
059	D218 0.2-0.3	13	1	1	-	8
060	D218 1.0-1.1	13	1	1	-	8
061	D219 0-0.1	13	1	1	-	8
062	D219 0.2-0.3	-	1	1	-	8
063	D219 1.0-1.1	-	1	1	-	8
064	D219 1.9-2.0	13	1	1	1	8
065	D220 0-0.1	-	1	1	-	8
066	D220 0.2-0.3	-	1	1	-	8
067	D220 1.0-1.1	-	1	1	-	8
068	D221 0-0.1	-	1	1	-	8
069	D221 0.2-0.3	-	1	1	-	8
070	D221 1.0-1.1	-	1	1	-	8
071	D221 1.9-2.0	-	1	1	-	8
072	D222 0-0.1	-	1	1	-	8

CONTINUED OVERLEAF

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document.

The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details.

Testing as per this table shall commence immediately unless the client intervenes with a correction .

CLIENT DETAILS .

Client Geotechnique

Project Googong NH1A-7 & NH2

SUMMARY OF ANALYSIS

No.	Sample ID	Exchangeable Cations and Cation Exchange Capacity	Mercury in Soil	Moisture Content	pH in soil (1:5)	Total Recoverable Metals in Soil/Waste
073	D222 0.2-0.3	-	1	1	-	8
074	D222 1.0-1.1	-	1	1	-	8
075	D223 0-0.1	13	1	1	1	8
076	D223 0.2-0.3	13	1	1	1	8
077	D223 1.0-1.1	13	1	1	1	8
078	D224 0-0.1	-	1	1	-	8
079	D224 0.2-0.3	-	1	1	-	8
080	D224 1.0-1.1	13	1	1	-	8
081	D225 0-0.1	-	1	1	-	8
082	D225 0.2-0.3	-	1	1	-	8
083	D225 1.0-1.1	-	1	1	-	8
084	D225 1.9-2.0	13	1	1	1	8
085	D232 0-0.1	-	1	1	-	8
086	D232 0.2-0.3	-	1	1	-	8
087	D232 1.0-1.1	13	1	1	1	8
088	D233 0-0.1	-	1	1	-	8
089	D233 0.2-0.3	-	1	1	-	8
090	D233 1.0-1.1	-	1	1	-	8
091	D233 1.9-2.0	-	1	1	-	8
092	D234 0-0.1	-	1	1	-	8
093	D234 0.2-0.3	-	1	1	-	8
094	D234 1.0-1.1	-	1	1	-	8
095	D235 0-0.1	13	1	1	-	8
096	D235 0.2-0.3	13	1	1	-	8

CONTINUED OVERLEAF

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document.

The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details.

Testing as per this table shall commence immediately unless the client intervenes with a correction .

CLIENT DETAILS . Client Geotechnique Project Googong NH1A-7 & NH2

SUMMARY OF ANALYSIS

No.	Sample ID	Exchangeable Cations and Cation Exchange Capacity	Mercury (dissolved) in Water	Mercury in Soil	Metals in Water (Dissolved) by ICPOES	Moisture Content	Total Recoverable Metals in Soil/Waste
097	D235 1.0-1.1	13	-	1	-	1	8
098	D235 1.9-2.0	13	-	1	-	1	8
099	D236 0-0.1	13	-	1	-	1	8
100	D236 0.2-0.3	13	-	1	-	1	8
101	D236 1.0-1.1	-	-	1	-	1	8
102	D237 0-0.1	-	-	1	-	1	8
103	D237 0.2-0.3	-	-	1	-	1	8
104	D237 1.0-1.1	-	-	1	-	1	8
105	D237 1.9-2.0	13	-	1	-	1	8
106	D238 0-0.1	-	-	1	-	1	8
107	D238 0.2-0.3	13	-	1	-	1	8
108	D238 1.0-1.1	13	-	1	-	1	8
109	Duplicate DS1	-	-	1	-	1	8
110	Duplicate DS2	-	-	1	-	1	8
111	Duplicate DS3	-	-	1	-	1	8
112	Duplicate DS4	-	-	1	-	1	8
113	Duplicate DS5	-	-	1	-	1	8
114	Duplicate DS6	-	-	1	-	1	8
115	Duplicate DS7	-	-	1	-	1	8
116	Rinsate RS1	-	1	-	8	-	-
117	Rinsate RS2	-	1	-	8	-	-

21/02/2017 Page 6 of 6

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document.

The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details.

Testing as per this table shall commence immediately unless the client intervenes with a correction .

ANALYTICAL REPORT

CLIENT DETAILS

LABORATORY DETAILS

Contact John Xu
Client Geotechnique
Address P.O. Box 880

PENRITH NSW 2751

Manager Huong Crawford

Laboratory SGS Alexandria Environmental Address Unit 16, 33 Maddox St

Alexandria NSW 2015

Telephone 02 4722 2700 Telephone +61 2 8594 0400

Facsimile 02 4722 6161 Facsimile +61 2 8594 0499
Email john.xu@geotech.com.au Email au.environmental.sydney@sgs.com

Project Googong NH1A-7 & NH2 - Additional SGS Reference SE162156A R0

 Order Number
 (Not specified)
 Date Received
 7/3/2017

 Samples
 117
 Date Reported
 13/3/2017

COMMENTS

Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562(4354).

SIGNATORIES

Bennet Lo

Senior Organic Chemist/Metals Chemist

Shane McDermott

Senior Laboratory Technician

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015

Australia Australia t +61 2 8594 0400 f +61 2 8594 0499 www.sgs.com.au

ANALYTICAL RESULTS

SE162156A R0

pH in soil (1:5) [AN101] Tested: 9/3/2017

			D203 0.9-1.0	D218 0.2-0.3	D219 0-0.1	D220 0-0.1
			SOIL	SOIL	SOIL	SOIL
						-
			14/2/2017	14/2/2017	14/2/2017	14/2/2017
PARAMETER	UOM	LOR	SE162156A.010	SE162156A.059	SE162156A.061	SE162156A.065
pH	pH Units	-	7.1	5.2	5.4	6.2

13/03/2017 Page 2 of 4

ANALYTICAL RESULTS

Exchangeable Cations and Cation Exchange Capacity (CEC/ESP/SAR) [AN122] Tested: 9/3/2017

			D203 0.9-1.0	D205 0-0.1	D207 0-0.1	D220 0-0.1	D224 0-0.1
			SOIL -	SOIL -	SOIL -	SOIL -	SOIL -
PARAMETER	UOM	LOR	14/2/2017 SE162156A.010	14/2/2017 SE162156A.014	14/2/2017 SE162156A.020	14/2/2017 SE162156A.065	14/2/2017 SE162156A.078
Exchangeable Sodium, Na	mg/kg	2	53	18	21	30	26
Exchangeable Sodium, Na	meq/100g	0.01	0.23	0.08	0.09	0.13	0.11
Exchangeable Sodium Percentage*	%	0.1	1.5	1.1	1.1	1.3	1.3
Exchangeable Potassium, K	mg/kg	2	130	45	62	110	51
Exchangeable Potassium, K	meq/100g	0.01	0.33	0.12	0.16	0.28	0.13
Exchangeable Potassium Percentage*	%	0.1	2.2	1.7	1.9	2.6	1.5
Exchangeable Calcium, Ca	mg/kg	2	1000	370	630	1700	1100
Exchangeable Calcium, Ca	meq/100g	0.01	5.0	1.8	3.1	8.3	5.4
Exchangeable Calcium Percentage*	%	0.1	32.7	27.6	37.1	79.5	61.8
Exchangeable Magnesium, Mg	mg/kg	2	1200	570	620	210	380
Exchangeable Magnesium, Mg	meq/100g	0.02	9.8	4.7	5.1	1.7	3.1
Exchangeable Magnesium Percentage*	%	0.1	63.6	69.5	60.0	16.6	35.4
Cation Exchange Capacity	meq/100g	0.02	15	6.7	8.5	10	8.8

			D225 0-0.1
			SOIL -
			14/2/2017
PARAMETER	UOM	LOR	SE162156A.081
Exchangeable Sodium, Na	mg/kg	2	16
Exchangeable Sodium, Na	meq/100g	0.01	0.07
Exchangeable Sodium Percentage*	%	0.1	2.3
Exchangeable Potassium, K	mg/kg	2	51
Exchangeable Potassium, K	meq/100g	0.01	0.13
Exchangeable Potassium Percentage*	%	0.1	4.3
Exchangeable Calcium, Ca	mg/kg	2	400
Exchangeable Calcium, Ca	meq/100g	0.01	2.0
Exchangeable Calcium Percentage*	%	0.1	65.9
Exchangeable Magnesium, Mg	mg/kg	2	100
Exchangeable Magnesium, Mg	meq/100g	0.02	0.84
Exchangeable Magnesium Percentage*	%	0.1	27.6
Cation Exchange Capacity	meq/100g	0.02	3.1

13/03/2017 Page 3 of 4

METHOD SUMMARY

SE162156A R0

METHOD -

METHODOLOGY SUMMARY -

AN101

pH in Soil Sludge Sediment and Water: pH is measured electrometrically using a combination electrode and is calibrated against 3 buffers purchased commercially. For soils, sediments and sludges, an extract with water (or 0.01M CaCl2) is made at a ratio of 1:5 and the pH determined and reported on the extract. Reference APHA 4500-H+.

AN122

Exchangeable Cations, CEC and ESP: Soil sample is extracted in 1M Ammonium Acetate at pH=7 (or 1M Ammonium Chloride at pH=7) with cations (Na, K, Ca & Mg) then determined by ICP OES/ICP MS and reported as Exchangeable Cations. For saline soils, these results can be corrected for water soluble cations and reported as Exchangeable cations in meq/100g or soil can be pre-treated (aqueous ethanol/aqueous glycerol) prior to extraction. Cation Exchange Capacity (CEC) is the sum of the exchangeable cations in meq/100g.

AN122

The Exchangeable Sodium Percentage (ESP) is calculated as the exchangeable sodium divided by the CEC (all in meg/100g) times 100.

ESP can be used to categorise the sodicity of the soil as below:

ESP < 6% non-sodic ESP 6-15% sodic ESP >15% strongly sodic

Method is refernced to Rayment and Higginson, 1992, sections 15D3 and 15N1.-

FOOTNOTES -

Not analysed. UOM NATA accreditation does not cover Unit of Measure. NVL LOR Limit of Reporting. the performance of this service. Not validated. Raised/lowered Limit of Indicative data, theoretical holding Insufficient sample for analysis. IS ↑↓ time exceeded. LNR Sample listed, but not received. Reporting.

Samples analysed as received.

Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the \pm sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/en/terms-and-conditions. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein

Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full.

13/03/2017 Page 4 of 4

STATEMENT OF QA/QC **PERFORMANCE**

CLIENT DETAILS LABORATORY DETAILS

John Xu **Huong Crawford** Manager Contact

Geotechnique SGS Alexandria Environmental Client Laboratory Address P.O. Box 880 Unit 16, 33 Maddox St

Address PENRITH NSW 2751 Alexandria NSW 2015

02 4722 2700 Telephone +61 2 8594 0400 Telephone 02 4722 6161 +61 2 8594 0499 Facsimile Facsimile

john.xu@geotech.com.au au.environmental.sydney@sgs.com Fmail Email

Googong NH1A-7 & NH2 - Additional SE162156A R0 SGS Reference Project

(Not specified) 07 Mar 2017 Date Received Order Number 13 Mar 2017 117 Date Reported Samples

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document and was supplied by the Client.

This QA/QC Statement must be read in conjunction with the referenced Analytical Report.

The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met with the exception of the following:

Extraction Date pH in soil (1:5) 4 items

SAMPLE SUMMARY

Samples clearly labelled Sample container provider Samples received in correct containers Date documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested

Yes SGS Yes 7/3/17@1.30pm Yes

17.3°C

Complete documentation received Sample cooling method Sample counts by matrix Type of documentation received Samples received without headspace Sufficient sample for analysis Standard

Yes Ice Bricks 8 Soils COC Yes Yes

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia Australia t +61 2 8594 0400 f+61 2 8594 0499

www.sgs.com.au

Member of the SGS Group

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Exchangeable Cations and Cation Exchange Capacity (CEC/ESP/SAR)

Method: ME-(AU)-[ENV]AN122

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
D203 0.9-1.0	SE162156A.010	LB120105	14 Feb 2017	07 Mar 2017	14 Mar 2017	09 Mar 2017	14 Mar 2017	13 Mar 2017
D205 0-0.1	SE162156A.014	LB120105	14 Feb 2017	07 Mar 2017	14 Mar 2017	09 Mar 2017	14 Mar 2017	13 Mar 2017
D207 0-0.1	SE162156A.020	LB120105	14 Feb 2017	07 Mar 2017	14 Mar 2017	09 Mar 2017	14 Mar 2017	13 Mar 2017
D220 0-0.1	SE162156A.065	LB120105	14 Feb 2017	07 Mar 2017	14 Mar 2017	09 Mar 2017	14 Mar 2017	13 Mar 2017
D224 0-0.1	SE162156A.078	LB120105	14 Feb 2017	07 Mar 2017	14 Mar 2017	09 Mar 2017	14 Mar 2017	13 Mar 2017
D225 0-0.1	SE162156A.081	LB120105	14 Feb 2017	07 Mar 2017	14 Mar 2017	09 Mar 2017	14 Mar 2017	13 Mar 2017

pH in soil (1:5)

Method: ME-(AU)-[ENV]AN101

F ()										
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed		
D203 0.9-1.0	SE162156A.010	LB120061	14 Feb 2017	07 Mar 2017	21 Feb 2017	09 Mar 2017†	10 Mar 2017	09 Mar 2017		
D218 0.2-0.3	SE162156A.059	LB120061	14 Feb 2017	07 Mar 2017	21 Feb 2017	09 Mar 2017†	10 Mar 2017	09 Mar 2017		
D219 0-0.1	SE162156A.061	LB120061	14 Feb 2017	07 Mar 2017	21 Feb 2017	09 Mar 2017†	10 Mar 2017	09 Mar 2017		
D220 0-0.1	SE162156A.065	LB120061	14 Feb 2017	07 Mar 2017	21 Feb 2017	09 Mar 2017†	10 Mar 2017	09 Mar 2017		

13/3/2017 Page 2 of 9

SURROGATES

SE162156A R0

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No surrogates were required for this job.

13/3/2017 Page 3 of 9

METHOD BLANKS

SE162156A R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Exchangeable Cations and Cation Exchange Capacity (CEC/ESP/SAR)

Method: ME-(AU)-[ENV]AN122

Sample Number Parameter Units LOR

13/3/2017 Page 4 of 9

DUPLICATES

SE162156A R0

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

pH in soil (1:5) Method: ME-(AU)-[ENV]AN101

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE162729.001	LB120061.014	pH	pH Units	-	5.7	5.7	32	0
SE162762.007	LB120061.025	pH	pH Units	-	5.7	5.7	32	0

13/3/2017 Page 5 of 9

LABORATORY CONTROL SAMPLES

SE162156A R0

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Exchangeable Cations and Cation Exchange Capacity (CEC/ESP/SAR)

Method: ME-(AU)-[ENV]AN122

Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB120105.002	Exchangeable Sodium, Na	mg/kg	2	NA	390	80 - 120	92
	Exchangeable Potassium, K	mg/kg	2	NA	343	80 - 120	90
	Exchangeable Calcium, Ca	mg/kg	2	NA	2570	80 - 120	91
	Exchangeable Magnesium, Mg	mg/kg	2	NA	635	80 - 120	89

pH in soil (1:5)

Method: ME-(AU)-[ENV]AN101

Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB120061.003	pH	pH Units	-	7.4	7.415	98 - 102	100

13/3/2017 Page 6 of 9

MATRIX SPIKES

SE162156A R0

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spikes were required for this job.

13/3/2017 Page 7 of 9

MATRIX SPIKE DUPLICATES

SE162156A R0

Matrix spike duplicates are calculated as Relative Percent Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spike duplicates were required for this job.

13/3/2017 Page 8 of 9

FOOTNOTES

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover tthe performance of this service .
- Sample not analysed for this analyte.

IS Insufficient sample for analysis. LNR Sample listed, but not received.

LOR Limit of reporting.

QFH QC result is above the upper tolerance.
QFL QC result is below the lower tolerance.

- ① At least 2 of 3 surrogates are within acceptance criteria.
- ② RPD failed acceptance criteria due to sample heterogeneity.
- 3 Results less than 5 times LOR preclude acceptance criteria for RPD.
- Recovery failed acceptance criteria due to matrix interference.
- ® Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- © LOR was raised due to sample matrix interference.
- ① LOR was raised due to dilution of significantly high concentration of analyte in sample.
- ® Reanalysis of sample in duplicate confirmed sample heterogeneity and inconsistency of results.
- Recovery failed acceptance criteria due to sample heterogeneity.
- © LOR was raised due to high conductivity of the sample (required dilution).
- † Refer to Analytical Report comments for further information.


This document is issued, on the Client's behalf, by the Company under its General Conditions of Service, available on request and accessible at http://www.sqs.com/en/terms-and-conditions. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained herein reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This test report shall not be reproduced, except in full.

13/3/2017 Page 9 of 9

GEOTECHNIQUE PTY I TO

Laboratory Test Request / Chain of Custody Record

	Place TH NSW 275	0		PENF		Box 880 W 2751	Fax: (02) 4722 2700 (02) 4722 6161 info@geotech.com.au			Page	1	of	1
TO: PH: ATTN:	UNIT 16 33 MADDO ALEXAND 02 8594 04				FAX:	02 8594 0		Sampling By: Project Manager:	SS/JH	Job No: Project: Location:	12675/4 Googong NH1A	-7 & NH2		
MIIN.	WIS EWILT	Sampling de	tails		Samp	le type				1007-071-071-07				
	Location	Depth (m)	Date	Time	Soil	Water		Results requi	red by: Monday SGS Ref. S		(Normal TA	Γ)		
							рН	CEC						KEEP SAMPLE
10	D203	0.9-1.0	14/02/2017		SG		7	-					1 5 6	YES
10	D205	0-0.1	14/02/2017	*	SG			1						YES
59	D207	0-0.1	14/02/2017	- × -	SG	(a)	2000 100	✓						YES
59	D218	0.2-0.3	14/02/2017	- 4	SG		√							YES
61	D219	0-0.1	14/02/2017		SG		✓							YES
65	D220	0-0.1	14/02/2017	*	SG	4	✓	✓					1	YES
78	D224	0-0.1	14/02/2017	710	SG			-						YES
61	D225	0-0.1	14/02/2017	19	SG			√						YES
														4
			Relino	quished by	L					Received by				
	Name			Signature			Date	Name		Signatu	ire T		Date	
	JOHN X	U		jx			7/03/2017		Adams	C. 7	-	7/3/1		30-
Legend WG WP	Water sam	iple, glass bottle iple, plastic bottl			SG	Soil sampl	le (glass jar)		SP Soil sample (p ✓ Test required	astic bag)	ţ	Purge & Tra		

CLIENT DETAILS

LABORATORY DETAILS

John Xu Contact

Geotechnique Client Address

P.O. Box 880 PENRITH NSW 2751

Huong Crawford Manager

SGS Alexandria Environmental Laboratory

Address Unit 16, 33 Maddox St

Alexandria NSW 2015

02 4722 2700 Telephone 02 4722 6161 Facsimile

Email

john.xu@geotech.com.au

+61 2 8594 0400 Telephone +61 2 8594 0499 Facsimile

au.environmental.sydney@sgs.com **Email**

Googong NH1A-7 & NH2 - Additional Project

Order Number (Not specified) 117 Samples

Samples Received Report Due

Tue 7/3/2017 Mon 13/3/2017

SF162156A SGS Reference

SUBMISSION DETAILS

This is to confirm that 117 samples were received on Tuesday 7/3/2017. Results are expected to be ready by Monday 13/3/2017. Please quote SGS reference SE162156A when making enquiries. Refer below for details relating to sample integrity upon receipt.

Samples clearly labelled Sample container provider Samples received in correct containers Date documentation received Samples received in good order Sample temperature upon receipt

Yes SGS Yes

7/3/17@1.30pm Yes 17.3°C

Sample cooling method Sample counts by matrix Type of documentation received Samples received without headspace

Sufficient sample for analysis

Complete documentation received

Ice Bricks 8 Soils COC Yes Yes

Yes

Turnaround time requested Standard

Unless otherwise instructed, water and bulk samples will be held for one month from date of report, and soil samples will be held for two months.

COMMENTS -

To the extent not inconsistent with the other provisions of this document and unless specifically agreed otherwise in writing by SGS, all SGS services are rendered in accordance with the applicable SGS General Conditions of Service accessible at http://www.sgs.com/en/terms-and-conditions as at the date of this document. Attention is drawn to the limitations of liability and to the clauses of indemnification.

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia Australia t +61 2 8594 0400 f +61 2 8594 0499

www.sgs.com.au

_ CLIENT	DETAILS		
Client	Geotechnique	Project	Googong NH1A-7 & NH2 - Additional

SLIMMARY	OF ANALYSIS —			
OOWINACCI	OT ANALTOID			
		Exchangeable Cations and Cation Exchange Capacity	pH in soil (1:5)	
No.	Sample ID	шО	Δ.	
010	D203 0.9-1.0	13	1	
014	D205 0-0.1	13	-	
020	D207 0-0.1	13	-	

_ CONTINUED OVERLEAF

Page 2 of 4

CLIENT DETAILS			_
Client Geotechnique	Project	Googong NH1A-7 & NH2 - Additional	
)

SUMMARY	OF ANALYSIS —			
No.	Sample ID	Exchangeable Cations and Cation Exchange Capacity	pH in soil (1:5)	
NO.				
059	D218 0.2-0.3	-	1	
061	D219 0-0.1	-	1	
065	D220 0-0.1	13	1	

_ CONTINUED OVERLEAF

Page 3 of 4

CLIENT D	ETAILS	
Client C	Seotechnique	Project Googong NH1A-7 & NH2 - Additional
SUMMAF	RY OF ANALYSIS —	
		acity and
		Exchangeable Cations and Cation Exchange Capacity
		xchang
		tichang ation E
No.	Sample ID	<u> </u>
078	D224 0-0.1	13
081	D225 0-0.1	13

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details.

8/03/2017 Page 4 of 4

Testing as per this table shall commence immediately unless the client intervenes with a correction .

ANALYTICAL REPORT

CLIENT DETAILS

LABORATORY DETAILS

John Xu Contact Geotechnique Client Address

P.O. Box 880 PENRITH NSW 2751

Huong Crawford Manager

SGS Alexandria Environmental Laboratory Address

Unit 16. 33 Maddox St Alexandria NSW 2015

Telephone 02 4722 2700 02 4722 6161 Facsimile

john.xu@geotech.com.au Email

(Not specified)

12675-4 Googong NH1A-7 &NH2

Samples 11 Telephone +61 2 8594 0400 +61 2 8594 0499 Facsimile

au.environmental.sydney@sgs.com Email

SGS Reference SE162175 R0 Date Received 20/2/2017 27/2/2017 Date Reported

COMMENTS

Order Number

Project

Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562(4354).

SIGNATORIES

Bennet Lo

Senior Organic Chemist/Metals Chemist

Kinh

Huong Crawford

Production Manager

Kamrul Ahsan

Senior Chemist

Ly Kim Ha

Organic Section Head

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC

Alexandria NSW 2015 Alexandria NSW 2015

Australia Australia

t +61 2 8594 0400 f +61 2 8594 0499

www.sgs.com.au

SE162175 R0

pH in soil (1:5) [AN101] Tested: 21/2/2017

			DW1 2.0-2.1	DW1 3.0-3.1	DW1 7.0-7.1	DW1 11.0-11.1
			SOIL	SOIL	SOIL	SOIL
			15/2/2017	15/2/2017	15/2/2017	15/2/2017
PARAMETER	UOM	LOR	SE162175.001	SE162175.002	SE162175.006	SE162175.010
рН	pH Units	-	9.7	9.5	9.8	9.5

27/02/2017 Page 2 of 8

Exchangeable Cations and Cation Exchange Capacity (CEC/ESP/SAR) [AN122] Tested: 22/2/2017

			DW1 2.0-2.1	DW1 3.0-3.1	DW1 7.0-7.1	DW1 11.0-11.1
			SOIL	SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	15/2/2017 SE162175.001	15/2/2017	15/2/2017	15/2/2017 SE162175.010
				SE162175.002	SE162175.006	
Exchangeable Sodium, Na	mg/kg	2	370	370	340	410
Exchangeable Sodium, Na	meq/100g	0.01	1.6	1.6	1.5	1.8
Exchangeable Sodium Percentage*	%	0.1	8.1	16.3	10.5	8.1
Exchangeable Potassium, K	mg/kg	2	62	69	62	93
Exchangeable Potassium, K	meq/100g	0.01	0.16	0.18	0.16	0.24
Exchangeable Potassium Percentage*	%	0.1	0.8	1.8	1.1	1.1
Exchangeable Calcium, Ca	mg/kg	2	960	130	600	76
Exchangeable Calcium, Ca	meq/100g	0.01	4.8	0.65	3.0	0.38
Exchangeable Calcium Percentage*	%	0.1	24.1	6.6	21.4	1.7
exchangeable Magnesium, Mg	mg/kg	2	1600	910	1100	2400
Exchangeable Magnesium, Mg	meq/100g	0.02	13	7.4	9.4	20
Exchangeable Magnesium Percentage*	%	0.1	67.0	75.3	67.0	89.1
Cation Exchange Capacity	meq/100g	0.02	20	9.9	14	22

27/02/2017 Page 3 of 8

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES [AN040/AN320] Tested: 21/2/2017

			DW1 2.0-2.1	DW1 3.0-3.1	DW1 4.0-4.1	DW1 5.0-5.1	DW1 6.0-6.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			15/2/2017			15/2/2017	15/2/2017
PARAMETER	UOM	LOR	SE162175.001	SE162175.002	SE162175.003	SE162175.004	SE162175.005
Arsenic, As	mg/kg	3	8	8	13	12	39
Cadmium, Cd	mg/kg	0.3	0.5	0.4	0.5	0.4	0.6
Chromium, Cr	mg/kg	0.3	24	22	23	22	23
Copper, Cu	mg/kg	0.5	28	32	30	32	41
Lead, Pb	mg/kg	1	20	25	14	14	14
Manganese, Mn	mg/kg	1	300	590	480	630	440
Nickel, Ni	mg/kg	0.5	29	30	34	41	40
Zinc, Zn	mg/kg	0.5	170	110	140	140	63

			DW1 7.0-7.1	DW1 8.0-8.1	DW1 9.0-9.1	DW1 10.0-10.1	DW1 11.0-11.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 15/2/2017	- 15/2/2017	- 15/2/2017	- 15/2/2017	- 15/2/2017
PARAMETER	UOM	LOR	SE162175.006	SE162175.007	SE162175.008	SE162175.009	SE162175.010
Arsenic, As	mg/kg	3	22	28	40	32	62
Cadmium, Cd	mg/kg	0.3	0.6	0.4	0.6	0.4	0.6
Chromium, Cr	mg/kg	0.3	23	23	20	27	39
Copper, Cu	mg/kg	0.5	36	31	59	18	61
Lead, Pb	mg/kg	1	8	7	27	14	13
Manganese, Mn	mg/kg	1	500	370	1100	640	840
Nickel, Ni	mg/kg	0.5	46	39	41	52	74
Zinc, Zn	mg/kg	0.5	110	140	67	160	320

			DW1 12.0-12.1
			SOIL
			- 15/2/2017
PARAMETER	UOM	LOR	SE162175.011
Arsenic, As	mg/kg	3	24
Cadmium, Cd	mg/kg	0.3	0.4
Chromium, Cr	mg/kg	0.3	25
Copper, Cu	mg/kg	0.5	39
Lead, Pb	mg/kg	1	9
Manganese, Mn	mg/kg	1	450
Nickel, Ni	mg/kg	0.5	52
Zinc, Zn	mg/kg	0.5	140

27/02/2017 Page 4 of 8

SE162175 R0

Mercury in Soil [AN312] Tested: 22/2/2017

			DW1 2.0-2.1	DW1 3.0-3.1	DW1 4.0-4.1	DW1 5.0-5.1	DW1 6.0-6.1
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			15/2/2017			15/2/2017	15/2/2017
PARAMETER	UOM	LOR	SE162175.001	SE162175.002	SE162175.003	SE162175.004	SE162175.005
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05

			DW1 7.0-7.1	DW1 8.0-8.1	DW1 9.0-9.1	DW1 10.0-10.1	DW1 11.0-11.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 15/2/2017	- 15/2/2017	- 15/2/2017	- 15/2/2017	- 15/2/2017
PARAMETER	UOM	LOR	SE162175.006	SE162175.007	SE162175.008	SE162175.009	SE162175.010
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05

			DW1 12.0-12.1
			SOIL -
PARAMETER	UOM	LOR	15/2/2017 SE162175.011
Mercury	mg/kg	0.05	<0.05

27/02/2017 Page 5 of 8

SE162175 R0

Moisture Content [AN002] Tested: 21/2/2017

			DW1 2.0-2.1	DW1 3.0-3.1	DW1 4.0-4.1	DW1 5.0-5.1	DW1 6.0-6.1
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			15/2/2017			15/2/2017	15/2/2017
PARAMETER	UOM	LOR	SE162175.001	SE162175.002	SE162175.003	SE162175.004	SE162175.005
% Moisture	%w/w	0.5	8.6	8.2	7.4	7.3	10

			DW1 7.0-7.1	DW1 8.0-8.1	DW1 9.0-9.1	DW1 10.0-10.1	DW1 11.0-11.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			15/2/2017			15/2/2017	15/2/2017
PARAMETER	UOM	LOR	SE162175.006	SE162175.007	SE162175.008	SE162175.009	SE162175.010
% Moisture	%w/w	0.5	8.8	9.8	11	9.9	9.2

			DW1 12.0-12.1
			SOIL -
PARAMETER	UOM	LOR	15/2/2017 SE162175.011
% Moisture	%w/w	0.5	7.7

27/02/2017 Page 6 of 8

METHOD SUMMARY

SE162175 R0

METHOD -

- METHODOLOGY SUMMARY -

AN002

The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.

AN040/AN320

A portion of sample is digested with nitric acid to decompose organic matter and hydrochloric acid to complete the digestion of metals. The digest is then analysed by ICP OES with metals results reported on the dried sample basis. Based on USEPA method 200.8 and 6010C.

AN040

A portion of sample is digested with Nitric acid to decompose organic matter and Hydrochloric acid to complete the digestion of metals and then filtered for analysis by ASS or ICP as per USEPA Method 200.8.

AN101

pH in Soil Sludge Sediment and Water: pH is measured electrometrically using a combination electrode and is calibrated against 3 buffers purchased commercially. For soils, sediments and sludges, an extract with water (or 0.01M CaCl2) is made at a ratio of 1:5 and the pH determined and reported on the extract. Reference APHA 4500-H+.

AN122

Exchangeable Cations, CEC and ESP: Soil sample is extracted in 1M Ammonium Acetate at pH=7 (or 1M Ammonium Chloride at pH=7) with cations (Na, K, Ca & Mg) then determined by ICP OES/ICP MS and reported as Exchangeable Cations. For saline soils, these results can be corrected for water soluble cations and reported as Exchangeable cations in meq/100g or soil can be pre-treated (aqueous ethanol/aqueous glycerol) prior to extraction. Cation Exchange Capacity (CEC) is the sum of the exchangeable cations in meq/100g.

AN122

The Exchangeable Sodium Percentage (ESP) is calculated as the exchangeable sodium divided by the CEC (all in meq/100g) times 100.

ESP can be used to categorise the sodicity of the soil as below:

Method is refernced to Rayment and Higginson, 1992, sections 15D3 and 15N1.-

ESP < 6% non-sodic ESP 6-15% sodic

3112/3500

ESP >15% strongly sodic

AN312

Mercury by Cold Vapour AAS in Soils: After digestion with nitric acid, hydrogen peroxide and hydrochloric acid, mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA

27/02/2017 Page 7 of 8

FOOTNOTES SE162175 R0

FOOTNOTES -

* NATA accreditation does not cover the performance of this service.

** Indicative data, theoretical holding time exceeded.

Not analysed.NVL Not validated.

IS Insufficient sample for analysis.

LNR Sample listed, but not received.

UOM Unit of Measure.

LOR Limit of Reporting.

↑↓ Raised/lowered Limit of

Reporting.

Samples analysed as received.
Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/en/terms-and-conditions. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein

Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full.

27/02/2017 Page 8 of 8

STATEMENT OF QA/QC **PERFORMANCE**

CLIENT DETAILS LABORATORY DETAILS

John Xu **Huong Crawford** Manager Contact

Geotechnique SGS Alexandria Environmental Client Laboratory Address P.O. Box 880 Unit 16, 33 Maddox St

Address PENRITH NSW 2751 Alexandria NSW 2015

02 4722 2700 Telephone +61 2 8594 0400 Telephone

02 4722 6161 +61 2 8594 0499 Facsimile Facsimile john.xu@geotech.com.au au.environmental.sydney@sgs.com Fmail Email

12675-4 Googong NH1A-7 &NH2 SE162175 R0 SGS Reference Project 20 Feb 2017 (Not specified) Date Received Order Number

27 Feb 2017 Date Reported Samples

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document and was supplied by the Client.

This QA/QC Statement must be read in conjunction with the referenced Analytical Report.

The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met with the exception of the following:

Matrix Spike Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES 2 items

SAMPLE SUMMARY

Samples clearly labelled Yes Sample container provider SGS Samples received in correct containers Yes 20/2/2017 Date documentation received Samples received in good order Yes Sample temperature upon receipt 17.3°C Turnaround time requested Standard

Complete documentation received Sample cooling method Sample counts by matrix Type of documentation received Samples received without headspace Sufficient sample for analysis

Yes Ice Bricks 11 Soil COC Yes Yes

SGS Australia Pty Ltd ABN 44 000 964 278

27/2/2017

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia Australia t +61 2 8594 0400 f+61 2 8594 0499

www.sgs.com.au

Member of the SGS Group

DW1 11.0-11.1

DW1 12.0-12.1

SE162175.010

SE162175.011

LB119114

LB119114

15 Feb 2017

15 Feb 2017

HOLDING TIME SUMMARY

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

ple Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
2.0-2.1	SE162175.001	LB119135	15 Feb 2017	20 Feb 2017	15 Mar 2017	22 Feb 2017	15 Mar 2017	24 Feb 201
3.0-3.1	SE162175.001	LB119135	15 Feb 2017	20 Feb 2017	15 Mar 2017	22 Feb 2017	15 Mar 2017	24 Feb 201
7.0-7.1	SE162175.002	LB119135	15 Feb 2017	20 Feb 2017 20 Feb 2017	15 Mar 2017	22 Feb 2017 22 Feb 2017	15 Mar 2017	24 Feb 20
11.0-11.1	SE162175.000	LB119135	15 Feb 2017	20 Feb 2017 20 Feb 2017	15 Mar 2017	22 Feb 2017 22 Feb 2017	15 Mar 2017	24 Feb 20
	3E 102 17 3:0 10	EB119133	13 Feb 2017	20 Feb 2017	15 Wai 2017	22 Feb 2017		
ury in Soil								ME-(AU)-[ENV]
ple Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analyse
2.0-2.1	SE162175.001	LB119167	15 Feb 2017	20 Feb 2017	15 Mar 2017	22 Feb 2017	15 Mar 2017	24 Feb 20
3.0-3.1	SE162175.002	LB119167	15 Feb 2017	20 Feb 2017	15 Mar 2017	22 Feb 2017	15 Mar 2017	24 Feb 20
4.0-4.1	SE162175.003	LB119167	15 Feb 2017	20 Feb 2017	15 Mar 2017	22 Feb 2017	15 Mar 2017	24 Feb 20
5.0-5.1	SE162175.004	LB119167	15 Feb 2017	20 Feb 2017	15 Mar 2017	22 Feb 2017	15 Mar 2017	24 Feb 20
6.0-6.1	SE162175.005	LB119167	15 Feb 2017	20 Feb 2017	15 Mar 2017	22 Feb 2017	15 Mar 2017	24 Feb 20
7.0-7.1	SE162175.006	LB119167	15 Feb 2017	20 Feb 2017	15 Mar 2017	22 Feb 2017	15 Mar 2017	24 Feb 20
8.0-8.1	SE162175.007	LB119167	15 Feb 2017	20 Feb 2017	15 Mar 2017	22 Feb 2017	15 Mar 2017	24 Feb 20
9.0-9.1	SE162175.008	LB119167	15 Feb 2017	20 Feb 2017	15 Mar 2017	22 Feb 2017	15 Mar 2017	24 Feb 20
10.0-10.1	SE162175.009	LB119168	15 Feb 2017	20 Feb 2017	15 Mar 2017	22 Feb 2017	15 Mar 2017	24 Feb 20
11.0-11.1	SE162175.010	LB119168	15 Feb 2017	20 Feb 2017	15 Mar 2017	22 Feb 2017	15 Mar 2017	24 Feb 20
12.0-12.1	SE162175.011	LB119168	15 Feb 2017	20 Feb 2017	15 Mar 2017	22 Feb 2017	15 Mar 2017	24 Feb 20
ure Content							Method:	ME-(AU)-[ENV
ple Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analyse
2.0-2.1	SE162175.001	LB119035	15 Feb 2017	20 Feb 2017	01 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 20
3.0-3.1	SE162175.002	LB119035	15 Feb 2017	20 Feb 2017	01 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 20
4.0-4.1	SE162175.003	LB119035	15 Feb 2017	20 Feb 2017	01 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 20
5.0-5.1	SE162175.004	LB119035	15 Feb 2017	20 Feb 2017	01 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 20
6.0-6.1	SE162175.005	LB119035	15 Feb 2017	20 Feb 2017	01 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 20
7.0-7.1	SE162175.006	LB119035	15 Feb 2017	20 Feb 2017	01 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 20
8.0-8.1	SE162175.007	LB119035	15 Feb 2017	20 Feb 2017	01 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 20
9.0-9.1	SE162175.008	LB119035	15 Feb 2017	20 Feb 2017	01 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 20
10.0-10.1	SE162175.009	LB119035	15 Feb 2017	20 Feb 2017	01 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 20
11.0-11.1	SE162175.010	LB119035	15 Feb 2017	20 Feb 2017	01 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 20
12.0-12.1	SE162175.011	LB119035	15 Feb 2017	20 Feb 2017	01 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 20
soil (1:5)							Method:	ME-(AU)-[ENV
ple Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analyse
2.0-2.1	SE162175.001	LB119063	15 Feb 2017	20 Feb 2017	22 Feb 2017	21 Feb 2017	22 Feb 2017	22 Feb 20
3.0-3.1	SE162175.002	LB119063	15 Feb 2017	20 Feb 2017	22 Feb 2017	21 Feb 2017	22 Feb 2017	22 Feb 20
7.0-7.1	SE162175.006	LB119063	15 Feb 2017	20 Feb 2017	22 Feb 2017	21 Feb 2017	22 Feb 2017	22 Feb 20
11.0-11.1	SE162175.010	LB119063	15 Feb 2017	20 Feb 2017	22 Feb 2017	21 Feb 2017	22 Feb 2017	22 Feb 20
Recoverable Metals in	Soil/Waste Solids/Materi	ials by ICPOES					Method: ME-(AU)-[ENV]AN040
ple Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analyse
2.0-2.1	SE162175.001	LB119114	15 Feb 2017	20 Feb 2017	14 Aug 2017	21 Feb 2017	14 Aug 2017	27 Feb 20
3.0-3.1	SE162175.002	LB119114	15 Feb 2017	20 Feb 2017	14 Aug 2017	21 Feb 2017	14 Aug 2017	27 Feb 20
4.0-4.1	SE162175.003	LB119114	15 Feb 2017	20 Feb 2017	14 Aug 2017	21 Feb 2017	14 Aug 2017	27 Feb 20
5.0-5.1	SE162175.004	LB119114	15 Feb 2017	20 Feb 2017	14 Aug 2017	21 Feb 2017	14 Aug 2017	27 Feb 20
6.0-6.1	SE162175.005	LB119114	15 Feb 2017	20 Feb 2017	14 Aug 2017	21 Feb 2017	14 Aug 2017	27 Feb 20
7.0-7.1	SE162175.006	LB119114	15 Feb 2017	20 Feb 2017	14 Aug 2017	21 Feb 2017	14 Aug 2017	27 Feb 20
8.0-8.1	SE162175.007	LB119114	15 Feb 2017	20 Feb 2017	14 Aug 2017	21 Feb 2017	14 Aug 2017	27 Feb 20
9.0-9.1	SE162175.008	LB119114	15 Feb 2017	20 Feb 2017	14 Aug 2017	21 Feb 2017	14 Aug 2017	27 Feb 20
	SE162175.009	LB119114	15 Feb 2017	20 Feb 2017	14 Aug 2017	21 Feb 2017	14 Aug 2017	27 Feb 20

27/2/2017 Page 2 of 9

20 Feb 2017

20 Feb 2017

14 Aug 2017

14 Aug 2017

21 Feb 2017

21 Feb 2017

14 Aug 2017

14 Aug 2017

27 Feb 2017

27 Feb 2017

SURROGATES

SE162175 R0

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No surrogates were required for this job.

27/2/2017 Page 3 of 9

METHOD BLANKS

SE162175 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Exchangeable Cations and Cation Exchange Capacity (CEC/ESP/SAR)

Method: ME-(AU)-[ENV]AN122

Sample Number	Parameter	Units	LOR

Mercury in Soil

Method: ME-(AU)-[ENV]AN312

Sample Number	Parameter	Units	LOR	Result
LB119167.001	Mercury	mg/kg	0.05	<0.05
LB119168.001	Mercury	mg/kg	0.05	<0.05

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES

Method: ME-(AU)-[ENV]AN040/AN320

Total Necoverable Metals III Soll/Waste Solic	Similaterials by ICFOES		Mediod. ME-	(AO)-[E144]A14040/A14320
Sample Number	Parameter	Units	LOR	Result
LB119114.001	Arsenic, As	mg/kg	3	<3
	Cadmium, Cd	mg/kg	0.3	<0.3
	Chromium, Cr	mg/kg	0.3	<0.3
	Copper, Cu		0.5	<0.5
	Lead, Pb	mg/kg	1	<1
	Manganese, Mn	mg/kg	1	<1
	Nickel, Ni	mg/kg	0.5	<0.5
	Zinc, Zn	mg/kg	0.5	<0.5

27/2/2017 Page 4 of 9

DUPLICATES

SE162175 R0

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury in Soil Method: ME-(AU)-[ENV]AN312

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE162156.114	LB119167.014	Mercury	mg/kg	0.05	0.025338079	30.0253099577	200	0
SE162175.008	LB119167.024	Mercury	mg/kg	0.05	<0.05	<0.05	200	0
SE162178.007	LB119168.014	Mercury	mg/kg	0.05	0.014824722	50.0122994044	200	0
SE162178.016	LB119168.024	Mercury	mg/kg	0.05	0.009697941	30.0101489659	200	0

Moisture Content Method: ME-(AU)-[ENV]AN002

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE162175.006	LB119035.011	% Moisture	%w/w	0.5	8.8	8.9	41	1
SE162176.003	LB119035.020	% Moisture	%w/w	0.5	5.1	4.1	52	21

pH in soil (1:5) Method: ME-(AU)-[ENV]AN101

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE162178.013	LB119063.014	pH	pH Units	-	7.723	7.646	31	1
SE162178.112	LB119063.022	pH	pH Units	-	6.358	6.381	32	0

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES

Method: ME-(AU)-[ENV]AN040/AN320

	Solved able in Collett was a Collectivate and as by Tot Collection			Moulou. ML	(vo)-[rias]vi	10 10)/ 11 102		
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE162175.010	LB119114.014	Arsenic, As	mg/kg	3	62	61	32	2
		Cadmium, Cd	mg/kg	0.3	0.6	0.6	77	0
		Chromium, Cr	mg/kg	0.3	39	39	31	0
		Copper, Cu	mg/kg	0.5	61	61	31	1
		Lead, Pb	mg/kg	1	13	13	38	4
		Manganese, Mn	mg/kg	1	840	910	30	8
		Nickel, Ni	mg/kg	0.5	74	77	31	5
		Zinc, Zn	mg/kg	0.5	320	320	31	1
SE162178.120	LB119114.022	Arsenic, As	mg/kg	3	23.997389637	2 4.0825999090	34	0
		Cadmium, Cd	mg/kg	0.3	0.3277630187	70.3231908513	122	1
		Chromium, Cr	mg/kg	0.3	20.304556568	89.1925904977	33	6
		Copper, Cu	mg/kg	0.5	26.659397303	725.5949068863	32	4
		Lead, Pb	mg/kg	1	17.968239492	48.4421293613	35	3
		Manganese, Mn	mg/kg	1	86.288990219	84.494472954	30	1
		Nickel, Ni	mg/kg	0.5	15.565354877	05.1592220181	1 33	3
		Zinc, Zn	mg/kg	0.5	55.523295003	53.9741872272	34	3

27/2/2017 Page 5 of 9

LABORATORY CONTROL SAMPLES

SE162175 R0

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Exchangeable Cations and Cation Exchange Capacity (CEC/ESP/SAR)

Method: ME-(AU)-[ENV]AN122

Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB119135.002	Exchangeable Sodium, Na	mg/kg	2	NA	390	80 - 120	93
	Exchangeable Potassium, K	mg/kg	2	NA	343	80 - 120	90
	Exchangeable Calcium, Ca	mg/kg	2	NA	2570	80 - 120	93
	Exchangeable Magnesium, Mg	mg/kg	2	NA	635	80 - 120	91

Mercury in Soil

Method: ME-(AU)-[ENV]AN312

Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB119167.002	Mercury	mg/kg	0.05	0.20	0.2	70 - 130	101
LB119168.002	Mercury	mg/kg	0.05	0.20	0.2	70 - 130	100

pH in soil (1:5)

Method: ME-(AU)-[ENV]AN101

Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB119063.003	pH	pH Units	-	7.5	7.415	98 - 102	101

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES

Method: ME-(AU)-[ENV]AN040/AN320

Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB119114.002	Arsenic, As	mg/kg	3	50	50	80 - 120	99
	Cadmium, Cd	mg/kg	0.3	50	50	80 - 120	100
	Chromium, Cr	mg/kg	0.3	50	50	80 - 120	101
	Copper, Cu	mg/kg	0.5	49	50	80 - 120	99
	Lead, Pb	mg/kg	1	50	50	80 - 120	101
	Manganese, Mn	mg/kg	1	50	50	80 - 120	101
	Nickel, Ni	mg/kg	0.5	51	50	80 - 120	102
	Zinc, Zn	mg/kg	0.5	50	50	80 - 120	100

27/2/2017 Page 6 of 9

MATRIX SPIKES

SE162175 R0

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury in Soil

Method: ME-(AU)-[ENV]AN312

QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE162156.105	LB119167.004	Mercury	mg/kg	0.05	0.20	0.01821271260	0.2	93
SE162175.009	LB119168.004	Mercury	mg/kg	0.05	0.18	<0.05	0.2	90

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES

Method: ME-(AU)-[ENV]AN040/AN320

Total Ttocororab	io motalo in com macio condu	materials by for OLO				Modiod. ML	(10) [L111	p 4 40 40/7 4 40E0
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE162175.001	LB119114.004	Arsenic, As	mg/kg	3	48	8	50	81
		Cadmium, Cd	mg/kg	0.3	41	0.5	50	81
		Chromium, Cr	mg/kg	0.3	65	24	50	81
		Copper, Cu	mg/kg	0.5	71	28	50	86
		Lead, Pb	mg/kg	1	57	20	50	75
		Manganese, Mn	mg/kg	1	290	300	50	-15 ⑨
		Nickel, Ni	mg/kg	0.5	67	29	50	77
		Zinc, Zn	mg/kg	0.5	200	170	50	63 ⑨

27/2/2017 Page 7 of 9

MATRIX SPIKE DUPLICATES

SE162175 R0

Matrix spike duplicates are calculated as Relative Percent Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spike duplicates were required for this job.

27/2/2017 Page 8 of 9

FOOTNOTES

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover the performance of this service.
- Sample not analysed for this analyte.

IS Insufficient sample for analysis. LNR Sample listed, but not received.

LOR Limit of reporting.

QFH QC result is above the upper tolerance.
QFL QC result is below the lower tolerance.

- ① At least 2 of 3 surrogates are within acceptance criteria.
- ② RPD failed acceptance criteria due to sample heterogeneity.
- 3 Results less than 5 times LOR preclude acceptance criteria for RPD.
- Recovery failed acceptance criteria due to matrix interference.
- ® Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- © LOR was raised due to sample matrix interference.
- ① LOR was raised due to dilution of significantly high concentration of analyte in sample.
- ® Reanalysis of sample in duplicate confirmed sample heterogeneity and inconsistency of results.
- Recovery failed acceptance criteria due to sample heterogeneity.
- © LOR was raised due to high conductivity of the sample (required dilution).
- † Refer to Analytical Report comments for further information.


This document is issued, on the Client's behalf, by the Company under its General Conditions of Service, available on request and accessible at http://www.sqs.com/en/terms-and-conditions. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained herein reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This test report shall not be reproduced, except in full.

27/2/2017 Page 9 of 9

GEOTECHNIQUE PTY I TO

Laboratory Test Request / Chain of Custody Record

	Place ITH NSW 275	50		PEN	P O	Box 880	Fax: (02) 4722 2700 2) 4722 6161 fo@geotech.com.au				Page	1	of	1
TO: SGS ENVIRONMENTAL SERVICES UNIT 16 33 MADDOX STREET ALEXANDRIA NSW 2015						Sampling By:		SS/JH	Job No: Project:	12675/4		- OI	COC 3		
PH: ATTN:	02 8594 0 MS EMIL				FAX:	02 8594	0499	Project Manager:		JX	Location:	Googong NH1	A-7 & NH2		
		Sampling de	tails		Samp	le type									
	Location	Depth (m)	Date	Time	Soil	Water		F	Results r	equired l	oy: Normal T	AT			
							Heavy Metals As, Cd, Cr, Cu, Pb, Mn, Hg, Ni and Zn	рН	CEC						KEEP
1	DW1	2.0-2.1	15/02/2017	*	SG		V	✓	1		1 2				YES
2	DW1	3.0-3.1	15/02/2017	÷	SG		✓	/	V					1	YES
3	DW1	4.0-4.1	15/02/2017		SG	===1	✓								YES
4	DW1	5.0-5.1	15/02/2017	-	SG		✓					1			YES
5	DW1	6.0-6.1	15/02/2017		SG		✓								YES
6	DW1	7.0-7.1	15/02/2017		SG		✓	✓	-						YES
7	DW1	8.0-8.1	15/02/2017		SG		✓								YES
8-	DW1	9.0-9.1	15/02/2017		SG		✓			W					YES
9	DW1	10.0-10.1	15/02/2017	19	SG		√								YES
0	DW1	11.0-11.1	15/02/2017	100	SG		✓	/	/						YES
U	DW1	12.0-12.1	15/02/2017		SG		✓								YES
			Relino	wished by							Booning by				
Relinquished by Name Signature					Date	Name			Received by Signature Date						
	JOHN XU			jx 20			20/02/2017	Name Subs			8	20102117 G		Date 7	12.15
Legend WG WP	Water san	nple, glass bottle			SG	Soil sam	ole (glass jar)		SP	Soil sample (p	- The		* Purge & Trap		121)

CLIENT DETAILS

Address

John Xu Contact

Geotechnique Client

P O Box 880 PENRITH NSW 2751

Huong Crawford Manager

SGS Alexandria Environmental Laboratory

Unit 16 33 Maddox St Address

Alexandria NSW 2015

02 4722 2700 Telephone

02 4722 6161 Facsimile

Email john.xu@geotech.com.au

+61 2 8594 0400 Telephone +61 2 8594 0499 Facsimile

Email au.environmental.sydney@sgs.com

12675-4 Googong NH1A-7 &NH2 Project

Order Number (Not specified) Samples 11

Samples Received Mon 20/2/2017 Report Due

Mon 27/2/2017

SE162175 SGS Reference

SUBMISSION DETAILS

This is to confirm that 11 samples were received on Monday 20/2/2017. Results are expected to be ready by Monday 27/2/2017. Please quote SGS reference SE162175 when making enquiries. Refer below for details relating to sample integrity upon receipt.

Samples clearly labelled Yes Sample container provider SGS Samples received in correct containers Yes 20/2/2017 Date documentation received Samples received in good order Yes Sample temperature upon receipt 17.3°C Turnaround time requested Standard

Complete documentation received Yes Sample cooling method Ice Bricks Sample counts by matrix 11 Soil Type of documentation received COC Samples received without headspace Yes Sufficient sample for analysis Yes

Unless otherwise instructed, water and bulk samples will be held for one month from date of report, and soil samples will be held for two months.

COMMENTS -

To the extent not inconsistent with the other provisions of this document and unless specifically agreed otherwise in writing by SGS, all SGS services are rendered in accordance with the applicable SGS General Conditions of Service accessible at http://www.sgs.com/en/terms-and-conditions as at the date of this document. Attention is drawn to the limitations of liability and to the clauses of indemnification.

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia Australia

t +61 2 8594 0400 f +61 2 8594 0499

www.sgs.com.au

CLIENT DETAILS .

Client Geotechnique

Project 12675-4 Googong NH1A-7 &NH2

SUMMARY OF ANALYSIS

No.	Sample ID	Exchangeable Cations and Cation Exchange Capacity	Mercury in Soil	Moisture Content	pH in soil (1:5)	Total Recoverable Metals in Soil/Waste
001	DW1 2.0-2.1	13	1	1	1	8
002	DW1 3.0-3.1	13	1	1	1	8
003	DW1 4.0-4.1	-	1	1	-	8
004	DW1 5.0-5.1	-	1	1	-	8
005	DW1 6.0-6.1	-	1	1	-	8
006	DW1 7.0-7.1	13	1	1	1	8
007	DW1 8.0-8.1	-	1	1	-	8
008	DW1 9.0-9.1	-	1	1	-	8
009	DW1 10.0-10.1	-	1	1	-	8
010	DW1 11.0-11.1	13	1	1	1	8
011	DW1 12.0-12.1	-	1	1	-	8

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document.

21/02/2017 Page 2 of 2

The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details.

Testing as per this table shall commence immediately unless the client intervenes with a correction .

ANALYTICAL REPORT

CLIENT DETAILS -

LABORATORY DETAILS

Contact Client

John Xu Geotechnique

Address

P.O. Box 880 PENRITH NSW 2751

Manager

Huong Crawford

Laboratory Address

SGS Alexandria Environmental

Unit 16, 33 Maddox St

Alexandria NSW 2015

Telephone Facsimile

02 4722 2700 02 4722 6161

Email

john.xu@geotech.com.au

12675-4 Goongong NH1A-7 & NH2

Project Order Number

Samples

(Not specified)

123

Telephone

+61 2 8594 0400

Facsimile

+61 2 8594 0499

Email

au.environmental.sydney@sgs.com

SGS Reference Date Received Date Reported

SE162178 R1 20/2/2017 18/5/2017

COMMENTS

Accredited for compliance with ISO/IEC 17025-Testing. NATA accredited laboratory 2562(4354).

This report cancels and supersedes the report No. SE162178 R0. dated 27.02.17 issued by SGS Environment, Health and Safety due to correction of sample ID's on samples .113 to .119..

SIGNATORIES

Bennet Lo

Senior Organic Chemist/Metals Chemist

kinly

Huong Crawford

Production Manager

Kamrul Ahsan

Senior Chemist

Ly Kim Ha

Organic Section Head

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia Australia t +61 2 8594 0400 f +61 2 8594 0499

www.sgs.com.au

SE162178 R1

pH in soil (1:5) [AN101] Tested: 21/2/2017

			D229 1.0-1.1	D230 1.0-1.1	D231 1.0-1.1	D231 1.9-2.0	D245 1.9-2.0
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			15/2/2017			15/2/2017	15/2/2017
PARAMETER	UOM	LOR	SE162178.006	SE162178.009	SE162178.012	SE162178.013	SE162178.024
рН	pH Units	-	6.7	7.3	8.0	7.7	7.7

			D248 0.2-0.3	D271 1.0-1.1	D271 1.9-2.0	D288 0.6-0.7	D289 1.0-1.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			15/2/2017			17/2/2017	17/2/2017
PARAMETER	UOM	LOR	SE162178.033	SE162178.051	SE162178.052	SE162178.105	SE162178.109
pH	pH Units	-	6.4	6.9	8.0	7.1	7.6

			D290 1.0-1.1
			SOIL
			- 17/2/2017
PARAMETER	UOM	LOR	SE162178.112
pH	pH Units	-	6.4

18/05/2017 Page 2 of 23

Exchangeable Cations and Cation Exchange Capacity (CEC/ESP/SAR) [AN122] Tested: 22/2/2017

			D226 0.0-0.1	D226 1.0-1.1	D229 1.0-1.1	D230 1.0-1.1	D231 1.0-1.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			15/2/2017	15/2/2017	15/2/2017	15/2/2017	15/2/2017
PARAMETER	UOM	LOR	SE162178.001	SE162178.003	SE162178.006	SE162178.009	SE162178.012
Exchangeable Sodium, Na	mg/kg	2	18	60	230	150	200
Exchangeable Sodium, Na	meq/100g	0.01	0.08	0.26	1.0	0.65	0.85
Exchangeable Sodium Percentage*	%	0.1	1.5	2.6	9.2	4.1	3.5
Exchangeable Potassium, K	mg/kg	2	36	71	70	96	170
Exchangeable Potassium, K	meq/100g	0.01	0.09	0.18	0.18	0.25	0.45
Exchangeable Potassium Percentage*	%	0.1	1.8	1.8	1.6	1.6	1.8
Exchangeable Calcium, Ca	mg/kg	2	750	830	44	220	46
Exchangeable Calcium, Ca	meq/100g	0.01	3.7	4.1	0.22	1.1	0.23
Exchangeable Calcium Percentage*	%	0.1	73.1	40.7	2.0	6.9	0.9
Exchangeable Magnesium, Mg	mg/kg	2	150	680	1200	1700	2800
Exchangeable Magnesium, Mg	meq/100g	0.02	1.2	5.6	9.5	14	23
Exchangeable Magnesium Percentage*	%	0.1	23.6	55.0	87.2	87.5	93.8
Cation Exchange Capacity	meq/100g	0.02	5.1	10	11	16	24

			D231 1.9-2.0	D245 1.9-2.0	D246 1.0-1.1	D247 0.2-0.3	D247 1.9-2.0
			SOIL -	SOIL -	SOIL -	SOIL -	SOIL -
PARAMETER	UOM	LOR	15/2/2017 SE162178.013	15/2/2017 SE162178.024	15/2/2017 SE162178.027	15/2/2017 SE162178.029	15/2/2017 SE162178.031
Exchangeable Sodium, Na	mg/kg	2	120	100	540	370	190
Exchangeable Sodium, Na	meq/100g	0.01	0.51	0.45	2.4	1.6	0.83
Exchangeable Sodium Percentage*	%	0.1	4.9	3.9	12.7	7.2	7.8
Exchangeable Potassium, K	mg/kg	2	43	32	130	130	75
Exchangeable Potassium, K	meq/100g	0.01	0.11	0.08	0.34	0.33	0.19
Exchangeable Potassium Percentage*	%	0.1	1.1	0.7	1.8	1.5	1.8
Exchangeable Calcium, Ca	mg/kg	2	98	9	23	100	13
Exchangeable Calcium, Ca	meq/100g	0.01	0.49	0.04	0.11	0.52	0.07
Exchangeable Calcium Percentage*	%	0.1	4.7	0.4	0.6	2.3	0.6
Exchangeable Magnesium, Mg	mg/kg	2	1100	1300	1900	2400	1200
Exchangeable Magnesium, Mg	meq/100g	0.02	9.3	11	16	20	9.6
Exchangeable Magnesium Percentage*	%	0.1	89.3	95.0	84.8	88.9	89.8
Cation Exchange Capacity	meq/100g	0.02	10	11	19	22	11

			D248 0.2-0.3	D249 0.2-0.3	D249 1.0-1.1	D259 0.2-0.3	D259 1.9-2.0
			SOIL - 15/2/2017	SOIL - 15/2/2017	SOIL - 15/2/2017	SOIL - 16/2/2017	SOIL - 16/2/2017
PARAMETER	UOM	LOR	SE162178.033	SE162178.036	SE162178.037	SE162178.039	SE162178.041
Exchangeable Sodium, Na	mg/kg	2	51	32	64	210	120
Exchangeable Sodium, Na	meq/100g	0.01	0.22	0.14	0.28	0.90	0.52
Exchangeable Sodium Percentage*	%	0.1	3.6	1.5	2.6	9.3	12.6
Exchangeable Potassium, K	mg/kg	2	36	43	61	44	21
Exchangeable Potassium, K	meq/100g	0.01	0.09	0.11	0.16	0.11	0.05
Exchangeable Potassium Percentage*	%	0.1	1.5	1.2	1.4	1.2	1.3
Exchangeable Calcium, Ca	mg/kg	2	97	920	440	350	100
Exchangeable Calcium, Ca	meq/100g	0.01	0.48	4.6	2.2	1.8	0.51
Exchangeable Calcium Percentage*	%	0.1	7.9	49.8	20.4	18.2	12.4
Exchangeable Magnesium, Mg	mg/kg	2	650	530	1000	840	370
Exchangeable Magnesium, Mg	meq/100g	0.02	5.3	4.4	8.2	6.9	3.0
Exchangeable Magnesium Percentage*	%	0.1	87.0	47.5	75.6	71.3	73.6
Cation Exchange Capacity	meq/100g	0.02	6.1	9.2	11	9.6	4.1

18/05/2017 Page 3 of 23

Exchangeable Cations and Cation Exchange Capacity (CEC/ESP/SAR) [AN122] Tested: 22/2/2017 (continued)

			D263 0.2-0.3	D264 0.0-0.1	D265 0.2-0.3	D271 1.0-1.1	D271 1.9-2.0
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
PARAMETER	UOM	LOR	15/2/2017 SE162178.043	15/2/2017 SE162178.044	15/2/2017 SE162178.047	16/2/2017 SE162178.051	16/2/2017 SE162178.052
Exchangeable Sodium, Na	mg/kg	2	36	18	34	180	120
Exchangeable Sodium, Na	meq/100g	0.01	0.16	0.08	0.15	0.76	0.51
Exchangeable Sodium Percentage*	%	0.1	2.3	1.8	1.9	3.7	6.9
Exchangeable Potassium, K	mg/kg	2	28	32	21	140	48
Exchangeable Potassium, K	meq/100g	0.01	0.07	0.08	0.05	0.37	0.12
Exchangeable Potassium Percentage*	%	0.1	1.1	1.9	0.7	1.8	1.7
Exchangeable Calcium, Ca	mg/kg	2	160	400	170	1300	300
Exchangeable Calcium, Ca	meq/100g	0.01	0.81	2.0	0.85	6.6	1.5
Exchangeable Calcium Percentage*	%	0.1	12.0	48.4	11.2	32.1	19.9
Exchangeable Magnesium, Mg	mg/kg	2	690	240	790	1600	650
Exchangeable Magnesium, Mg	meq/100g	0.02	5.7	2.0	6.5	13	5.3
Exchangeable Magnesium Percentage*	%	0.1	84.6	47.8	86.1	62.4	71.5
Cation Exchange Capacity	meq/100g	0.02	6.7	4.2	7.6	21	7.5

			D272 0.0-0.1	D272 0.7-0.8	D273 0.0-0.1	D273 1.9-2.0	D274 1.0-1.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 16/2/2017	- 16/2/2017	- 16/2/2017	- 16/2/2017	- 16/2/2017
PARAMETER	UOM	LOR	SE162178.053	SE162178.055	SE162178.056	SE162178.059	SE162178.062
Exchangeable Sodium, Na	mg/kg	2	25	63	12	310	210
Exchangeable Sodium, Na	meq/100g	0.01	0.11	0.27	0.05	1.4	0.91
Exchangeable Sodium Percentage*	%	0.1	3.1	2.5	4.1	6.5	3.9
Exchangeable Potassium, K	mg/kg	2	64	78	60	120	170
Exchangeable Potassium, K	meq/100g	0.01	0.16	0.20	0.15	0.32	0.44
Exchangeable Potassium Percentage*	%	0.1	4.6	1.9	12.4	1.5	1.9
Exchangeable Calcium, Ca	mg/kg	2	450	960	140	710	1600
Exchangeable Calcium, Ca	meq/100g	0.01	2.3	4.8	0.72	3.5	7.8
Exchangeable Calcium Percentage*	%	0.1	63.3	44.5	57.7	17.0	33.7
Exchangeable Magnesium, Mg	mg/kg	2	130	670	40	1900	1700
Exchangeable Magnesium, Mg	meq/100g	0.02	1.0	5.5	0.32	16	14
Exchangeable Magnesium Percentage*	%	0.1	29.0	51.1	25.9	74.9	60.5
Cation Exchange Capacity	meq/100g	0.02	3.6	11	1.3	21	23

			D275 1.9-2.0	D277 0.2-0.3	D277 1.9-2.0	D278 1.0-1.1	D283 0.2-0.3
			SOIL - 16/2/2017	SOIL - 16/2/2017	SOIL - 16/2/2017	SOIL - 16/2/2017	SOIL - 17/2/2017
PARAMETER	UOM	LOR	SE162178.066	SE162178.071	SE162178.073	SE162178.076	SE162178.089
Exchangeable Sodium, Na	mg/kg	2	300	15	40	21	50
Exchangeable Sodium, Na	meq/100g	0.01	1.3	0.06	0.18	0.09	0.22
Exchangeable Sodium Percentage*	%	0.1	4.3	1.0	1.2	0.8	2.9
Exchangeable Potassium, K	mg/kg	2	220	170	84	100	26
Exchangeable Potassium, K	meq/100g	0.01	0.58	0.43	0.21	0.26	0.07
Exchangeable Potassium Percentage*	%	0.1	1.9	7.0	1.4	2.4	0.9
Exchangeable Calcium, Ca	mg/kg	2	1900	880	1300	1500	110
Exchangeable Calcium, Ca	meq/100g	0.01	9.4	4.4	6.5	7.7	0.55
Exchangeable Calcium Percentage*	%	0.1	30.5	71.2	43.2	69.6	7.2
Exchangeable Magnesium, Mg	mg/kg	2	2400	160	1000	370	820
Exchangeable Magnesium, Mg	meq/100g	0.02	19	1.3	8.2	3.0	6.7
Exchangeable Magnesium Percentage*	%	0.1	63.4	20.7	54.2	27.2	89.0
Cation Exchange Capacity	meq/100g	0.02	31	6.2	15	11	7.5

18/05/2017 Page 4 of 23

Exchangeable Cations and Cation Exchange Capacity (CEC/ESP/SAR) [AN122] Tested: 22/2/2017 (continued)

			D286 1.0-1.1	D288 0.6-0.7	D289 1.0-1.1	D290 1.0-1.1
			SOIL -	SOIL -	SOIL -	SOIL -
			17/2/2017			17/2/2017
PARAMETER	UOM	LOR	SE162178.098	SE162178.105	SE162178.109	SE162178.112
Exchangeable Sodium, Na	mg/kg	2	53	44	69	18
Exchangeable Sodium, Na	meq/100g	0.01	0.23	0.19	0.30	0.08
Exchangeable Sodium Percentage*	%	0.1	1.6	1.2	2.2	1.0
Exchangeable Potassium, K	mg/kg	2	140	100	53	150
Exchangeable Potassium, K	meq/100g	0.01	0.35	0.26	0.14	0.39
Exchangeable Potassium Percentage*	%	0.1	2.4	1.6	1.0	5.0
Exchangeable Calcium, Ca	mg/kg	2	1500	840	150	1000
Exchangeable Calcium, Ca	meq/100g	0.01	7.7	4.2	0.73	5.1
Exchangeable Calcium Percentage*	%	0.1	52.2	26.1	5.3	66.7
Exchangeable Magnesium, Mg	mg/kg	2	790	1400	1500	260
Exchangeable Magnesium, Mg	meq/100g	0.02	6.5	11	13	2.1
Exchangeable Magnesium Percentage*	%	0.1	43.8	71.1	91.5	27.3
Cation Exchange Capacity	meq/100g	0.02	15	16	14	7.7

18/05/2017 Page 5 of 23

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES [AN040/AN320] Tested: 21/2/2017

			D226 0.0-0.1	D226 0.2-0.3	D226 1.0-1.1	D229 0.0-0.1	D229 0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			15/2/2017	15/2/2017	15/2/2017	15/2/2017	15/2/2017
PARAMETER	UOM	LOR	SE162178.001	SE162178.002	SE162178.003	SE162178.004	SE162178.005
Arsenic, As	mg/kg	3	25	22	40	41	54
Cadmium, Cd	mg/kg	0.3	0.5	0.6	0.4	0.4	0.5
Chromium, Cr	mg/kg	0.3	26	25	30	29	35
Copper, Cu	mg/kg	0.5	11	13	15	7.8	8.1
Lead, Pb	mg/kg	1	80	68	91	76	100
Nickel, Ni	mg/kg	0.5	11	11	8.8	6.5	6.4
Zinc, Zn	mg/kg	0.5	120	120	87	61	59
Manganese, Mn	mg/kg	1	2800	2700	1400	800	500

			D229 1.0-1.1	D230 0.0-0.1	D230 0.2-0.3	D230 1.0-1.1	D231 0.0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			15/2/2017			15/2/2017	15/2/2017
PARAMETER	UOM	LOR	SE162178.006	SE162178.007	SE162178.008	SE162178.009	SE162178.010
Arsenic, As	mg/kg	3	29	110	110	130	75
Cadmium, Cd	mg/kg	0.3	0.4	0.7	0.7	0.7	0.5
Chromium, Cr	mg/kg	0.3	28	38	37	27	31
Copper, Cu	mg/kg	0.5	27	16	15	52	22
Lead, Pb	mg/kg	1	58	240	320	240	150
Nickel, Ni	mg/kg	0.5	24	6.0	6.2	29	7.2
Zinc, Zn	mg/kg	0.5	170	160	140	310	79
Manganese, Mn	mg/kg	1	140	740	1100	4200	220

			D231 0.2-0.3	D231 1.0-1.1	D231 1.9-2.0	D243 0.0-0.1	D243 0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 15/2/2017	- 15/2/2017	- 15/2/2017	- 15/2/2017	- 15/2/2017
PARAMETER	UOM	LOR	SE162178.011	SE162178.012	SE162178.013	SE162178.014	SE162178.015
Arsenic, As	mg/kg	3	7	33	32	13	15
Cadmium, Cd	mg/kg	0.3	<0.3	0.4	2.0	<0.3	<0.3
Chromium, Cr	mg/kg	0.3	3.9	17	49	22	26
Copper, Cu	mg/kg	0.5	2.5	46	42	33	34
Lead, Pb	mg/kg	1	28	440	240	12	11
Nickel, Ni	mg/kg	0.5	0.7	35	30	7.9	8.7
Zinc, Zn	mg/kg	0.5	8.7	230	570	30	25
Manganese, Mn	mg/kg	1	30	1000	860	420	270

			D243 1.0-1.1	D243 1.9-2.0	D244 0.0-0.1	D244 0.2-0.3	D244 1.0-1.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			15/2/2017			15/2/2017	15/2/2017
PARAMETER	UOM	LOR	SE162178.016	SE162178.017	SE162178.018	SE162178.019	SE162178.020
Arsenic, As	mg/kg	3	9	8	9	13	11
Cadmium, Cd	mg/kg	0.3	0.3	<0.3	<0.3	<0.3	<0.3
Chromium, Cr	mg/kg	0.3	58	56	27	38	38
Copper, Cu	mg/kg	0.5	33	33	13	21	17
Lead, Pb	mg/kg	1	7	6	12	12	10
Nickel, Ni	mg/kg	0.5	27	22	11	13	15
Zinc, Zn	mg/kg	0.5	50	47	36	30	29
Manganese, Mn	mg/kg	1	510	280	750	160	150

18/05/2017 Page 6 of 23

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES [AN040/AN320] Tested: 21/2/2017 (continued)

			D245 0.0-0.1	D245 0.2-0.3	D245 1.0-1.1	D245 1.9-2.0	D246 0.0-0.1
			2011	2011	00"	2011	00"
			SOIL -	SOIL -	SOIL -	SOIL -	SOIL -
			15/2/2017	15/2/2017	15/2/2017	15/2/2017	15/2/2017
PARAMETER	UOM	LOR	SE162178.021	SE162178.022	SE162178.023	SE162178.024	SE162178.025
Arsenic, As	mg/kg	3	13	16	23	8	16
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	0.3	0.5	0.4
Chromium, Cr	mg/kg	0.3	22	27	40	38	30
Copper, Cu	mg/kg	0.5	22	30	40	53	7.5
Lead, Pb	mg/kg	1	16	18	18	9	19
Nickel, Ni	mg/kg	0.5	7.5	8.7	16	16	8.9
Zinc, Zn	mg/kg	0.5	33	29	55	170	35
Manganese, Mn	mg/kg	1	420	340	190	290	110

			D246 0.2-0.3	D246 1.0-1.1	D247 0.0-0.1	D247 0.2-0.3	D247 1.0-1.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			15/2/2017			15/2/2017	15/2/2017
PARAMETER	UOM	LOR	SE162178.026	SE162178.027	SE162178.028	SE162178.029	SE162178.030
Arsenic, As	mg/kg	3	20	17	19	19	16
Cadmium, Cd	mg/kg	0.3	0.3	0.3	0.3	0.3	<0.3
Chromium, Cr	mg/kg	0.3	30	21	42	38	29
Copper, Cu	mg/kg	0.5	16	32	21	24	21
Lead, Pb	mg/kg	1	16	11	18	18	15
Nickel, Ni	mg/kg	0.5	9.4	27	17	21	22
Zinc, Zn	mg/kg	0.5	31	43	50	55	58
Manganese, Mn	mg/kg	1	55	390	45	62	120

			D247 1.9-2.0	D248 0.0-0.1	D248 0.2-0.3	D248 1.0-1.1	D249 0.0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	45/0/0047	45/0/0047	45/0/0047
			15/2/2017	15/2/2017	15/2/2017	15/2/2017	15/2/2017
PARAMETER	UOM	LOR	SE162178.031	SE162178.032	SE162178.033	SE162178.034	SE162178.035
Arsenic, As	mg/kg	3	20	48	150	290	95
Cadmium, Cd	mg/kg	0.3	0.4	0.5	0.7	1.8	0.5
Chromium, Cr	mg/kg	0.3	19	25	35	37	20
Copper, Cu	mg/kg	0.5	30	15	33	66	38
Lead, Pb	mg/kg	1	7	56	220	140	85
Nickel, Ni	mg/kg	0.5	27	7.4	12	33	12
Zinc, Zn	mg/kg	0.5	66	98	260	700	120
Manganese, Mn	mg/kg	1	240	370	670	1300	770

			D249 0.2-0.3	D249 1.0-1.1	D259 0.0-0.1	D259 0.2-0.3	D259 1.0-1.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 15/2/2017	- 15/2/2017	- 16/2/2017	- 16/2/2017	- 16/2/2017
PARAMETER	UOM	LOR	SE162178.036	SE162178.037	SE162178.038	SE162178.039	SE162178.040
Arsenic, As	mg/kg	3	65	45	40	38	54
Cadmium, Cd	mg/kg	0.3	0.5	0.4	0.7	0.3	0.3
Chromium, Cr	mg/kg	0.3	19	35	26	32	33
Copper, Cu	mg/kg	0.5	28	42	14	34	50
Lead, Pb	mg/kg	1	83	48	50	29	35
Nickel, Ni	mg/kg	0.5	11	24	12	19	23
Zinc, Zn	mg/kg	0.5	110	110	190	78	99
Manganese, Mn	mg/kg	1	1100	380	1400	170	130

18/05/2017 Page 7 of 23

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES [AN040/AN320] Tested: 21/2/2017 (continued)

			D259 1.9-2.0	D263 0.0-0.1	D263 0.2-0.3	D264 0.0-0.1	D264 0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			16/2/2017	15/2/2017	15/2/2017	15/2/2017	15/2/2017
PARAMETER	UOM	LOR	SE162178.041	SE162178.042	SE162178.043	SE162178.044	SE162178.045
Arsenic, As	mg/kg	3	17	13	11	13	14
Cadmium, Cd	mg/kg	0.3	0.5	<0.3	<0.3	0.3	<0.3
Chromium, Cr	mg/kg	0.3	16	28	35	27	28
Copper, Cu	mg/kg	0.5	25	22	16	15	17
Lead, Pb	mg/kg	1	17	15	12	17	18
Nickel, Ni	mg/kg	0.5	36	11	11	11	9.5
Zinc, Zn	mg/kg	0.5	97	28	23	42	37
Manganese, Mn	mg/kg	1	610	710	310	320	200

						1	1
			D265 0.0-0.1	D265 0.2-0.3	D265 1.0-1.1	D271 0.0-0.1	D271 0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			15/2/2017	15/2/2017	15/2/2017	16/2/2017	16/2/2017
PARAMETER	UOM	LOR	SE162178.046	SE162178.047	SE162178.048	SE162178.049	SE162178.050
Arsenic, As	mg/kg	3	9	10	6	30	40
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	<0.3	0.3	0.4
Chromium, Cr	mg/kg	0.3	25	28	31	26	33
Copper, Cu	mg/kg	0.5	19	17	14	13	17
Lead, Pb	mg/kg	1	11	9	5	96	98
Nickel, Ni	mg/kg	0.5	11	14	15	6.3	7.5
Zinc, Zn	mg/kg	0.5	35	32	28	57	74
Manganese, Mn	mg/kg	1	420	170	140	1300	1100

			D271 1.0-1.1	D271 1.9-2.0	D272 0.0-0.1	D272 0.2-0.3	D272 0.7-0.8
			SOIL	SOIL	0011	001	0011
			SOIL -	SOIL -	SOIL -	SOIL -	SOIL -
			16/2/2017	16/2/2017	16/2/2017	16/2/2017	16/2/2017
PARAMETER	UOM	LOR	SE162178.051	SE162178.052	SE162178.053	SE162178.054	SE162178.055
Arsenic, As	mg/kg	3	96	15	42	47	49
Cadmium, Cd	mg/kg	0.3	0.7	0.5	0.7	0.6	0.5
Chromium, Cr	mg/kg	0.3	34	18	34	40	26
Copper, Cu	mg/kg	0.5	54	39	22	24	51
Lead, Pb	mg/kg	1	210	19	110	130	65
Nickel, Ni	mg/kg	0.5	19	20	10	9.8	14
Zinc, Zn	mg/kg	0.5	240	220	110	110	110
Manganese, Mn	mg/kg	1	690	420	1700	2500	170

							ı
			D273 0.0-0.1	D273 0.2-0.3	D273 1.0-1.1	D273 1.9-2.0	D274 0.0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			16/2/2017	16/2/2017	16/2/2017	16/2/2017	16/2/2017
PARAMETER	UOM	LOR	SE162178.056	SE162178.057	SE162178.058	SE162178.059	SE162178.060
Arsenic, As	mg/kg	3	51	69	55	42	25
Cadmium, Cd	mg/kg	0.3	0.5	0.6	0.5	0.4	0.4
Chromium, Cr	mg/kg	0.3	49	61	41	28	34
Copper, Cu	mg/kg	0.5	4.6	9.4	30	34	8.3
Lead, Pb	mg/kg	1	100	110	75	95	73
Nickel, Ni	mg/kg	0.5	3.0	4.2	10	15	3.6
Zinc, Zn	mg/kg	0.5	56	50	74	92	54
Manganese, Mn	mg/kg	1	640	430	120	42	590

18/05/2017 Page 8 of 23

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES [AN040/AN320] Tested: 21/2/2017 (continued)

			D274 0.2-0.3	D274 1.0-1.1	D275 0.0-0.1	D275 0.2-0.3	D275 1.0-1.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			16/2/2017	16/2/2017	16/2/2017	16/2/2017	16/2/2017
PARAMETER	UOM	LOR	SE162178.061	SE162178.062	SE162178.063	SE162178.064	SE162178.065
PARAMETER	OOW	LOIX	32102170:001	3E102170:002	3E102176:003	3E102170:004	3E102170:003
Arsenic, As	mg/kg	3	63	33	25	42	42
Cadmium, Cd	mg/kg	0.3	0.8	0.3	<0.3	0.5	0.4
Chromium, Cr	mg/kg	0.3	71	31	23	39	34
Copper, Cu	mg/kg	0.5	15	28	10	12	28
Lead, Pb	mg/kg	1	130	45	47	76	45
Nickel, Ni	mg/kg	0.5	7.6	9.6	4.3	6.1	10
Zinc, Zn	mg/kg	0.5	82	61	48	48	53
Manganese, Mn	mg/kg	1	670	51	860	1200	140

			D275 1.9-2.0	D276 0.0-0.1	D276 0.2-0.3	D276 1.0-1.1	D277 0.0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			16/2/2017			16/2/2017	16/2/2017
PARAMETER	UOM	LOR	SE162178.066	SE162178.067	SE162178.068	SE162178.069	SE162178.070
Arsenic, As	mg/kg	3	130	37	76	85	34
Cadmium, Cd	mg/kg	0.3	1.0	0.4	0.6	0.7	0.4
Chromium, Cr	mg/kg	0.3	31	26	45	40	30
Copper, Cu	mg/kg	0.5	64	23	45	80	12
Lead, Pb	mg/kg	1	67	66	74	47	66
Nickel, Ni	mg/kg	0.5	18	5.8	9.1	15	9.1
Zinc, Zn	mg/kg	0.5	100	66	84	100	73
Manganese, Mn	mg/kg	1	6200	1400	800	510	2900

			D277 0.2-0.3	D277 1.0-1.1	D277 1.9-2.0	D278 0.0-0.1	D278 0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 16/2/2017			- 16/2/2017	- 16/2/2017
PARAMETER	UOM	LOR	SE162178.071	SE162178.072	SE162178.073	SE162178.074	SE162178.075
Arsenic, As	mg/kg	3	33	43	18	28	27
Cadmium, Cd	mg/kg	0.3	0.4	0.4	<0.3	1.0	0.9
Chromium, Cr	mg/kg	0.3	26	31	14	22	21
Copper, Cu	mg/kg	0.5	14	31	24	35	32
Lead, Pb	mg/kg	1	70	42	18	52	53
Nickel, Ni	mg/kg	0.5	11	13	35	15	15
Zinc, Zn	mg/kg	0.5	65	79	35	160	150
Manganese, Mn	mg/kg	1	3100	590	540	2400	2500

				1			
			D278 1.0-1.1	D279 0.0-0.1	D279 0.2-0.3	D280 0.0-0.1	D280 0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			16/2/2017			16/2/2017	16/2/2017
PARAMETER	UOM	LOR	SE162178.076	SE162178.077	SE162178.078	SE162178.079	SE162178.080
Arsenic, As	mg/kg	3	70	280	300	25	32
Cadmium, Cd	mg/kg	0.3	0.9	3.4	3.4	0.4	0.4
Chromium, Cr	mg/kg	0.3	70	26	26	18	30
Copper, Cu	mg/kg	0.5	37	47	47	25	37
Lead, Pb	mg/kg	1	59	310	330	20	20
Nickel, Ni	mg/kg	0.5	17	18	19	15	21
Zinc, Zn	mg/kg	0.5	200	570	560	55	61
Manganese, Mn	mg/kg	1	510	4300	4400	320	130

18/05/2017 Page 9 of 23

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES [AN040/AN320] Tested: 21/2/2017 (continued)

			D280 1.0-1.1	D281 0.0-0.1	D281 0.2-0.3	D281 1.0-1.1	D282 0.0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			16/2/2017			16/2/2017	16/2/2017
PARAMETER	UOM	LOR	SE162178.081	SE162178.082	SE162178.083	SE162178.084	SE162178.085
Arsenic, As	mg/kg	3	32	50	66	69	11
Cadmium, Cd	mg/kg	0.3	0.4	0.4	0.4	0.4	0.4
Chromium, Cr	mg/kg	0.3	24	21	20	15	16
Copper, Cu	mg/kg	0.5	30	330	440	500	7.3
Lead, Pb	mg/kg	1	16	29	25	32	53
Nickel, Ni	mg/kg	0.5	29	14	12	13	12
Zinc, Zn	mg/kg	0.5	74	57	55	49	82
Manganese, Mn	mg/kg	1	160	100	66	110	470

			D282 0.2-0.3	D282 1.0-1.1	D283 0.0-0.1	D283 0.2-0.3	D284 0.0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			16/2/2017	16/2/2017	17/2/2017	17/2/2017	17/2/2017
PARAMETER	UOM	LOR	SE162178.086	SE162178.087	SE162178.088	SE162178.089	SE162178.090
Arsenic, As	mg/kg	3	15	8	13	9	10
Cadmium, Cd	mg/kg	0.3	0.3	<0.3	<0.3	<0.3	<0.3
Chromium, Cr	mg/kg	0.3	17	16	14	21	17
Copper, Cu	mg/kg	0.5	8.5	8.9	20	18	2.3
Lead, Pb	mg/kg	1	90	19	19	11	9
Nickel, Ni	mg/kg	0.5	12	9.1	8.3	14	12
Zinc, Zn	mg/kg	0.5	87	79	50	74	44
Manganese, Mn	mg/kg	1	250	45	120	91	110

			D284 0.2-0.3	D285 0.0-0.1	D285 0.2-0.3	D285 1.0-1.1	D285 1.9-2.0
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 17/2/2017	- 17/2/2017	- 17/2/2017	- 17/2/2017	- 17/2/2017
PARAMETER	UOM	LOR	SE162178.091	SE162178.092	SE162178.093	SE162178.094	SE162178.095
Arsenic, As	mg/kg	3	10	43	97	200	260
Cadmium, Cd	mg/kg	0.3	<0.3	0.8	1.0	2.0	9.8
Chromium, Cr	mg/kg	0.3	18	27	35	30	22
Copper, Cu	mg/kg	0.5	2.5	16	40	64	61
Lead, Pb	mg/kg	1	11	82	160	240	64
Nickel, Ni	mg/kg	0.5	14	8.6	17	21	11
Zinc, Zn	mg/kg	0.5	53	170	340	670	1600
Manganese, Mn	mg/kg	1	150	910	2300	3200	2600

			D000000	D0000000	D0004044	D007.0.0.4	D007.0.0.0
			D286 0.0-0.1	D286 0.2-0.3	D286 1.0-1.1	D287 0.0-0.1	D287 0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			17/2/2017	17/2/2017	17/2/2017	17/2/2017	17/2/2017
PARAMETER	UOM	LOR	SE162178.096	SE162178.097	SE162178.098	SE162178.099	SE162178.100
Arsenic, As	mg/kg	3	26	26	50	29	53
Cadmium, Cd	mg/kg	0.3	0.4	0.3	0.4	0.5	0.5
Chromium, Cr	mg/kg	0.3	31	29	35	34	50
Copper, Cu	mg/kg	0.5	9.6	13	25	12	15
Lead, Pb	mg/kg	1	58	58	67	73	95
Nickel, Ni	mg/kg	0.5	5.5	6.4	10	3.8	6.2
Zinc, Zn	mg/kg	0.5	44	45	69	57	64
Manganese, Mn	mg/kg	1	1900	1600	1000	780	900

18/05/2017 Page 10 of 23

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES [AN040/AN320] Tested: 21/2/2017 (continued)

			D287 1.0-1.1	D287 1.9-2.0	D288 0.0-0.1	D288 0.2-0.3	D288 0.6-0.7
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 17/2/2017	- 17/2/2017	- 17/2/2017	- 17/2/2017	- 17/2/2017
PARAMETER	UOM	LOR	SE162178.101	SE162178.102	SE162178.103	SE162178.104	SE162178.105
Arsenic, As	mg/kg	3	79	85	22	16	15
Cadmium, Cd	mg/kg	0.3	0.6	0.5	0.6	0.4	0.3
Chromium, Cr	mg/kg	0.3	63	35	23	28	21
Copper, Cu	mg/kg	0.5	31	46	16	16	14
Lead, Pb	mg/kg	1	80	54	30	20	25
Nickel, Ni	mg/kg	0.5	5.4	11	19	25	26
Zinc, Zn	mg/kg	0.5	69	77	190	110	180
Manganese, Mn	mg/kg	1	210	50	440	190	240

							,
			D289 0.0-0.1	D289 0.2-0.3	D289 0.5-0.6	D289 1.0-1.1	D290 0.0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			17/2/2017			17/2/2017	17/2/2017
PARAMETER	UOM	LOR	SE162178.106	SE162178.107	SE162178.108	SE162178.109	SE162178.110
Arsenic, As	mg/kg	3	16	17	22	22	22
Cadmium, Cd	mg/kg	0.3	0.3	<0.3	0.3	0.4	1.6
Chromium, Cr	mg/kg	0.3	23	22	22	19	22
Copper, Cu	mg/kg	0.5	31	30	31	47	20
Lead, Pb	mg/kg	1	17	19	45	21	84
Nickel, Ni	mg/kg	0.5	16	12	30	31	11
Zinc, Zn	mg/kg	0.5	69	51	150	160	180
Manganese, Mn	mg/kg	1	210	120	190	300	2500

			D290 0.2-0.3	D290 1.0-1.1	Duplicate DS8	Duplicate DS9	Duplicate DS10
			0011	001	0011	001	001
			SOIL -	SOIL -	SOIL -	SOIL -	SOIL -
			17/2/2017	17/2/2017	17/2/2017	17/2/2017	17/2/2017
PARAMETER	UOM	LOR	SE162178.111	SE162178.112	SE162178.113	SE162178.114	SE162178.115
Arsenic, As	mg/kg	3	27	28	39	34	14
Cadmium, Cd	mg/kg	0.3	0.9	1.1	0.7	0.5	0.3
Chromium, Cr	mg/kg	0.3	24	27	26	31	20
Copper, Cu	mg/kg	0.5	26	25	16	14	20
Lead, Pb	mg/kg	1	82	84	63	69	18
Nickel, Ni	mg/kg	0.5	12	14	9.1	4.9	11
Zinc, Zn	mg/kg	0.5	170	180	160	65	50
Manganese, Mn	mg/kg	1	1400	1800	830	710	310

			Duplicate DS11	Duplicate DS12	Duplicate DS13	Duplicate DS14	Duplicate DS15
			SOIL	SOIL	SOIL	SOIL	SOIL
			17/2/2017	16/2/2017	16/2/2017	16/2/2017	16/2/2017
PARAMETER	UOM	LOR	SE162178.116	SE162178.117	SE162178.118	SE162178.119	SE162178.120
Arsenic, As	mg/kg	3	12	37	33	53	24
Cadmium, Cd	mg/kg	0.3	<0.3	0.6	0.4	0.6	0.3
Chromium, Cr	mg/kg	0.3	15	29	31	54	20
Copper, Cu	mg/kg	0.5	2.3	13	13	5.9	27
Lead, Pb	mg/kg	1	10	60	96	110	18
Nickel, Ni	mg/kg	0.5	11	11	6.2	3.7	16
Zinc, Zn	mg/kg	0.5	43	110	59	53	56
Manganese, Mn	mg/kg	1	110	1600	1200	730	290

18/05/2017 Page 11 of 23

Mercury in Soil [AN312] Tested: 22/2/2017

			D226 0.0-0.1	D226 0.2-0.3	D226 1.0-1.1	D229 0.0-0.1	D229 0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			15/2/2017			15/2/2017	15/2/2017
PARAMETER	UOM	LOR	SE162178.001	SE162178.002	SE162178.003	SE162178.004	SE162178.005
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05

			D229 1.0-1.1	D230 0.0-0.1	D230 0.2-0.3	D230 1.0-1.1	D231 0.0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			15/2/2017			15/2/2017	15/2/2017
PARAMETER	UOM	LOR	SE162178.006	SE162178.007	SE162178.008	SE162178.009	SE162178.010
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05

			D231 0.2-0.3	D231 1.0-1.1	D231 1.9-2.0	D243 0.0-0.1	D243 0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			15/2/2017			15/2/2017	15/2/2017
PARAMETER	UOM	LOR	SE162178.011	SE162178.012	SE162178.013	SE162178.014	SE162178.015
Mercury	mg/kg	0.05	<0.05	0.10	0.06	<0.05	<0.05

			D243 1.0-1.1	D243 1.9-2.0	D244 0.0-0.1	D244 0.2-0.3	D244 1.0-1.1
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			15/2/2017			15/2/2017	15/2/2017
PARAMETER	UOM	LOR	SE162178.016	SE162178.017	SE162178.018	SE162178.019	SE162178.020
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05

			D245 0.0-0.1	D245 0.2-0.3	D245 1.0-1.1	D245 1.9-2.0	D246 0.0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			15/2/2017			15/2/2017	15/2/2017
PARAMETER	UOM	LOR	SE162178.021	SE162178.022	SE162178.023	SE162178.024	SE162178.025
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05

			D246 0.2-0.3	D246 1.0-1.1	D247 0.0-0.1	D247 0.2-0.3	D247 1.0-1.1
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			15/2/2017			15/2/2017	15/2/2017
PARAMETER	UOM	LOR	SE162178.026	SE162178.027	SE162178.028	SE162178.029	SE162178.030
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05

			D247 1.9-2.0	D248 0.0-0.1	D248 0.2-0.3	D248 1.0-1.1	D249 0.0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			15/2/2017			15/2/2017	15/2/2017
PARAMETER	UOM	LOR	SE162178.031	SE162178.032	SE162178.033	SE162178.034	SE162178.035
Mercury	mg/kg	0.05	<0.05	<0.05	0.05	0.07	<0.05

18/05/2017 Page 12 of 23

Mercury in Soil [AN312] Tested: 22/2/2017 (continued)

			D249 0.2-0.3	D249 1.0-1.1	D259 0.0-0.1	D259 0.2-0.3	D259 1.0-1.1
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			15/2/2017			16/2/2017	16/2/2017
PARAMETER	UOM	LOR	SE162178.036	SE162178.037	SE162178.038	SE162178.039	SE162178.040
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05

			D259 1.9-2.0	D263 0.0-0.1	D263 0.2-0.3	D264 0.0-0.1	D264 0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			16/2/2017			15/2/2017	15/2/2017
PARAMETER	UOM	LOR	SE162178.041	SE162178.042	SE162178.043	SE162178.044	SE162178.045
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05

			D265 0.0-0.1	D265 0.2-0.3	D265 1.0-1.1	D271 0.0-0.1	D271 0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			15/2/2017			16/2/2017	16/2/2017
PARAMETER	UOM	LOR	SE162178.046	SE162178.047	SE162178.048	SE162178.049	SE162178.050
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05

			D271 1.0-1.1	D271 1.9-2.0	D272 0.0-0.1	D272 0.2-0.3	D272 0.7-0.8
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			16/2/2017			16/2/2017	16/2/2017
PARAMETER	UOM	LOR	SE162178.051	SE162178.052	SE162178.053	SE162178.054	SE162178.055
Mercury	mg/kg	0.05	0.05	0.06	<0.05	<0.05	<0.05

			D273 0.0-0.1	D273 0.2-0.3	D273 1.0-1.1	D273 1.9-2.0	D274 0.0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			16/2/2017			16/2/2017	16/2/2017
PARAMETER	UOM	LOR	SE162178.056	SE162178.057	SE162178.058	SE162178.059	SE162178.060
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05

			D274 0.2-0.3	D274 1.0-1.1	D275 0.0-0.1	D275 0.2-0.3	D275 1.0-1.1
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			16/2/2017			16/2/2017	16/2/2017
PARAMETER	UOM	LOR	SE162178.061	SE162178.062	SE162178.063	SE162178.064	SE162178.065
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05

			D275 1.9-2.0	D276 0.0-0.1	D276 0.2-0.3	D276 1.0-1.1	D277 0.0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			16/2/2017			16/2/2017	16/2/2017
PARAMETER	UOM	LOR	SE162178.066	SE162178.067	SE162178.068	SE162178.069	SE162178.070
Mercury	mg/kg	0.05	0.08	<0.05	<0.05	<0.05	<0.05

18/05/2017 Page 13 of 23

Mercury in Soil [AN312] Tested: 22/2/2017 (continued)

			D277 0.2-0.3	D277 1.0-1.1	D277 1.9-2.0	D278 0.0-0.1	D278 0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			16/2/2017			16/2/2017	16/2/2017
PARAMETER	UOM	LOR	SE162178.071	SE162178.072	SE162178.073	SE162178.074	SE162178.075
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05

			D278 1.0-1.1	D279 0.0-0.1	D279 0.2-0.3	D280 0.0-0.1	D280 0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			16/2/2017			16/2/2017	16/2/2017
PARAMETER	UOM	LOR	SE162178.076	SE162178.077	SE162178.078	SE162178.079	SE162178.080
Mercury	mg/kg	0.05	<0.05	0.08	<0.05	<0.05	<0.05

			D280 1.0-1.1	D281 0.0-0.1	D281 0.2-0.3	D281 1.0-1.1	D282 0.0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			16/2/2017			16/2/2017	16/2/2017
PARAMETER	UOM	LOR	SE162178.081	SE162178.082	SE162178.083	SE162178.084	SE162178.085
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05

			D282 0.2-0.3	D282 1.0-1.1	D283 0.0-0.1	D283 0.2-0.3	D284 0.0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			16/2/2017			17/2/2017	17/2/2017
PARAMETER	UOM	LOR	SE162178.086	SE162178.087	SE162178.088	SE162178.089	SE162178.090
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05

			D284 0.2-0.3	D285 0.0-0.1	D285 0.2-0.3	D285 1.0-1.1	D285 1.9-2.0
			SOIL	SOIL	SOIL	SOIL	SOIL
			17/2/2017			17/2/2017	17/2/2017
PARAMETER	UOM	LOR	SE162178.091	SE162178.092	SE162178.093	SE162178.094	SE162178.095
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	0.36

			D286 0.0-0.1	D286 0.2-0.3	D286 1.0-1.1	D287 0.0-0.1	D287 0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			17/2/2017			17/2/2017	17/2/2017
PARAMETER	UOM	LOR	SE162178.096	SE162178.097	SE162178.098	SE162178.099	SE162178.100
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	0.05	0.05

			D287 1.0-1.1	D287 1.9-2.0	D288 0.0-0.1	D288 0.2-0.3	D288 0.6-0.7
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			17/2/2017			17/2/2017	17/2/2017
PARAMETER	UOM	LOR	SE162178.101	SE162178.102	SE162178.103	SE162178.104	SE162178.105
Mercury	mg/kg	0.05	<0.05	0.07	<0.05	<0.05	<0.05

18/05/2017 Page 14 of 23

SE162178 R1

Mercury in Soil [AN312] Tested: 22/2/2017 (continued)

			D289 0.0-0.1	D289 0.2-0.3	D289 0.5-0.6	D289 1.0-1.1	D290 0.0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			17/2/2017			17/2/2017	17/2/2017
PARAMETER	UOM	LOR	SE162178.106	SE162178.107	SE162178.108	SE162178.109	SE162178.110
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05

			D290 0.2-0.3	D290 1.0-1.1	Duplicate DS8	Duplicate DS9	Duplicate DS10
			SOIL	SOIL	SOIL	SOIL	SOIL
			17/2/2017			17/2/2017	17/2/2017
PARAMETER	UOM	LOR	SE162178.111	SE162178.112	SE162178.113	SE162178.114	SE162178.115
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	0.06	<0.05

			Duplicate DS11	Duplicate DS12	Duplicate DS13	Duplicate DS14	Duplicate DS15
			SOIL	SOIL	SOIL	SOIL	SOIL
			17/2/2017			16/2/2017	16/2/2017
PARAMETER	UOM	LOR	SE162178.116	SE162178.117	SE162178.118	SE162178.119	SE162178.120
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05

18/05/2017 Page 15 of 23

Moisture Content [AN002] Tested: 21/2/2017

			D226 0.0-0.1	D226 0.2-0.3	D226 1.0-1.1	D229 0.0-0.1	D229 0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			15/2/2017			15/2/2017	15/2/2017
PARAMETER	UOM	LOR	SE162178.001	SE162178.002	SE162178.003	SE162178.004	SE162178.005
% Moisture	%w/w	0.5	5.9	4.4	8.9	2.7	5.5

			D229 1.0-1.1	D230 0.0-0.1	D230 0.2-0.3	D230 1.0-1.1	D231 0.0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			15/2/2017			15/2/2017	15/2/2017
PARAMETER	UOM	LOR	SE162178.006	SE162178.007	SE162178.008	SE162178.009	SE162178.010
% Moisture	%w/w	0.5	13	3.6	2.6	16	2.3

			D231 0.2-0.3	D231 1.0-1.1	D231 1.9-2.0	D243 0.0-0.1	D243 0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			15/2/2017			15/2/2017	15/2/2017
PARAMETER	UOM	LOR	SE162178.011	SE162178.012	SE162178.013	SE162178.014	SE162178.015
% Moisture	%w/w	0.5	3.4	21	16	4.6	3.6

			D243 1.0-1.1	D243 1.9-2.0	D244 0.0-0.1	D244 0.2-0.3	D244 1.0-1.1
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			15/2/2017			15/2/2017	15/2/2017
PARAMETER	UOM	LOR	SE162178.016	SE162178.017	SE162178.018	SE162178.019	SE162178.020
% Moisture	%w/w	0.5	20	15	6.7	3.4	4.1

			D245 0.0-0.1	D245 0.2-0.3	D245 1.0-1.1	D245 1.9-2.0	D246 0.0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			15/2/2017			15/2/2017	15/2/2017
PARAMETER	UOM	LOR	SE162178.021	SE162178.022	SE162178.023	SE162178.024	SE162178.025
% Moisture	%w/w	0.5	4.3	4.9	15	18	1.7

			D246 0.2-0.3	D246 1.0-1.1	D247 0.0-0.1	D247 0.2-0.3	D247 1.0-1.1
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			15/2/2017			15/2/2017	15/2/2017
PARAMETER	UOM	LOR	SE162178.026	SE162178.027	SE162178.028	SE162178.029	SE162178.030
% Moisture	%w/w	0.5	4.7	13	14	18	18

			D247 1.9-2.0	D248 0.0-0.1	D248 0.2-0.3	D248 1.0-1.1	D249 0.0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			15/2/2017			15/2/2017	15/2/2017
PARAMETER	UOM	LOR	SE162178.031	SE162178.032	SE162178.033	SE162178.034	SE162178.035
% Moisture	%w/w	0.5	12	2.2	10	24	7.1

18/05/2017 Page 16 of 23

Moisture Content [AN002] Tested: 21/2/2017 (continued)

			D249 0.2-0.3	D249 1.0-1.1	D259 0.0-0.1	D259 0.2-0.3	D259 1.0-1.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			15/2/2017			16/2/2017	16/2/2017
PARAMETER	UOM	LOR	SE162178.036	SE162178.037	SE162178.038	SE162178.039	SE162178.040
% Moisture	%w/w	0.5	8.2	9.9	4.1	7.5	14

			D259 1.9-2.0	D263 0.0-0.1	D263 0.2-0.3	D264 0.0-0.1	D264 0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			16/2/2017			15/2/2017	15/2/2017
PARAMETER	UOM	LOR	SE162178.041	SE162178.042	SE162178.043	SE162178.044	SE162178.045
% Moisture	%w/w	0.5	14	5.0	3.9	2.6	3.0

			D265 0.0-0.1	D265 0.2-0.3	D265 1.0-1.1	D271 0.0-0.1	D271 0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			15/2/2017			16/2/2017	16/2/2017
PARAMETER	UOM	LOR	SE162178.046	SE162178.047	SE162178.048	SE162178.049	SE162178.050
% Moisture	%w/w	0.5	4.0	3.5	11	4.3	7.2

			D271 1.0-1.1	D271 1.9-2.0	D272 0.0-0.1	D272 0.2-0.3	D272 0.7-0.8
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			16/2/2017			16/2/2017	16/2/2017
PARAMETER	UOM	LOR	SE162178.051	SE162178.052	SE162178.053	SE162178.054	SE162178.055
% Moisture	%w/w	0.5	18	11	3.5	4.7	11

			D273 0.0-0.1	D273 0.2-0.3	D273 1.0-1.1	D273 1.9-2.0	D274 0.0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			16/2/2017			16/2/2017	16/2/2017
PARAMETER	UOM	LOR	SE162178.056	SE162178.057	SE162178.058	SE162178.059	SE162178.060
% Moisture	%w/w	0.5	2.6	3.9	18	18	2.5

			D274 0.2-0.3	D274 1.0-1.1	D275 0.0-0.1	D275 0.2-0.3	D275 1.0-1.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			16/2/2017	16/2/2017	16/2/2017	16/2/2017	16/2/2017
PARAMETER	UOM	LOR	SE162178.061	SE162178.062	SE162178.063	SE162178.064	SE162178.065
% Moisture	%w/w	0.5	7.5	19	1.7	4.2	16

			D275 1.9-2.0	D276 0.0-0.1	D276 0.2-0.3	D276 1.0-1.1	D277 0.0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			16/2/2017			16/2/2017	16/2/2017
PARAMETER	UOM	LOR	SE162178.066	SE162178.067	SE162178.068	SE162178.069	SE162178.070
% Moisture	%w/w	0.5	24	5.0	10	22	4.9

18/05/2017 Page 17 of 23

Moisture Content [AN002] Tested: 21/2/2017 (continued)

			D277 0.2-0.3	D277 1.0-1.1	D277 1.9-2.0	D278 0.0-0.1	D278 0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			16/2/2017			16/2/2017	16/2/2017
PARAMETER	UOM	LOR	SE162178.071	SE162178.072	SE162178.073	SE162178.074	SE162178.075
% Moisture	%w/w	0.5	6.4	12	6.8	8.2	6.7

			D278 1.0-1.1	D279 0.0-0.1	D279 0.2-0.3	D280 0.0-0.1	D280 0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			16/2/2017			16/2/2017	16/2/2017
PARAMETER	UOM	LOR	SE162178.076	SE162178.077	SE162178.078	SE162178.079	SE162178.080
% Moisture	%w/w	0.5	7.2	8.4	8.5	2.4	5.5

			D280 1.0-1.1	D281 0.0-0.1	D281 0.2-0.3	D281 1.0-1.1	D282 0.0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			16/2/2017			16/2/2017	16/2/2017
PARAMETER	UOM	LOR	SE162178.081	SE162178.082	SE162178.083	SE162178.084	SE162178.085
% Moisture	%w/w	0.5	6.1	3.0	6.3	8.3	5.8

			D282 0.2-0.3	D282 1.0-1.1	D283 0.0-0.1	D283 0.2-0.3	D284 0.0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			16/2/2017			17/2/2017	17/2/2017
PARAMETER	UOM	LOR	SE162178.086	SE162178.087	SE162178.088	SE162178.089	SE162178.090
% Moisture	%w/w	0.5	5.4	16	2.4	4.2	2.2

			D284 0.2-0.3	D285 0.0-0.1	D285 0.2-0.3	D285 1.0-1.1	D285 1.9-2.0
			SOIL	SOIL	SOIL	SOIL	SOIL
			17/2/2017			17/2/2017	17/2/2017
PARAMETER	UOM	LOR	SE162178.091	SE162178.092	SE162178.093	SE162178.094	SE162178.095
% Moisture	%w/w	0.5	2.6	2.5	11	13	27

			D286 0.0-0.1	D286 0.2-0.3	D286 1.0-1.1	D287 0.0-0.1	D287 0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			17/2/2017			17/2/2017	17/2/2017
PARAMETER	UOM	LOR	SE162178.096	SE162178.097	SE162178.098	SE162178.099	SE162178.100
% Moisture	%w/w	0.5	1.8	5.8	15	4.7	5.3

			D287 1.0-1.1	D287 1.9-2.0	D288 0.0-0.1	D288 0.2-0.3	D288 0.6-0.7
			SOIL	SOIL	SOIL	SOIL	SOIL
			17/2/2017			17/2/2017	17/2/2017
PARAMETER	UOM	LOR	SE162178.101	SE162178.102	SE162178.103	SE162178.104	SE162178.105
% Moisture	%w/w	0.5	7.3	21	5.2	9.1	10

18/05/2017 Page 18 of 23

SE162178 R1

Moisture Content [AN002] Tested: 21/2/2017 (continued)

			D289 0.0-0.1	D289 0.2-0.3	D289 0.5-0.6	D289 1.0-1.1	D290 0.0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			17/2/2017			17/2/2017	17/2/2017
PARAMETER	UOM	LOR	SE162178.106	SE162178.107	SE162178.108	SE162178.109	SE162178.110
% Moisture	%w/w	0.5	2.5	4.9	11	6.4	5.5

			D290 0.2-0.3	D290 1.0-1.1	Duplicate DS8	Duplicate DS9	Duplicate DS10
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			17/2/2017			17/2/2017	17/2/2017
PARAMETER	UOM	LOR	SE162178.111	SE162178.112	SE162178.113	SE162178.114	SE162178.115
% Moisture	%w/w	0.5	7.7	8.4	3.6	5.4	3.0

			Duplicate DS11	Duplicate DS12	Duplicate DS13	Duplicate DS14	Duplicate DS15
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			17/2/2017			16/2/2017	16/2/2017
PARAMETER	UOM	LOR	SE162178.116	SE162178.117	SE162178.118	SE162178.119	SE162178.120
% Moisture	%w/w	0.5	2.0	4.5	4.4	2.1	2.2

18/05/2017 Page 19 of 23

SE162178 R1

Metals in Water (Dissolved) by ICPOES [AN320/AN321] Tested: 24/2/2017

			Rinsate RS3	Rinsate RS4	Rinsate RS5
			WATER	WATER	WATER
PARAMETER	UOM	LOR	15/2/2017 SE162178.121	16/2/2017 SE162178.122	17/2/2017 SE162178.123
Arsenic, As	mg/L	0.02	<0.02	<0.02	<0.02
Cadmium, Cd	mg/L	0.001	<0.001	<0.001	<0.001
Chromium, Cr	mg/L	0.005	<0.005	<0.005	<0.005
Copper, Cu	mg/L	0.005	<0.005	<0.005	<0.005
Lead, Pb	mg/L	0.02	<0.02	<0.02	<0.02
Manganese, Mn	mg/L	0.005	<0.005	<0.005	<0.005
Nickel, Ni	mg/L	0.005	<0.005	<0.005	<0.005
Zinc, Zn	mg/L	0.01	<0.01	<0.01	<0.01

18/05/2017 Page 20 of 23

SE162178 R1

Mercury (dissolved) in Water [AN311(Perth)/AN312] Tested: 23/2/2017

			Rinsate RS3	Rinsate RS4	Rinsate RS5
			WATER	WATER	WATER
					-
			15/2/2017		17/2/2017
PARAMETER	UOM	LOR	SE162178.121	SE162178.122	SE162178.123
Mercury	mg/L	0.0001	<0.0001	<0.0001	<0.0001

18/05/2017 Page 21 of 23

METHOD SUMMARY

SE162178 R1

METHOD -

METHODOLOGY SUMMARY

AN002

The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.

AN020

Unpreserved water sample is filtered through a $0.45\mu m$ membrane filter and acidified with nitric acid similar to APHA3030B.

ΔΝ040/ΔΝ320

A portion of sample is digested with nitric acid to decompose organic matter and hydrochloric acid to complete the digestion of metals. The digest is then analysed by ICP OES with metals results reported on the dried sample basis. Based on USEPA method 200.8 and 6010C.

AN040

A portion of sample is digested with Nitric acid to decompose organic matter and Hydrochloric acid to complete the digestion of metals and then filtered for analysis by ASS or ICP as per USEPA Method 200.8.

AN101

pH in Soil Sludge Sediment and Water: pH is measured electrometrically using a combination electrode and is calibrated against 3 buffers purchased commercially. For soils, sediments and sludges, an extract with water (or 0.01M CaCl2) is made at a ratio of 1:5 and the pH determined and reported on the extract. Reference APHA 4500-H+.

AN122

Exchangeable Cations, CEC and ESP: Soil sample is extracted in 1M Ammonium Acetate at pH=7 (or 1M Ammonium Chloride at pH=7) with cations (Na, K, Ca & Mg) then determined by ICP OES/ICP MS and reported as Exchangeable Cations. For saline soils, these results can be corrected for water soluble cations and reported as Exchangeable cations in meq/100g or soil can be pre-treated (aqueous ethanol/aqueous glycerol) prior to extraction. Cation Exchange Capacity (CEC) is the sum of the exchangeable cations in meq/100g.

AN122

The Exchangeable Sodium Percentage (ESP) is calculated as the exchangeable sodium divided by the CEC (all in meq/100g) times 100.

ESP can be used to categorise the sodicity of the soil as below:

ESP < 6% non-sodic ESP 6-15% sodic ESP >15% strongly sodic

Method is refernced to Rayment and Higginson, 1992, sections 15D3 and 15N1.-

AN311(Perth)/AN312

Mercury by Cold Vapour AAS in Waters: Mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500.

AN312

Mercury by Cold Vapour AAS in Soils: After digestion with nitric acid, hydrogen peroxide and hydrochloric acid, mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500

AN320/AN321

Metals by ICP-OES: Samples are preserved with 10% nitric acid for a wide range of metals and some non-metals. This solution is measured by Inductively Coupled Plasma. Solutions are aspirated into an argon plasma at 8000-10000K and emit characteristic energy or light as a result of electron transitions through unique energy levels. The emitted light is focused onto a diffraction grating where it is separated into components.

AN320/AN321

Photomultipliers or CCDs are used to measure the light intensity at specific wavelengths. This intensity is directly proportional to concentration. Corrections are required to compensate for spectral overlap between elements . Reference APHA 3120 B.

18/05/2017 Page 22 of 23

FOOTNOTES SE162178 R1

FOOTNOTES -

* NATA accreditation does not cover the performance of this service.

** Indicative data, theoretical holding time exceeded.

Not analysed.NVL Not validated.

IS Insufficient sample for analysis. LNR Sample listed, but not received.

UOM Unit of Measure.

LOR Limit of Reporting.

↑↓ Raised/lowered Limit of

Reporting.

Samples analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued by the Company under its General Conditions of Service accessible at www.sgs.com/en/Terms-and-Conditions.aspx.

Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This report must not be reproduced, except in full.

18/05/2017 Page 23 of 23

4 items

1 item

STATEMENT OF QA/QC PERFORMANCE

CLIENT DETAILS _____ LABORATORY DETAILS

Contact John Xu Manager Huong Crawford

Client Geotechnique Laboratory SGS Alexandria Environmental
Address P.O. Box 880 Address Unit 16, 33 Maddox St

P.O. Box 880 Address Unit 16, 33 Maddox St PENRITH NSW 2751 Alexandria NSW 2015

Telephone 02 4722 2700 Telephone +61 2 8594 0400

Facsimile 02 4722 6161 Facsimile +61 2 8594 0499

Email john.xu@geotech.com.au Email au.environmental.sydney@sgs.com

Project12675-4 Goongong NH1A-7 & NH2SGS ReferenceSE162178 R1Order Number(Not specified)Date Received20 Feb 2017Samples123Date Reported18 May 2017

COMMENTS

Duplicate

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document and was supplied by the Client.

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES

This QA/QC Statement must be read in conjunction with the referenced Analytical Report.

The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met with the exception of the following:

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES 4 items

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES 3 items

Matrix Spike Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES 1 item

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES 3 items

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES

1 item

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES

2 items

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES 1 item

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES 2 items

SAMPLE SUMMARY

Samples clearly labelled Yes Complete documentation received Sample container provider SGS Sample cooling method Samples received in correct containers Yes Sample counts by matrix 20/2/2017 Date documentation received Type of documentation received Samples received in good order Samples received without headspace Yes Sample temperature upon receipt 17.0°C Sufficient sample for analysis Turnaround time requested Standard

Ice Bricks
120 Soil, 3 Water
COC
Yes
Yes

Yes

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia Australia t +61 2 8594 0400 f +61 2 8594 0499

www.sgs.com.au

Member of the SGS Group

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Exchangeable Cations and Cation Exchange Capacity (CEC/ESP/SAR)

Method: ME-(AU)-[ENV]AN122

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
D226 0.0-0.1	SE162178.001	LB119136	15 Feb 2017	20 Feb 2017	15 Mar 2017	22 Feb 2017	15 Mar 2017	27 Feb 2017
D226 1.0-1.1	SE162178.003	LB119136	15 Feb 2017	20 Feb 2017	15 Mar 2017	22 Feb 2017	15 Mar 2017	27 Feb 2017
D229 1.0-1.1	SE162178.006	LB119136	15 Feb 2017	20 Feb 2017	15 Mar 2017	22 Feb 2017	15 Mar 2017	27 Feb 2017
D230 1.0-1.1	SE162178.009	LB119136	15 Feb 2017	20 Feb 2017	15 Mar 2017	22 Feb 2017	15 Mar 2017	27 Feb 2017
D231 1.0-1.1	SE162178.012	LB119136	15 Feb 2017	20 Feb 2017	15 Mar 2017	22 Feb 2017	15 Mar 2017	27 Feb 2017
D231 1.9-2.0	SE162178.013	LB119136	15 Feb 2017	20 Feb 2017	15 Mar 2017	22 Feb 2017	15 Mar 2017	27 Feb 2017
D245 1.9-2.0	SE162178.024	LB119136	15 Feb 2017	20 Feb 2017	15 Mar 2017	22 Feb 2017	15 Mar 2017	27 Feb 2017
D246 1.0-1.1	SE162178.027	LB119136	15 Feb 2017	20 Feb 2017	15 Mar 2017	22 Feb 2017	15 Mar 2017	27 Feb 2017
D247 0.2-0.3	SE162178.029	LB119136	15 Feb 2017	20 Feb 2017	15 Mar 2017	22 Feb 2017	15 Mar 2017	27 Feb 2017
D247 1.9-2.0	SE162178.031	LB119136	15 Feb 2017	20 Feb 2017	15 Mar 2017	22 Feb 2017	15 Mar 2017	27 Feb 2017
D248 0.2-0.3	SE162178.033	LB119136	15 Feb 2017	20 Feb 2017	15 Mar 2017	22 Feb 2017	15 Mar 2017	27 Feb 2017
D249 0.2-0.3	SE162178.036	LB119136	15 Feb 2017	20 Feb 2017	15 Mar 2017	22 Feb 2017	15 Mar 2017	27 Feb 2017
D249 1.0-1.1	SE162178.037	LB119136	15 Feb 2017	20 Feb 2017	15 Mar 2017	22 Feb 2017	15 Mar 2017	27 Feb 2017
D259 0.2-0.3	SE162178.039	LB119136	16 Feb 2017	20 Feb 2017	16 Mar 2017	22 Feb 2017	16 Mar 2017	27 Feb 2017
D259 1.9-2.0	SE162178.041	LB119136	16 Feb 2017	20 Feb 2017	16 Mar 2017	22 Feb 2017	16 Mar 2017	27 Feb 2017
D263 0.2-0.3	SE162178.043	LB119136	15 Feb 2017	20 Feb 2017	15 Mar 2017	22 Feb 2017	15 Mar 2017	27 Feb 2017
D264 0.0-0.1	SE162178.044	LB119136	15 Feb 2017	20 Feb 2017	15 Mar 2017	22 Feb 2017	15 Mar 2017	27 Feb 2017
D265 0.2-0.3	SE162178.047	LB119138	15 Feb 2017	20 Feb 2017	15 Mar 2017	22 Feb 2017	15 Mar 2017	27 Feb 2017
D271 1.0-1.1	SE162178.051	LB119138	16 Feb 2017	20 Feb 2017	16 Mar 2017	22 Feb 2017	16 Mar 2017	27 Feb 2017
D271 1.9-2.0	SE162178.052	LB119138	16 Feb 2017	20 Feb 2017	16 Mar 2017	22 Feb 2017	16 Mar 2017	27 Feb 2017
D272 0.0-0.1	SE162178.053	LB119138	16 Feb 2017	20 Feb 2017	16 Mar 2017	22 Feb 2017	16 Mar 2017	27 Feb 2017
D272 0.7-0.8	SE162178.055	LB119138	16 Feb 2017	20 Feb 2017	16 Mar 2017	22 Feb 2017	16 Mar 2017	27 Feb 2017
D273 0.0-0.1	SE162178.056	LB119138	16 Feb 2017	20 Feb 2017	16 Mar 2017	22 Feb 2017	16 Mar 2017	27 Feb 2017
D273 1.9-2.0	SE162178.059	LB119138	16 Feb 2017	20 Feb 2017	16 Mar 2017	22 Feb 2017	16 Mar 2017	27 Feb 2017
D274 1.0-1.1	SE162178.062	LB119138	16 Feb 2017	20 Feb 2017	16 Mar 2017	22 Feb 2017	16 Mar 2017	27 Feb 2017
D275 1.9-2.0	SE162178.066	LB119138	16 Feb 2017	20 Feb 2017	16 Mar 2017	22 Feb 2017	16 Mar 2017	27 Feb 2017
D277 0.2-0.3	SE162178.071	LB119138	16 Feb 2017	20 Feb 2017	16 Mar 2017	22 Feb 2017	16 Mar 2017	27 Feb 2017
D277 1.9-2.0	SE162178.073	LB119138	16 Feb 2017	20 Feb 2017	16 Mar 2017	22 Feb 2017	16 Mar 2017	27 Feb 2017
D278 1.0-1.1	SE162178.076	LB119138	16 Feb 2017	20 Feb 2017	16 Mar 2017	22 Feb 2017	16 Mar 2017	27 Feb 2017
D283 0.2-0.3	SE162178.089	LB119138	17 Feb 2017	20 Feb 2017	17 Mar 2017	22 Feb 2017	17 Mar 2017	27 Feb 2017
D286 1.0-1.1	SE162178.098	LB119138	17 Feb 2017	20 Feb 2017	17 Mar 2017	22 Feb 2017	17 Mar 2017	27 Feb 2017
D288 0.6-0.7	SE162178.105	LB119138	17 Feb 2017	20 Feb 2017	17 Mar 2017	22 Feb 2017	17 Mar 2017	27 Feb 2017
D289 1.0-1.1	SE162178.109	LB119138	17 Feb 2017	20 Feb 2017	17 Mar 2017	22 Feb 2017	17 Mar 2017	27 Feb 2017
D290 1.0-1.1	SE162178.112	LB119138	17 Feb 2017	20 Feb 2017	17 Mar 2017	22 Feb 2017	17 Mar 2017	27 Feb 2017

Mercury (dissolved) in Water

Method: ME-(AU)-[ENV]AN311(Perth)/AN312

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
Rinsate RS3	SE162178.121	LB119219	15 Feb 2017	20 Feb 2017	15 Mar 2017	23 Feb 2017	15 Mar 2017	23 Feb 2017
Rinsate RS4	SE162178.122	LB119219	16 Feb 2017	20 Feb 2017	16 Mar 2017	23 Feb 2017	16 Mar 2017	23 Feb 2017
Rinsate RS5	SE162178.123	LB119219	17 Feb 2017	20 Feb 2017	17 Mar 2017	23 Feb 2017	17 Mar 2017	23 Feb 2017

Mercury in Soil

Method: ME-(AU)-[ENV]AN312

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
D226 0.0-0.1	SE162178.001	LB119168	15 Feb 2017	20 Feb 2017	15 Mar 2017	22 Feb 2017	15 Mar 2017	24 Feb 2017
D226 0.2-0.3	SE162178.002	LB119168	15 Feb 2017	20 Feb 2017	15 Mar 2017	22 Feb 2017	15 Mar 2017	24 Feb 2017
D226 1.0-1.1	SE162178.003	LB119168	15 Feb 2017	20 Feb 2017	15 Mar 2017	22 Feb 2017	15 Mar 2017	24 Feb 2017
D229 0.0-0.1	SE162178.004	LB119168	15 Feb 2017	20 Feb 2017	15 Mar 2017	22 Feb 2017	15 Mar 2017	24 Feb 2017
D229 0.2-0.3	SE162178.005	LB119168	15 Feb 2017	20 Feb 2017	15 Mar 2017	22 Feb 2017	15 Mar 2017	24 Feb 2017
D229 1.0-1.1	SE162178.006	LB119168	15 Feb 2017	20 Feb 2017	15 Mar 2017	22 Feb 2017	15 Mar 2017	24 Feb 2017
D230 0.0-0.1	SE162178.007	LB119168	15 Feb 2017	20 Feb 2017	15 Mar 2017	22 Feb 2017	15 Mar 2017	24 Feb 2017
D230 0.2-0.3	SE162178.008	LB119168	15 Feb 2017	20 Feb 2017	15 Mar 2017	22 Feb 2017	15 Mar 2017	24 Feb 2017
D230 1.0-1.1	SE162178.009	LB119168	15 Feb 2017	20 Feb 2017	15 Mar 2017	22 Feb 2017	15 Mar 2017	24 Feb 2017
D231 0.0-0.1	SE162178.010	LB119168	15 Feb 2017	20 Feb 2017	15 Mar 2017	22 Feb 2017	15 Mar 2017	24 Feb 2017
D231 0.2-0.3	SE162178.011	LB119168	15 Feb 2017	20 Feb 2017	15 Mar 2017	22 Feb 2017	15 Mar 2017	24 Feb 2017
D231 1.0-1.1	SE162178.012	LB119168	15 Feb 2017	20 Feb 2017	15 Mar 2017	22 Feb 2017	15 Mar 2017	24 Feb 2017
D231 1.9-2.0	SE162178.013	LB119168	15 Feb 2017	20 Feb 2017	15 Mar 2017	22 Feb 2017	15 Mar 2017	24 Feb 2017
D243 0.0-0.1	SE162178.014	LB119168	15 Feb 2017	20 Feb 2017	15 Mar 2017	22 Feb 2017	15 Mar 2017	24 Feb 2017
D243 0.2-0.3	SE162178.015	LB119168	15 Feb 2017	20 Feb 2017	15 Mar 2017	22 Feb 2017	15 Mar 2017	24 Feb 2017
D243 1.0-1.1	SE162178.016	LB119168	15 Feb 2017	20 Feb 2017	15 Mar 2017	22 Feb 2017	15 Mar 2017	24 Feb 2017
D243 1.9-2.0	SE162178.017	LB119169	15 Feb 2017	20 Feb 2017	15 Mar 2017	22 Feb 2017	15 Mar 2017	24 Feb 2017
D244 0.0-0.1	SE162178.018	LB119169	15 Feb 2017	20 Feb 2017	15 Mar 2017	22 Feb 2017	15 Mar 2017	24 Feb 2017

18/5/2017 Page 2 of 21

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Mercury in Soil (continued) Method: ME-(AU)-[ENV]AN312

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
D244 0.2-0.3	SE162178.019	LB119169	15 Feb 2017	20 Feb 2017	15 Mar 2017	22 Feb 2017	15 Mar 2017	24 Feb 2017
D244 1.0-1.1	SE162178.020	LB119169	15 Feb 2017	20 Feb 2017	15 Mar 2017	22 Feb 2017	15 Mar 2017	24 Feb 2017
D245 0.0-0.1	SE162178.021	LB119169	15 Feb 2017	20 Feb 2017	15 Mar 2017	22 Feb 2017	15 Mar 2017	24 Feb 2017
D245 0.2-0.3	SE162178.022	LB119169	15 Feb 2017	20 Feb 2017	15 Mar 2017	22 Feb 2017	15 Mar 2017	24 Feb 2017
D245 1.0-1.1	SE162178.023	LB119169	15 Feb 2017	20 Feb 2017	15 Mar 2017	22 Feb 2017	15 Mar 2017	24 Feb 2017
D245 1.9-2.0	SE162178.024	LB119169	15 Feb 2017	20 Feb 2017	15 Mar 2017	22 Feb 2017	15 Mar 2017	24 Feb 2017
D246 0.0-0.1	SE162178.025	LB119169	15 Feb 2017	20 Feb 2017	15 Mar 2017	22 Feb 2017	15 Mar 2017	24 Feb 2017
D246 0.2-0.3	SE162178.026	LB119169	15 Feb 2017	20 Feb 2017	15 Mar 2017	22 Feb 2017	15 Mar 2017	24 Feb 2017
D246 1.0-1.1	SE162178.027	LB119169	15 Feb 2017	20 Feb 2017	15 Mar 2017	22 Feb 2017	15 Mar 2017	24 Feb 2017
	SE162178.028	LB119169						
D247 0.0-0.1			15 Feb 2017 15 Feb 2017	20 Feb 2017	15 Mar 2017 15 Mar 2017	22 Feb 2017	15 Mar 2017	24 Feb 2017
D247 0.2-0.3	SE162178.029	LB119169		20 Feb 2017		22 Feb 2017	15 Mar 2017	24 Feb 2017
D247 1.0-1.1	SE162178.030	LB119169	15 Feb 2017	20 Feb 2017	15 Mar 2017	22 Feb 2017	15 Mar 2017	24 Feb 2017
D247 1.9-2.0	SE162178.031	LB119169	15 Feb 2017	20 Feb 2017	15 Mar 2017	22 Feb 2017	15 Mar 2017	24 Feb 2017
D248 0.0-0.1	SE162178.032	LB119169	15 Feb 2017	20 Feb 2017	15 Mar 2017	22 Feb 2017	15 Mar 2017	24 Feb 2017
D248 0.2-0.3	SE162178.033	LB119169	15 Feb 2017	20 Feb 2017	15 Mar 2017	22 Feb 2017	15 Mar 2017	24 Feb 2017
D248 1.0-1.1	SE162178.034	LB119169	15 Feb 2017	20 Feb 2017	15 Mar 2017	22 Feb 2017	15 Mar 2017	24 Feb 2017
D249 0.0-0.1	SE162178.035	LB119169	15 Feb 2017	20 Feb 2017	15 Mar 2017	22 Feb 2017	15 Mar 2017	24 Feb 2017
D249 0.2-0.3	SE162178.036	LB119170	15 Feb 2017	20 Feb 2017	15 Mar 2017	22 Feb 2017	15 Mar 2017	24 Feb 2017
D249 1.0-1.1	SE162178.037	LB119170	15 Feb 2017	20 Feb 2017	15 Mar 2017	22 Feb 2017	15 Mar 2017	24 Feb 2017
D259 0.0-0.1	SE162178.038	LB119170	16 Feb 2017	20 Feb 2017	16 Mar 2017	22 Feb 2017	16 Mar 2017	24 Feb 2017
D259 0.2-0.3	SE162178.039	LB119170	16 Feb 2017	20 Feb 2017	16 Mar 2017	22 Feb 2017	16 Mar 2017	24 Feb 2017
D259 1.0-1.1	SE162178.040	LB119170	16 Feb 2017	20 Feb 2017	16 Mar 2017	22 Feb 2017	16 Mar 2017	24 Feb 2017
D259 1.9-2.0	SE162178.041	LB119170	16 Feb 2017	20 Feb 2017	16 Mar 2017	22 Feb 2017	16 Mar 2017	24 Feb 2017
D263 0.0-0.1	SE162178.042	LB119170	15 Feb 2017	20 Feb 2017	15 Mar 2017	22 Feb 2017	15 Mar 2017	24 Feb 2017
D263 0.2-0.3	SE162178.043	LB119170	15 Feb 2017	20 Feb 2017	15 Mar 2017	22 Feb 2017	15 Mar 2017	24 Feb 2017
D264 0.0-0.1	SE162178.044	LB119170	15 Feb 2017	20 Feb 2017	15 Mar 2017	22 Feb 2017	15 Mar 2017	24 Feb 2017
D264 0.2-0.3	SE162178.045	LB119170	15 Feb 2017	20 Feb 2017	15 Mar 2017	22 Feb 2017	15 Mar 2017	24 Feb 2017
D265 0.0-0.1	SE162178.046	LB119170	15 Feb 2017	20 Feb 2017	15 Mar 2017	22 Feb 2017	15 Mar 2017	24 Feb 2017
D265 0.2-0.3	SE162178.047	LB119170	15 Feb 2017	20 Feb 2017	15 Mar 2017	22 Feb 2017	15 Mar 2017	24 Feb 2017
D265 1.0-1.1	SE162178.048	LB119170	15 Feb 2017	20 Feb 2017	15 Mar 2017	22 Feb 2017	15 Mar 2017	24 Feb 2017
D271 0.0-0.1	SE162178.049	LB119170	16 Feb 2017	20 Feb 2017	16 Mar 2017	22 Feb 2017	16 Mar 2017	24 Feb 2017
D271 0.2-0.3	SE162178.050	LB119170	16 Feb 2017	20 Feb 2017	16 Mar 2017	22 Feb 2017	16 Mar 2017	24 Feb 2017
D271 1.0-1.1	SE162178.051	LB119170	16 Feb 2017	20 Feb 2017	16 Mar 2017	22 Feb 2017	16 Mar 2017	24 Feb 2017
D271 1.9-2.0	SE162178.052	LB119170	16 Feb 2017	20 Feb 2017	16 Mar 2017	22 Feb 2017	16 Mar 2017	24 Feb 2017
D272 0.0-0.1	SE162178.053	LB119170	16 Feb 2017	20 Feb 2017	16 Mar 2017	22 Feb 2017	16 Mar 2017	24 Feb 2017
D272 0.2-0.3	SE162178.054	LB119170	16 Feb 2017	20 Feb 2017	16 Mar 2017	22 Feb 2017	16 Mar 2017	24 Feb 2017
D272 0.7-0.8	SE162178.055	LB119171	16 Feb 2017	20 Feb 2017	16 Mar 2017	22 Feb 2017	16 Mar 2017	24 Feb 2017
D273 0.0-0.1	SE162178.056	LB119171	16 Feb 2017	20 Feb 2017	16 Mar 2017	22 Feb 2017	16 Mar 2017	24 Feb 2017
D273 0.2-0.3	SE162178.057	LB119171	16 Feb 2017	20 Feb 2017	16 Mar 2017	22 Feb 2017	16 Mar 2017	24 Feb 2017
D273 1.0-1.1	SE162178.058	LB119171	16 Feb 2017	20 Feb 2017	16 Mar 2017	22 Feb 2017	16 Mar 2017	24 Feb 2017
D273 1.9-2.0	SE162178.059	LB119171	16 Feb 2017	20 Feb 2017	16 Mar 2017	22 Feb 2017	16 Mar 2017	24 Feb 2017
D274 0.0-0.1	SE162178.060	LB119171	16 Feb 2017	20 Feb 2017	16 Mar 2017	22 Feb 2017	16 Mar 2017	24 Feb 2017
D274 0.2-0.3	SE162178.061	LB119171	16 Feb 2017	20 Feb 2017	16 Mar 2017	22 Feb 2017	16 Mar 2017	24 Feb 2017
D274 1.0-1.1	SE162178.062	LB119171	16 Feb 2017	20 Feb 2017	16 Mar 2017	22 Feb 2017 22 Feb 2017	16 Mar 2017	24 Feb 2017
D275 0.0-0.1	SE162178.063	LB119171	16 Feb 2017	20 Feb 2017	16 Mar 2017	22 Feb 2017 22 Feb 2017	16 Mar 2017	24 Feb 2017
D275 0.0-0.1	SE162178.064	LB119171	16 Feb 2017	20 Feb 2017 20 Feb 2017	16 Mar 2017	22 Feb 2017 22 Feb 2017	16 Mar 2017	24 Feb 2017 24 Feb 2017
D275 1.0-1.1	SE162178.065	LB119171	16 Feb 2017	20 Feb 2017	16 Mar 2017	22 Feb 2017	16 Mar 2017	24 Feb 2017 24 Feb 2017
D275 1.9-2.0	SE162178.066	LB119171	16 Feb 2017	20 Feb 2017	16 Mar 2017	22 Feb 2017	16 Mar 2017	
D276 0.0-0.1	SE162178.067	LB119171	16 Feb 2017	20 Feb 2017	16 Mar 2017	22 Feb 2017	16 Mar 2017	24 Feb 2017
D276 0.2-0.3	SE162178.068	LB119171	16 Feb 2017	20 Feb 2017	16 Mar 2017	22 Feb 2017	16 Mar 2017	24 Feb 2017
D276 1.0-1.1	SE162178.069	LB119171	16 Feb 2017	20 Feb 2017	16 Mar 2017	22 Feb 2017	16 Mar 2017	24 Feb 2017
D277 0.0-0.1	SE162178.070	LB119171	16 Feb 2017	20 Feb 2017	16 Mar 2017	22 Feb 2017	16 Mar 2017	24 Feb 2017
D277 0.2-0.3	SE162178.071	LB119171	16 Feb 2017	20 Feb 2017	16 Mar 2017	22 Feb 2017	16 Mar 2017	24 Feb 2017
D277 1.0-1.1	SE162178.072	LB119171	16 Feb 2017	20 Feb 2017	16 Mar 2017	22 Feb 2017	16 Mar 2017	24 Feb 2017
D277 1.9-2.0	SE162178.073	LB119171	16 Feb 2017	20 Feb 2017	16 Mar 2017	22 Feb 2017	16 Mar 2017	24 Feb 2017
D278 0.0-0.1	SE162178.074	LB119172	16 Feb 2017	20 Feb 2017	16 Mar 2017	22 Feb 2017	16 Mar 2017	24 Feb 2017
D278 0.2-0.3	SE162178.075	LB119172	16 Feb 2017	20 Feb 2017	16 Mar 2017	22 Feb 2017	16 Mar 2017	24 Feb 2017
D278 1.0-1.1	SE162178.076	LB119172	16 Feb 2017	20 Feb 2017	16 Mar 2017	22 Feb 2017	16 Mar 2017	24 Feb 2017
D279 0.0-0.1	SE162178.077	LB119172	16 Feb 2017	20 Feb 2017	16 Mar 2017	22 Feb 2017	16 Mar 2017	24 Feb 2017
D279 0.2-0.3	SE162178.078	LB119172	16 Feb 2017	20 Feb 2017	16 Mar 2017	22 Feb 2017	16 Mar 2017	24 Feb 2017

18/5/2017 Page 3 of 21

Method: ME-(AU)-[ENV]AN312

Due Analysed

24 Feb 2017

24 Feb 2017

24 Feb 2017

24 Feb 2017

Analysis Due

16 Mar 2017

16 Mar 2017

16 Mar 2017

16 Mar 2017

Mercury in Soil (continued)

Sample No.

SE162178.079

SE162178.080

SE162178.081

SE162178.082

SE162178.121

SE162178.122

LB119273

LB119273

15 Feb 2017

16 Feb 2017

QC Ref

LB119172

LB119172

LB119172

LB119172

Sampled

16 Feb 2017

16 Feb 2017

16 Feb 2017

16 Feb 2017

Sample Name

D280 0 0-0 1

D280 0.2-0.3

D280 1.0-1.1

D281 0.0-0.1

Rinsate RS3

Rinsate RS4

HOLDING TIME SUMMARY

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Received

20 Feb 2017

20 Feb 2017

20 Feb 2017

20 Feb 2017

Extraction Due

16 Mar 2017

16 Mar 2017

16 Mar 2017

16 Mar 2017

Extracted

22 Feb 2017

22 Feb 2017

22 Feb 2017

D281 0.2-0.3 SE162178.083 LB119172 16 Feb 2017 20 Feb 2017 16 Mar 2017 22 Feb 2017 16 Mar 2017 24 Feb 2017 D281 1.0-1.1 SE162178.084 LB119172 16 Feb 2017 20 Feb 2017 16 Mar 2017 22 Feb 2017 16 Mar 2017 24 Feb 2017 D282 0.0-0.1 22 Feb 2017 24 Feb 2017 SE162178.085 LB119172 16 Feb 2017 20 Feb 2017 16 Mar 2017 16 Mar 2017 D282 0.2-0.3 SE162178.086 LB119172 16 Feb 2017 20 Feb 2017 16 Mar 2017 22 Feb 2017 16 Mar 2017 24 Feb 2017 D282 1.0-1.1 SE162178.087 LB119172 16 Feb 2017 20 Feb 2017 16 Mar 2017 22 Feb 2017 16 Mar 2017 24 Feb 2017 D283 0.0-0.1 SE162178.088 LB119172 17 Feb 2017 20 Feb 2017 17 Mar 2017 22 Feb 2017 17 Mar 2017 24 Feb 2017 D283 0.2-0.3 SE162178.089 LB119172 17 Feb 2017 20 Feb 2017 22 Feb 2017 17 Mar 2017 24 Feb 2017 17 Mar 2017 D284 0.0-0.1 SE162178.090 LB119172 17 Feb 2017 20 Feb 2017 17 Mar 2017 22 Feb 2017 17 Mar 2017 24 Feb 2017 D284 0.2-0.3 SE162178.091 LB119172 17 Feb 2017 20 Feb 2017 17 Mar 2017 22 Feb 2017 17 Mar 2017 24 Feb 2017 D285 0.0-0.1 SE162178.092 LB119172 17 Feb 2017 20 Feb 2017 17 Mar 2017 22 Feb 2017 17 Mar 2017 24 Feb 2017 27 Feb 2017 17 Mar 2017 D285 0.2-0.3 SE162178.093 LB119173 17 Feb 2017 20 Feb 2017 22 Feb 2017 17 Mar 2017 D285 1.0-1.1 SE162178.094 LB119173 17 Feb 2017 20 Feb 2017 17 Mar 2017 22 Feb 2017 17 Mar 2017 27 Feb 2017 D285 1.9-2.0 SE162178.095 LB119173 17 Feb 2017 20 Feb 2017 17 Mar 2017 22 Feb 2017 17 Mar 2017 27 Feb 2017 D286 0.0-0.1 SE162178.096 LB119173 17 Feb 2017 20 Feb 2017 17 Mar 2017 22 Feb 2017 17 Mar 2017 27 Feb 2017 17 Mar 2017 17 Mar 2017 D286 0.2-0.3 SE162178.097 LB119173 17 Feb 2017 20 Feb 2017 22 Feb 2017 27 Feb 2017 D286 1.0-1.1 22 Feb 2017 SE162178.098 LB119173 17 Feb 2017 20 Feb 2017 17 Mar 2017 17 Mar 2017 27 Feb 2017 D287 0.0-0.1 SE162178.099 LB119173 17 Feb 2017 20 Feb 2017 17 Mar 2017 22 Feb 2017 17 Mar 2017 27 Feb 2017 D287 0.2-0.3 SE162178.100 LB119173 17 Feb 2017 20 Feb 2017 17 Mar 2017 22 Feb 2017 17 Mar 2017 27 Feb 2017 D287 1.0-1.1 SE162178.101 LB119173 17 Feb 2017 20 Feb 2017 17 Mar 2017 22 Feb 2017 17 Mar 2017 27 Feb 2017 D287 1.9-2.0 SE162178.102 LB119173 17 Feb 2017 20 Feb 2017 17 Mar 2017 22 Feb 2017 17 Mar 2017 27 Feb 2017 D288 0.0-0.1 SE162178.103 LB119173 17 Feb 2017 20 Feb 2017 17 Mar 2017 22 Feb 2017 17 Mar 2017 27 Feb 2017 D288 0.2-0.3 SE162178.104 LB119173 17 Feb 2017 20 Feb 2017 17 Mar 2017 22 Feb 2017 17 Mar 2017 27 Feb 2017 D288 0.6-0.7 SE162178.105 LB119173 17 Feb 2017 20 Feb 2017 17 Mar 2017 22 Feb 2017 17 Mar 2017 27 Feb 2017 27 Feb 2017 LB119173 17 Mar 2017 D289 0.0-0.1 SE162178.106 17 Feb 2017 20 Feb 2017 22 Feb 2017 17 Mar 2017 D289 0 2-0 3 SE162178 107 LB119173 17 Feb 2017 20 Feb 2017 17 Mar 2017 22 Feb 2017 17 Mar 2017 27 Feb 2017 D289 0.5-0.6 SE162178.108 LB119173 17 Feb 2017 20 Feb 2017 17 Mar 2017 22 Feb 2017 17 Mar 2017 27 Feb 2017 D289 1.0-1.1 SE162178.109 LB119173 17 Feb 2017 20 Feb 2017 17 Mar 2017 22 Feb 2017 17 Mar 2017 27 Feb 2017 D290 0.0-0.1 SE162178.110 LB119173 17 Feb 2017 20 Feb 2017 17 Mar 2017 22 Feb 2017 17 Mar 2017 27 Feb 2017 D290 0.2-0.3 SE162178.111 LB119173 17 Feb 2017 20 Feb 2017 17 Mar 2017 22 Feb 2017 17 Mar 2017 27 Feb 2017 D290 1.0-1.1 SE162178.112 LB119174 17 Feb 2017 20 Feb 2017 17 Mar 2017 22 Feb 2017 17 Mar 2017 23 Feb 2017 Duplicate DS8 SE162178.113 LB119174 17 Feb 2017 20 Feb 2017 17 Mar 2017 22 Feb 2017 17 Mar 2017 23 Feb 2017 20 Feb 2017 Duplicate DS9 SE162178.114 LB119174 17 Feb 2017 17 Mar 2017 22 Feb 2017 17 Mar 2017 23 Feb 2017 23 Feb 2017 Duplicate DS10 SE162178.115 LB119174 20 Feb 2017 17 Mar 2017 17 Mar 2017 17 Feb 2017 22 Feb 2017 Duplicate DS11 SE162178.116 LB119174 17 Feb 2017 20 Feb 2017 17 Mar 2017 22 Feb 2017 17 Mar 2017 23 Feb 2017 Duplicate DS12 SE162178.117 LB119174 16 Feb 2017 20 Feb 2017 16 Mar 2017 22 Feb 2017 16 Mar 2017 23 Feb 2017 Duplicate DS13 SE162178.118 LB119174 16 Feb 2017 20 Feb 2017 16 Mar 2017 22 Feb 2017 16 Mar 2017 23 Feb 2017 Duplicate DS14 SE162178.119 LB119174 16 Feb 2017 20 Feb 2017 16 Mar 2017 22 Feb 2017 16 Mar 2017 23 Feb 2017 Duplicate DS15 SE162178.120 LB119174 16 Feb 2017 20 Feb 2017 16 Mar 2017 22 Feb 2017 16 Mar 2017 23 Feb 2017 Method: ME-(AU)-[ENV]AN320/AN321 Metals in Water (Dissolved) by ICPOES Sample Name Analysis Due Sample No. QC Ref Sampled Received **Extraction Due** Extracted Analysed

Rinsate RS5 SE162178.123 LB119273 17 Feb 2017 20 Feb 2017 16 Aug 2017 24 Feb 2017 16 Aug 2017 24 Feb 2017 Method: ME-(AU)-IENVIAN002 Moisture Content Sample Name Analysed QC Ref Received Extraction Due Extracted Analysis Due

20 Feb 2017

20 Feb 2017

14 Aug 2017

15 Aug 2017

24 Feb 2017

24 Feb 2017

14 Aug 2017

15 Aug 2017

24 Feb 2017

24 Feb 2017

D226 0.0-0.1	SE162178.001	LB119034	15 Feb 2017	20 Feb 2017	01 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 2017
D226 0.2-0.3	SE162178.002	LB119034	15 Feb 2017	20 Feb 2017	01 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 2017
D226 1.0-1.1	SE162178.003	LB119034	15 Feb 2017	20 Feb 2017	01 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 2017
D229 0.0-0.1	SE162178.004	LB119034	15 Feb 2017	20 Feb 2017	01 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 2017
D229 0.2-0.3	SE162178.005	LB119034	15 Feb 2017	20 Feb 2017	01 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 2017
D229 1.0-1.1	SE162178.006	LB119034	15 Feb 2017	20 Feb 2017	01 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 2017
D230 0.0-0.1	SE162178.007	LB119034	15 Feb 2017	20 Feb 2017	01 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 2017
D230 0.2-0.3	SE162178.008	LB119034	15 Feb 2017	20 Feb 2017	01 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 2017
D230 1.0-1.1	SE162178.009	LB119034	15 Feb 2017	20 Feb 2017	01 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 2017
D231 0.0-0.1	SE162178.010	LB119034	15 Feb 2017	20 Feb 2017	01 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 2017

18/5/2017 Page 4 of 21

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Moisture Content (continued) Method: ME-(AU)-[ENV]AN002

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
D231 0.2-0.3	SE162178.011	LB119034	15 Feb 2017	20 Feb 2017	01 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 2017
D231 1.0-1.1	SE162178.012	LB119034	15 Feb 2017	20 Feb 2017	01 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 2017
D231 1.9-2.0	SE162178.013	LB119034	15 Feb 2017	20 Feb 2017	01 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 2017
D243 0.0-0.1	SE162178.014	LB119034	15 Feb 2017	20 Feb 2017	01 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 2017
D243 0.2-0.3	SE162178.015	LB119034	15 Feb 2017	20 Feb 2017	01 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 2017
D243 1.0-1.1	SE162178.016	LB119034	15 Feb 2017	20 Feb 2017	01 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 2017
D243 1.9-2.0	SE162178.017	LB119034	15 Feb 2017	20 Feb 2017	01 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 2017
D244 0.0-0.1	SE162178.018	LB119034	15 Feb 2017	20 Feb 2017	01 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 2017
D244 0.2-0.3	SE162178.019	LB119034	15 Feb 2017	20 Feb 2017	01 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 2017
D244 1.0-1.1	SE162178.020	LB119034	15 Feb 2017	20 Feb 2017	01 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 2017
D245 0.0-0.1	SE162178.021	LB119034	15 Feb 2017	20 Feb 2017	01 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 2017
D245 0.2-0.3	SE162178.022	LB119034	15 Feb 2017	20 Feb 2017	01 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 2017
D245 1.0-1.1	SE162178.023	LB119034	15 Feb 2017	20 Feb 2017	01 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 2017
D245 1.9-2.0	SE162178.024	LB119034	15 Feb 2017	20 Feb 2017	01 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 2017
D246 0.0-0.1	SE162178.025	LB119034	15 Feb 2017	20 Feb 2017	01 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 2017
D246 0.2-0.3	SE162178.026	LB119034	15 Feb 2017	20 Feb 2017	01 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 2017
D246 1.0-1.1	SE162178.027	LB119034	15 Feb 2017	20 Feb 2017	01 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 2017
D247 0.0-0.1	SE162178.028	LB119034	15 Feb 2017	20 Feb 2017	01 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 2017
D247 0.2-0.3	SE162178.029	LB119034	15 Feb 2017	20 Feb 2017	01 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 2017
D247 1.0-1.1	SE162178.030	LB119034	15 Feb 2017	20 Feb 2017	01 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 2017
D247 1.9-2.0	SE162178.031	LB119034	15 Feb 2017	20 Feb 2017	01 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 2017
D248 0.0-0.1	SE162178.032	LB119034	15 Feb 2017	20 Feb 2017	01 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 2017
D248 0.2-0.3	SE162178.033	LB119034	15 Feb 2017	20 Feb 2017	01 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 2017
D248 1.0-1.1	SE162178.034	LB119034	15 Feb 2017	20 Feb 2017	01 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 2017
D249 0.0-0.1	SE162178.035	LB119034	15 Feb 2017	20 Feb 2017	01 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 2017
D249 0.2-0.3	SE162178.036	LB119034	15 Feb 2017	20 Feb 2017	01 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 2017
D249 1.0-1.1	SE162178.037	LB119034	15 Feb 2017	20 Feb 2017	01 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 2017
D259 0.0-0.1	SE162178.038	LB119034	16 Feb 2017	20 Feb 2017	02 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 2017
D259 0.2-0.3	SE162178.039	LB119034	16 Feb 2017	20 Feb 2017	02 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 2017
D259 1.0-1.1	SE162178.040	LB119034	16 Feb 2017	20 Feb 2017	02 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 2017
D259 1.9-2.0	SE162178.041	LB119034	16 Feb 2017	20 Feb 2017	02 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 2017
D263 0.0-0.1	SE162178.042	LB119034	15 Feb 2017	20 Feb 2017	01 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 2017
D263 0.2-0.3	SE162178.043	LB119034	15 Feb 2017	20 Feb 2017	01 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 2017
D264 0.0-0.1	SE162178.044	LB119034	15 Feb 2017	20 Feb 2017	01 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 2017
D264 0.2-0.3	SE162178.045	LB119034	15 Feb 2017	20 Feb 2017	01 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 2017
D265 0.0-0.1	SE162178.046	LB119034	15 Feb 2017	20 Feb 2017	01 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 2017
D265 0.2-0.3	SE162178.047	LB119034	15 Feb 2017	20 Feb 2017	01 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 2017
D265 1.0-1.1	SE162178.048	LB119034	15 Feb 2017	20 Feb 2017	01 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 2017
D271 0.0-0.1	SE162178.049	LB119034	16 Feb 2017	20 Feb 2017	02 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 2017
D271 0.2-0.3	SE162178.050	LB119034	16 Feb 2017	20 Feb 2017	02 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 2017
D271 1.0-1.1	SE162178.051	LB119034	16 Feb 2017	20 Feb 2017	02 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 2017
D271 1.9-2.0	SE162178.052	LB119034	16 Feb 2017	20 Feb 2017	02 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 2017
D272 0.0-0.1	SE162178.053	LB119034	16 Feb 2017	20 Feb 2017	02 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 2017
D272 0.2-0.3	SE162178.054	LB119034	16 Feb 2017	20 Feb 2017	02 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 2017
D272 0.7-0.8	SE162178.055	LB119034	16 Feb 2017	20 Feb 2017	02 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 2017
D273 0.0-0.1	SE162178.056	LB119034	16 Feb 2017	20 Feb 2017	02 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 2017
D273 0.2-0.3	SE162178.057	LB119034	16 Feb 2017	20 Feb 2017	02 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 2017
D273 1.0-1.1	SE162178.058	LB119034	16 Feb 2017	20 Feb 2017	02 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 2017
D273 1.9-2.0	SE162178.059	LB119034	16 Feb 2017	20 Feb 2017	02 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 2017
D274 0.0-0.1	SE162178.060	LB119034	16 Feb 2017	20 Feb 2017	02 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 2017
D274 0.2-0.3	SE162178.061	LB119034	16 Feb 2017	20 Feb 2017	02 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 2017
D274 1.0-1.1	SE162178.062	LB119034	16 Feb 2017	20 Feb 2017	02 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 2017
D275 0.0-0.1	SE162178.063	LB119034	16 Feb 2017	20 Feb 2017	02 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 2017
D275 0.2-0.3	SE162178.064	LB119034	16 Feb 2017	20 Feb 2017	02 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 2017
D275 1.0-1.1	SE162178.065	LB119034	16 Feb 2017	20 Feb 2017	02 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 2017
D275 1.9-2.0	SE162178.066	LB119034	16 Feb 2017	20 Feb 2017	02 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 2017
D276 0.0-0.1	SE162178.067	LB119034	16 Feb 2017	20 Feb 2017	02 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 2017
D276 0.2-0.3	SE162178.068	LB119034	16 Feb 2017	20 Feb 2017	02 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 2017
D276 1.0-1.1	SE162178.069	LB119034	16 Feb 2017	20 Feb 2017	02 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 2017
D277 0.0-0.1	SE162178.070	LB119034	16 Feb 2017	20 Feb 2017	02 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 2017
					==			

18/5/2017 Page 5 of 21

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Moisture Content (continued) Method: ME-(AU)-[ENV]AN002

Moisture Content (Continue	u)						Wediod.	VIE-(AU)-[EINV]AINUUZ
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
D277 0.2-0.3	SE162178.071	LB119034	16 Feb 2017	20 Feb 2017	02 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 2017
D277 1.0-1.1	SE162178.072	LB119034	16 Feb 2017	20 Feb 2017	02 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 2017
D277 1.9-2.0	SE162178.073	LB119034	16 Feb 2017	20 Feb 2017	02 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 2017
D278 0.0-0.1	SE162178.074	LB119034	16 Feb 2017	20 Feb 2017	02 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 2017
D278 0.2-0.3	SE162178.075	LB119034	16 Feb 2017	20 Feb 2017	02 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 2017
D278 1.0-1.1	SE162178.076	LB119034	16 Feb 2017	20 Feb 2017	02 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 2017
D279 0.0-0.1	SE162178.077	LB119034	16 Feb 2017	20 Feb 2017	02 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 2017
D279 0.2-0.3	SE162178.078	LB119034	16 Feb 2017	20 Feb 2017	02 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 2017
D280 0.0-0.1	SE162178.079	LB119034	16 Feb 2017	20 Feb 2017	02 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 2017
D280 0.2-0.3	SE162178.080	LB119034	16 Feb 2017	20 Feb 2017	02 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 2017
D280 1.0-1.1	SE162178.081	LB119034	16 Feb 2017	20 Feb 2017	02 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 2017
D281 0.0-0.1	SE162178.082	LB119034	16 Feb 2017	20 Feb 2017	02 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 2017
D281 0.2-0.3	SE162178.083	LB119034	16 Feb 2017	20 Feb 2017	02 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 2017
D281 1.0-1.1	SE162178.084	LB119034	16 Feb 2017	20 Feb 2017	02 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 2017
D282 0.0-0.1	SE162178.085	LB119034	16 Feb 2017	20 Feb 2017	02 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 2017
D282 0.2-0.3	SE162178.086	LB119034	16 Feb 2017	20 Feb 2017	02 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 2017
D282 1.0-1.1	SE162178.087	LB119034	16 Feb 2017	20 Feb 2017	02 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 2017
D283 0.0-0.1	SE162178.088	LB119034	17 Feb 2017	20 Feb 2017	03 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 2017
D283 0.2-0.3	SE162178.089	LB119034	17 Feb 2017	20 Feb 2017	03 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 2017
D284 0.0-0.1	SE162178.090	LB119034	17 Feb 2017	20 Feb 2017	03 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 2017
D284 0.2-0.3	SE162178.091	LB119034	17 Feb 2017	20 Feb 2017	03 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 2017
D285 0.0-0.1	SE162178.092	LB119034	17 Feb 2017	20 Feb 2017	03 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 2017
D285 0.2-0.3	SE162178.093	LB119034	17 Feb 2017	20 Feb 2017	03 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 2017
D285 1.0-1.1	SE162178.094	LB119034	17 Feb 2017	20 Feb 2017	03 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 2017
D285 1.9-2.0	SE162178.095	LB119034	17 Feb 2017	20 Feb 2017	03 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 2017
D286 0.0-0.1	SE162178.096	LB119034	17 Feb 2017	20 Feb 2017	03 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 2017
D286 0.2-0.3	SE162178.097	LB119034	17 Feb 2017	20 Feb 2017	03 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 2017
D286 1.0-1.1	SE162178.098	LB119034	17 Feb 2017	20 Feb 2017	03 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 2017
D287 0.0-0.1	SE162178.099	LB119034	17 Feb 2017	20 Feb 2017	03 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 2017
D287 0.2-0.3	SE162178.100	LB119034	17 Feb 2017	20 Feb 2017	03 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 2017
D287 1.0-1.1	SE162178.101	LB119034	17 Feb 2017	20 Feb 2017	03 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 2017
D287 1.9-2.0	SE162178.102	LB119034	17 Feb 2017	20 Feb 2017	03 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 2017
D288 0.0-0.1	SE162178.103	LB119034	17 Feb 2017	20 Feb 2017	03 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 2017
D288 0.2-0.3	SE162178.104	LB119034	17 Feb 2017	20 Feb 2017	03 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 2017
D288 0.6-0.7	SE162178.105	LB119034	17 Feb 2017	20 Feb 2017	03 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 2017
D289 0.0-0.1	SE162178.106	LB119034	17 Feb 2017	20 Feb 2017	03 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 2017
D289 0.2-0.3	SE162178.107	LB119034	17 Feb 2017	20 Feb 2017	03 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 2017
D289 0.5-0.6	SE162178.108	LB119034	17 Feb 2017	20 Feb 2017	03 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 2017
D289 1.0-1.1	SE162178.109	LB119034	17 Feb 2017	20 Feb 2017	03 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 2017
D290 0.0-0.1	SE162178.110	LB119034	17 Feb 2017	20 Feb 2017	03 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 2017
D290 0.2-0.3 D290 1.0-1.1	SE162178.111 SE162178.112	LB119034 LB119034	17 Feb 2017 17 Feb 2017	20 Feb 2017 20 Feb 2017	03 Mar 2017 03 Mar 2017	21 Feb 2017 21 Feb 2017	26 Feb 2017 26 Feb 2017	22 Feb 2017 22 Feb 2017
		LB119034 LB119034						
Duplicate DS8	SE162178.113		17 Feb 2017	20 Feb 2017	03 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 2017
Duplicate DS9	SE162178.114	LB119034	17 Feb 2017	20 Feb 2017	03 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 2017
Duplicate DS10	SE162178.115	LB119034	17 Feb 2017	20 Feb 2017	03 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 2017
Duplicate DS11	SE162178.116	LB119034	17 Feb 2017	20 Feb 2017	03 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 2017
Duplicate DS12	SE162178.117	LB119034	16 Feb 2017	20 Feb 2017	02 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 2017
Duplicate DS13	SE162178.118	LB119034	16 Feb 2017	20 Feb 2017	02 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 2017
Duplicate DS14	SE162178.119	LB119034	16 Feb 2017	20 Feb 2017	02 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 2017
Duplicate DS15	SE162178.120	LB119034	16 Feb 2017	20 Feb 2017	02 Mar 2017	21 Feb 2017	26 Feb 2017	22 Feb 2017

pH in soil (1:5)

Method: ME-(AU)-[ENV]AN101

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
D229 1.0-1.1	SE162178.006	LB119063	15 Feb 2017	20 Feb 2017	22 Feb 2017	21 Feb 2017	22 Feb 2017	22 Feb 2017
D230 1.0-1.1	SE162178.009	LB119063	15 Feb 2017	20 Feb 2017	22 Feb 2017	21 Feb 2017	22 Feb 2017	22 Feb 2017
D231 1.0-1.1	SE162178.012	LB119063	15 Feb 2017	20 Feb 2017	22 Feb 2017	21 Feb 2017	22 Feb 2017	22 Feb 2017
D231 1.9-2.0	SE162178.013	LB119063	15 Feb 2017	20 Feb 2017	22 Feb 2017	21 Feb 2017	22 Feb 2017	22 Feb 2017
D245 1.9-2.0	SE162178.024	LB119063	15 Feb 2017	20 Feb 2017	22 Feb 2017	21 Feb 2017	22 Feb 2017	22 Feb 2017
D248 0.2-0.3	SE162178.033	LB119063	15 Feb 2017	20 Feb 2017	22 Feb 2017	21 Feb 2017	22 Feb 2017	22 Feb 2017
D271 1.0-1.1	SE162178.051	LB119063	16 Feb 2017	20 Feb 2017	23 Feb 2017	21 Feb 2017	22 Feb 2017	22 Feb 2017

18/5/2017 Page 6 of 21

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

pH in soil (1:5) (continued) Method: ME-(AU)-[ENV]AN101

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
D271 1.9-2.0	SE162178.052	LB119063	16 Feb 2017	20 Feb 2017	23 Feb 2017	21 Feb 2017	22 Feb 2017	22 Feb 2017
D288 0.6-0.7	SE162178.105	LB119063	17 Feb 2017	20 Feb 2017	24 Feb 2017	21 Feb 2017	22 Feb 2017	22 Feb 2017
D289 1.0-1.1	SE162178.109	LB119063	17 Feb 2017	20 Feb 2017	24 Feb 2017	21 Feb 2017	22 Feb 2017	22 Feb 2017
D290 1.0-1.1	SE162178.112	LB119063	17 Feb 2017	20 Feb 2017	24 Feb 2017	21 Feb 2017	22 Feb 2017	22 Feb 2017

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES

Method: ME-(AU)-[ENV]AN040/AN320

Total Toocyolabic Motals I	II COM Wasto Conde Matori	als by ICFOES					modical mz (to)-[E14V]A14040/A14320
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
D226 0.0-0.1	SE162178.001	LB119108	15 Feb 2017	20 Feb 2017	14 Aug 2017	21 Feb 2017	14 Aug 2017	24 Feb 2017
D226 0.2-0.3	SE162178.002	LB119108	15 Feb 2017	20 Feb 2017	14 Aug 2017	21 Feb 2017	14 Aug 2017	24 Feb 2017
D226 1.0-1.1	SE162178.003	LB119108	15 Feb 2017	20 Feb 2017	14 Aug 2017	21 Feb 2017	14 Aug 2017	24 Feb 2017
D229 0.0-0.1	SE162178.004	LB119108	15 Feb 2017	20 Feb 2017	14 Aug 2017	21 Feb 2017	14 Aug 2017	24 Feb 2017
D229 0.2-0.3	SE162178.005	LB119108	15 Feb 2017	20 Feb 2017	14 Aug 2017	21 Feb 2017	14 Aug 2017	24 Feb 2017
D229 1.0-1.1	SE162178.006	LB119108	15 Feb 2017	20 Feb 2017	14 Aug 2017	21 Feb 2017	14 Aug 2017	24 Feb 2017
D230 0.0-0.1	SE162178.007	LB119108	15 Feb 2017	20 Feb 2017	14 Aug 2017	21 Feb 2017	14 Aug 2017	24 Feb 2017
D230 0.2-0.3	SE162178.008	LB119108	15 Feb 2017	20 Feb 2017	14 Aug 2017	21 Feb 2017	14 Aug 2017	24 Feb 2017
D230 1.0-1.1	SE162178.009	LB119108	15 Feb 2017	20 Feb 2017	14 Aug 2017	21 Feb 2017	14 Aug 2017	24 Feb 2017
D231 0.0-0.1	SE162178.010	LB119108	15 Feb 2017	20 Feb 2017	14 Aug 2017	21 Feb 2017	14 Aug 2017	24 Feb 2017
D231 0.2-0.3	SE162178.011	LB119108	15 Feb 2017	20 Feb 2017	14 Aug 2017	21 Feb 2017	14 Aug 2017	24 Feb 2017
D231 1.0-1.1	SE162178.012	LB119108	15 Feb 2017	20 Feb 2017	14 Aug 2017	21 Feb 2017	14 Aug 2017	24 Feb 2017
D231 1.9-2.0	SE162178.013	LB119108	15 Feb 2017	20 Feb 2017	14 Aug 2017	21 Feb 2017	14 Aug 2017	24 Feb 2017
D243 0.0-0.1	SE162178.014	LB119108	15 Feb 2017	20 Feb 2017	14 Aug 2017	21 Feb 2017	14 Aug 2017	24 Feb 2017
D243 0.2-0.3	SE162178.015	LB119108	15 Feb 2017	20 Feb 2017	14 Aug 2017	21 Feb 2017	14 Aug 2017	24 Feb 2017
D243 1.0-1.1	SE162178.016	LB119108	15 Feb 2017	20 Feb 2017	14 Aug 2017	21 Feb 2017	14 Aug 2017	24 Feb 2017
D243 1.9-2.0	SE162178.017	LB119108	15 Feb 2017	20 Feb 2017	14 Aug 2017	21 Feb 2017	14 Aug 2017	24 Feb 2017
D244 0.0-0.1	SE162178.018	LB119108	15 Feb 2017	20 Feb 2017	14 Aug 2017	21 Feb 2017	14 Aug 2017	24 Feb 2017
D244 0.2-0.3	SE162178.019	LB119108	15 Feb 2017	20 Feb 2017	14 Aug 2017	21 Feb 2017	14 Aug 2017	24 Feb 2017
D244 1.0-1.1	SE162178.020	LB119109	15 Feb 2017	20 Feb 2017	14 Aug 2017	21 Feb 2017	14 Aug 2017	24 Feb 2017
D245 0.0-0.1	SE162178.021	LB119109	15 Feb 2017	20 Feb 2017	14 Aug 2017	21 Feb 2017	14 Aug 2017	24 Feb 2017
D245 0.2-0.3	SE162178.022	LB119109	15 Feb 2017	20 Feb 2017	14 Aug 2017	21 Feb 2017	14 Aug 2017	24 Feb 2017
D245 1.0-1.1	SE162178.023	LB119109	15 Feb 2017	20 Feb 2017	14 Aug 2017	21 Feb 2017	14 Aug 2017	24 Feb 2017
D245 1.9-2.0	SE162178.024	LB119109	15 Feb 2017	20 Feb 2017	14 Aug 2017	21 Feb 2017	14 Aug 2017	24 Feb 2017
D246 0.0-0.1	SE162178.025	LB119109	15 Feb 2017	20 Feb 2017	14 Aug 2017	21 Feb 2017	14 Aug 2017	24 Feb 2017
D246 0.2-0.3	SE162178.026	LB119109	15 Feb 2017	20 Feb 2017	14 Aug 2017	21 Feb 2017	14 Aug 2017	24 Feb 2017
D246 1.0-1.1	SE162178.027	LB119109	15 Feb 2017	20 Feb 2017	14 Aug 2017	21 Feb 2017	14 Aug 2017	24 Feb 2017
D247 0.0-0.1	SE162178.028	LB119109	15 Feb 2017	20 Feb 2017	14 Aug 2017	21 Feb 2017	14 Aug 2017	24 Feb 2017
D247 0.2-0.3	SE162178.029	LB119109	15 Feb 2017	20 Feb 2017	14 Aug 2017	21 Feb 2017	14 Aug 2017	24 Feb 2017
D247 1.0-1.1	SE162178.030	LB119109	15 Feb 2017	20 Feb 2017	14 Aug 2017	21 Feb 2017	14 Aug 2017	24 Feb 2017
D247 1.9-2.0	SE162178.031	LB119109	15 Feb 2017	20 Feb 2017	14 Aug 2017	21 Feb 2017	14 Aug 2017	24 Feb 2017
D248 0.0-0.1	SE162178.032	LB119109	15 Feb 2017	20 Feb 2017	14 Aug 2017	21 Feb 2017	14 Aug 2017	24 Feb 2017
D248 0.2-0.3	SE162178.033	LB119109	15 Feb 2017	20 Feb 2017	14 Aug 2017	21 Feb 2017	14 Aug 2017	24 Feb 2017
D248 1.0-1.1	SE162178.034	LB119109	15 Feb 2017	20 Feb 2017	14 Aug 2017	21 Feb 2017	14 Aug 2017	24 Feb 2017
D249 0.0-0.1	SE162178.035	LB119109	15 Feb 2017	20 Feb 2017	14 Aug 2017	21 Feb 2017	14 Aug 2017	24 Feb 2017
D249 0.2-0.3	SE162178.036	LB119109	15 Feb 2017	20 Feb 2017	14 Aug 2017	21 Feb 2017	14 Aug 2017	24 Feb 2017
D249 1.0-1.1	SE162178.037	LB119109	15 Feb 2017	20 Feb 2017	14 Aug 2017	21 Feb 2017	14 Aug 2017	24 Feb 2017
D259 0.0-0.1	SE162178.038	LB119109	16 Feb 2017	20 Feb 2017	15 Aug 2017	21 Feb 2017	15 Aug 2017	24 Feb 2017
D259 0.2-0.3	SE162178.039	LB119110	16 Feb 2017	20 Feb 2017	15 Aug 2017	21 Feb 2017	15 Aug 2017	24 Feb 2017
D259 1.0-1.1	SE162178.040	LB119110	16 Feb 2017	20 Feb 2017	15 Aug 2017	21 Feb 2017	15 Aug 2017	24 Feb 2017
D259 1.9-2.0	SE162178.041	LB119110	16 Feb 2017	20 Feb 2017	15 Aug 2017	21 Feb 2017	15 Aug 2017	24 Feb 2017
D263 0.0-0.1	SE162178.042	LB119110	15 Feb 2017	20 Feb 2017 20 Feb 2017	14 Aug 2017	21 Feb 2017 21 Feb 2017	14 Aug 2017	24 Feb 2017 24 Feb 2017
D263 0.0-0.1 D263 0.2-0.3	SE162178.042	LB119110	15 Feb 2017	20 Feb 2017 20 Feb 2017	14 Aug 2017	21 Feb 2017 21 Feb 2017	14 Aug 2017	24 Feb 2017 24 Feb 2017
D264 0.0-0.1	SE162178.043	LB119110	15 Feb 2017	20 Feb 2017 20 Feb 2017		21 Feb 2017 21 Feb 2017	14 Aug 2017	24 Feb 2017 24 Feb 2017
					14 Aug 2017			
D264 0.2-0.3	SE162178.045	LB119110	15 Feb 2017	20 Feb 2017	14 Aug 2017	21 Feb 2017	14 Aug 2017	24 Feb 2017
D265 0.0-0.1	SE162178.046	LB119110	15 Feb 2017	20 Feb 2017	14 Aug 2017	21 Feb 2017	14 Aug 2017	24 Feb 2017
D265 0.2-0.3	SE162178.047	LB119110	15 Feb 2017	20 Feb 2017	14 Aug 2017	21 Feb 2017	14 Aug 2017	24 Feb 2017
D265 1.0-1.1	SE162178.048	LB119110	15 Feb 2017	20 Feb 2017	14 Aug 2017	21 Feb 2017	14 Aug 2017	24 Feb 2017
D271 0.0-0.1	SE162178.049	LB119110	16 Feb 2017	20 Feb 2017	15 Aug 2017	21 Feb 2017	15 Aug 2017	24 Feb 2017
D271 0.2-0.3	SE162178.050	LB119110	16 Feb 2017	20 Feb 2017	15 Aug 2017	21 Feb 2017	15 Aug 2017	24 Feb 2017
D271 1.0-1.1	SE162178.051	LB119110	16 Feb 2017	20 Feb 2017	15 Aug 2017	21 Feb 2017	15 Aug 2017	24 Feb 2017
D271 1.9-2.0	SE162178.052	LB119110	16 Feb 2017	20 Feb 2017	15 Aug 2017	21 Feb 2017	15 Aug 2017	24 Feb 2017
D272 0.0-0.1	SE162178.053	LB119110	16 Feb 2017	20 Feb 2017	15 Aug 2017	21 Feb 2017	15 Aug 2017	24 Feb 2017

18/5/2017 Page 7 of 21

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES (continued)

Method: ME-(AU)-[ENV]AN040/AN320

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
D272 0.2-0.3	SE162178.054	LB119110	16 Feb 2017	20 Feb 2017	15 Aug 2017	21 Feb 2017	15 Aug 2017	24 Feb 2017
D272 0.7-0.8	SE162178.055	LB119110	16 Feb 2017	20 Feb 2017	15 Aug 2017	21 Feb 2017	15 Aug 2017	24 Feb 2017
D273 0.0-0.1	SE162178.056	LB119110	16 Feb 2017	20 Feb 2017	15 Aug 2017	21 Feb 2017	15 Aug 2017	24 Feb 2017
D273 0.2-0.3	SE162178.057	LB119110	16 Feb 2017	20 Feb 2017	15 Aug 2017	21 Feb 2017	15 Aug 2017	24 Feb 2017
D273 1.0-1.1	SE162178.058	LB119111	16 Feb 2017	20 Feb 2017	15 Aug 2017	21 Feb 2017	15 Aug 2017	24 Feb 2017
D273 1.9-2.0	SE162178.059	LB119111	16 Feb 2017	20 Feb 2017	15 Aug 2017	21 Feb 2017	15 Aug 2017	24 Feb 2017
D274 0.0-0.1	SE162178.060	LB119111	16 Feb 2017	20 Feb 2017	15 Aug 2017	21 Feb 2017	15 Aug 2017	24 Feb 2017
D274 0.2-0.3	SE162178.061	LB119111	16 Feb 2017	20 Feb 2017	15 Aug 2017	21 Feb 2017	15 Aug 2017	24 Feb 2017
D274 1.0-1.1	SE162178.062	LB119111	16 Feb 2017	20 Feb 2017	15 Aug 2017	21 Feb 2017	15 Aug 2017	24 Feb 2017
D275 0.0-0.1	SE162178.063	LB119111	16 Feb 2017	20 Feb 2017	15 Aug 2017	21 Feb 2017	15 Aug 2017	24 Feb 2017
D275 0.2-0.3	SE162178.064	LB119111	16 Feb 2017	20 Feb 2017	15 Aug 2017	21 Feb 2017	15 Aug 2017	24 Feb 2017
D275 1.0-1.1	SE162178.065	LB119111	16 Feb 2017	20 Feb 2017	15 Aug 2017	21 Feb 2017	15 Aug 2017	24 Feb 2017
D275 1.9-2.0	SE162178.066	LB119111	16 Feb 2017	20 Feb 2017	15 Aug 2017	21 Feb 2017	15 Aug 2017	24 Feb 2017
D276 0.0-0.1	SE162178.067	LB119111	16 Feb 2017	20 Feb 2017	15 Aug 2017	21 Feb 2017	15 Aug 2017	24 Feb 2017
D276 0.2-0.3	SE162178.068	LB119111	16 Feb 2017	20 Feb 2017	15 Aug 2017	21 Feb 2017	15 Aug 2017	24 Feb 2017
D276 1.0-1.1	SE162178.069	LB119111	16 Feb 2017	20 Feb 2017	15 Aug 2017	21 Feb 2017	15 Aug 2017	24 Feb 2017
D277 0.0-0.1	SE162178.070	LB119111	16 Feb 2017	20 Feb 2017	15 Aug 2017	21 Feb 2017	15 Aug 2017	24 Feb 2017
D277 0.2-0.3	SE162178.071	LB119111	16 Feb 2017	20 Feb 2017	15 Aug 2017	21 Feb 2017	15 Aug 2017	24 Feb 2017
D277 1.0-1.1	SE162178.072	LB119111	16 Feb 2017	20 Feb 2017	15 Aug 2017	21 Feb 2017	15 Aug 2017	24 Feb 2017
D277 1.9-2.0	SE162178.073	LB119111	16 Feb 2017	20 Feb 2017	15 Aug 2017	21 Feb 2017	15 Aug 2017	24 Feb 2017
D278 0.0-0.1	SE162178.074	LB119111	16 Feb 2017	20 Feb 2017	15 Aug 2017	21 Feb 2017	15 Aug 2017	24 Feb 2017
D278 0.2-0.3	SE162178.075	LB119111	16 Feb 2017	20 Feb 2017	15 Aug 2017	21 Feb 2017	15 Aug 2017	24 Feb 2017
D278 1.0-1.1	SE162178.076	LB119111	16 Feb 2017	20 Feb 2017	15 Aug 2017	21 Feb 2017	15 Aug 2017	24 Feb 2017
D279 0.0-0.1	SE162178.077	LB119112	16 Feb 2017	20 Feb 2017	15 Aug 2017	21 Feb 2017	15 Aug 2017	24 Feb 2017
D279 0.2-0.3	SE162178.078	LB119112	16 Feb 2017	20 Feb 2017	15 Aug 2017	21 Feb 2017	15 Aug 2017	24 Feb 2017
D280 0.0-0.1	SE162178.079	LB119112	16 Feb 2017	20 Feb 2017	15 Aug 2017	21 Feb 2017	15 Aug 2017	24 Feb 2017
D280 0.2-0.3	SE162178.080	LB119112	16 Feb 2017	20 Feb 2017	15 Aug 2017	21 Feb 2017	15 Aug 2017	24 Feb 2017
D280 1.0-1.1	SE162178.081	LB119112	16 Feb 2017	20 Feb 2017	15 Aug 2017	21 Feb 2017	15 Aug 2017	24 Feb 2017
D281 0.0-0.1	SE162178.082	LB119112	16 Feb 2017	20 Feb 2017	15 Aug 2017	21 Feb 2017	15 Aug 2017	24 Feb 2017
D281 0.2-0.3	SE162178.083	LB119112	16 Feb 2017	20 Feb 2017	15 Aug 2017	21 Feb 2017	15 Aug 2017	24 Feb 2017
D281 1.0-1.1	SE162178.084	LB119112	16 Feb 2017	20 Feb 2017	15 Aug 2017	21 Feb 2017	15 Aug 2017	24 Feb 2017
D282 0.0-0.1	SE162178.085	LB119112	16 Feb 2017	20 Feb 2017	15 Aug 2017	21 Feb 2017	15 Aug 2017	24 Feb 2017
D282 0.2-0.3	SE162178.086	LB119112	16 Feb 2017	20 Feb 2017	15 Aug 2017	21 Feb 2017	15 Aug 2017	24 Feb 2017
D282 1.0-1.1	SE162178.087	LB119112	16 Feb 2017	20 Feb 2017	15 Aug 2017	21 Feb 2017	15 Aug 2017	24 Feb 2017
D283 0.0-0.1	SE162178.088	LB119112	17 Feb 2017	20 Feb 2017	16 Aug 2017	21 Feb 2017	16 Aug 2017	24 Feb 2017
D283 0.2-0.3	SE162178.089	LB119112	17 Feb 2017	20 Feb 2017	16 Aug 2017	21 Feb 2017	16 Aug 2017	24 Feb 2017
D284 0.0-0.1	SE162178.090	LB119112	17 Feb 2017	20 Feb 2017	16 Aug 2017	21 Feb 2017	16 Aug 2017	24 Feb 2017
D284 0.2-0.3	SE162178.091	LB119112	17 Feb 2017	20 Feb 2017	16 Aug 2017	21 Feb 2017	16 Aug 2017	24 Feb 2017
D285 0.0-0.1	SE162178.092	LB119112	17 Feb 2017	20 Feb 2017	16 Aug 2017	21 Feb 2017	16 Aug 2017	24 Feb 2017
D285 0.2-0.3	SE162178.093	LB119112	17 Feb 2017	20 Feb 2017	16 Aug 2017	21 Feb 2017	16 Aug 2017	24 Feb 2017
D285 1.0-1.1	SE162178.094	LB119112	17 Feb 2017	20 Feb 2017	16 Aug 2017	21 Feb 2017	16 Aug 2017	24 Feb 2017
D285 1.9-2.0	SE162178.095	LB119112	17 Feb 2017	20 Feb 2017	16 Aug 2017	21 Feb 2017	16 Aug 2017	24 Feb 2017
D286 0.0-0.1	SE162178.096	LB119113	17 Feb 2017	20 Feb 2017	16 Aug 2017	21 Feb 2017	16 Aug 2017	27 Feb 2017
D286 0.2-0.3	SE162178.097	LB119113	17 Feb 2017	20 Feb 2017	16 Aug 2017	21 Feb 2017	16 Aug 2017	27 Feb 2017
D286 1.0-1.1	SE162178.098	LB119113	17 Feb 2017	20 Feb 2017	16 Aug 2017	21 Feb 2017	16 Aug 2017	27 Feb 2017
D287 0.0-0.1	SE162178.099	LB119113	17 Feb 2017	20 Feb 2017	16 Aug 2017	21 Feb 2017	16 Aug 2017	27 Feb 2017
D287 0.2-0.3	SE162178.100	LB119113	17 Feb 2017	20 Feb 2017	16 Aug 2017	21 Feb 2017	16 Aug 2017	27 Feb 2017
D287 1.0-1.1	SE162178.101	LB119113	17 Feb 2017	20 Feb 2017	16 Aug 2017	21 Feb 2017	16 Aug 2017	27 Feb 2017
D287 1.9-2.0	SE162178.102	LB119113	17 Feb 2017	20 Feb 2017	16 Aug 2017	21 Feb 2017	16 Aug 2017	27 Feb 2017
D288 0.0-0.1	SE162178.103	LB119113	17 Feb 2017	20 Feb 2017	16 Aug 2017	21 Feb 2017	16 Aug 2017	27 Feb 2017
D288 0.2-0.3	SE162178.104	LB119113	17 Feb 2017	20 Feb 2017	16 Aug 2017	21 Feb 2017	16 Aug 2017	27 Feb 2017
D288 0.6-0.7	SE162178.105	LB119113	17 Feb 2017	20 Feb 2017	16 Aug 2017	21 Feb 2017	16 Aug 2017	27 Feb 2017
D289 0.0-0.1	SE162178.106	LB119113	17 Feb 2017	20 Feb 2017	16 Aug 2017	21 Feb 2017	16 Aug 2017	27 Feb 2017
D289 0.2-0.3	SE162178.107	LB119113	17 Feb 2017	20 Feb 2017	16 Aug 2017	21 Feb 2017	16 Aug 2017	27 Feb 2017
D289 0.5-0.6	SE162178.108	LB119113	17 Feb 2017	20 Feb 2017	16 Aug 2017	21 Feb 2017	16 Aug 2017	27 Feb 2017
D289 1.0-1.1	SE162178.109	LB119113	17 Feb 2017	20 Feb 2017	16 Aug 2017	21 Feb 2017	16 Aug 2017	27 Feb 2017
D290 0.0-0.1	SE162178.110	LB119113	17 Feb 2017	20 Feb 2017	16 Aug 2017	21 Feb 2017	16 Aug 2017	27 Feb 2017
D290 0.2-0.3	SE162178.111	LB119113	17 Feb 2017	20 Feb 2017	16 Aug 2017	21 Feb 2017	16 Aug 2017	27 Feb 2017
D290 1.0-1.1	SE162178.112	LB119113	17 Feb 2017	20 Feb 2017	16 Aug 2017	21 Feb 2017	16 Aug 2017	27 Feb 2017
Duplicate DS8	SE162178.113	LB119113	17 Feb 2017	20 Feb 2017	16 Aug 2017	21 Feb 2017	16 Aug 2017	27 Feb 2017

18/5/2017 Page 8 of 21

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES (continued)

Method: ME-(AU)-[ENV]AN040/AN320

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
Duplicate DS9	SE162178.114	LB119113	17 Feb 2017	20 Feb 2017	16 Aug 2017	21 Feb 2017	16 Aug 2017	27 Feb 2017
Duplicate DS10	SE162178.115	LB119114	17 Feb 2017	20 Feb 2017	16 Aug 2017	21 Feb 2017	16 Aug 2017	27 Feb 2017
Duplicate DS11	SE162178.116	LB119114	17 Feb 2017	20 Feb 2017	16 Aug 2017	21 Feb 2017	16 Aug 2017	27 Feb 2017
Duplicate DS12	SE162178.117	LB119114	16 Feb 2017	20 Feb 2017	15 Aug 2017	21 Feb 2017	15 Aug 2017	27 Feb 2017
Duplicate DS13	SE162178.118	LB119114	16 Feb 2017	20 Feb 2017	15 Aug 2017	21 Feb 2017	15 Aug 2017	27 Feb 2017
Duplicate DS14	SE162178.119	LB119114	16 Feb 2017	20 Feb 2017	15 Aug 2017	21 Feb 2017	15 Aug 2017	27 Feb 2017
Duplicate DS15	SE162178.120	LB119114	16 Feb 2017	20 Feb 2017	15 Aug 2017	21 Feb 2017	15 Aug 2017	27 Feb 2017

18/5/2017 Page 9 of 21

SURROGATES

SE162178 R1

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No surrogates were required for this job.

18/5/2017 Page 10 of 21

METHOD BLANKS

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Exchangeable Cations and Cation Exchange Capacity (CEC/ESP/SAR)

Method: ME-(AU)-[ENV]AN122

Sample Number	Parameter	Units	LOR

Mercury (dissolved) in Water

Method: ME-(AU)-[ENV]AN311(Perth)/AN312

Sample Number	Parameter	Units	LOR	Result
LB119219.001	Mercury	mg/L	0.0001	<0.0001

Mercury in Soil

Method: ME-(AU)-[ENV]AN312

Sample Number	Parameter	Units	LOR	Result
LB119168.001	Mercury	mg/kg	0.05	<0.05
LB119169.001	Mercury	mg/kg	0.05	<0.05
LB119170.001	Mercury	mg/kg	0.05	<0.05
LB119171.001	Mercury	mg/kg	0.05	<0.05
LB119172.001	Mercury	mg/kg	0.05	<0.05
LB119173.001	Mercury	mg/kg	0.05	<0.05
LB119174.001	Mercury	mg/kg	0.05	<0.05

Metals in Water (Dissolved) by ICPOES

Method: ME-(AU)-[ENV]AN320/AN321

Sample Number	Parameter	Units	LOR	Result
LB119273.001	Arsenic, As	mg/L	0.02	<0.02
	Cadmium, Cd	mg/L	0.001	<0.001
	Chromium, Cr	mg/L	0.005	<0.005
	Copper, Cu	mg/L	0.005	<0.005
	Lead, Pb	mg/L	0.02	<0.02
	Manganese, Mn	mg/L	0.005	<0.005
	Nickel, Ni	mg/L	0.005	<0.005
	Zinc, Zn	mg/L	0.01	<0.01

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES

Method: ME-(AU)-[ENV]AN040/AN320

Sample Number	Parameter	Units	LOR	Result
LB119108.001	Arsenic, As	mg/kg	3	<3
	Cadmium, Cd	mg/kg	0.3	<0.3
	Chromium, Cr	mg/kg	0.3	<0.3
	Copper, Cu	mg/kg	0.5	<0.5
	Lead, Pb	mg/kg	1	<1
	Nickel, Ni	mg/kg	0.5	<0.5
	Zinc, Zn	mg/kg	0.5	<0.5
	Manganese, Mn	mg/kg	1	<1
LB119109.001	Arsenic, As	mg/kg	3	<3
	Cadmium, Cd	mg/kg	0.3	<0.3
	Chromium, Cr	mg/kg	0.3	<0.3
	Copper, Cu	mg/kg	0.5	<0.5
	Lead, Pb	mg/kg	1	<1
	Nickel, Ni	mg/kg	0.5	<0.5
	Zinc, Zn	mg/kg	0.5	<0.5
	Manganese, Mn	mg/kg	1	<1
LB119110.001	Arsenic, As	mg/kg	3	<3
	Cadmium, Cd	mg/kg	0.3	<0.3
	Chromium, Cr	mg/kg	0.3	<0.3
	Copper, Cu	mg/kg	0.5	<0.5
	Lead, Pb	mg/kg	1	<1
	Nickel, Ni	mg/kg	0.5	<0.5
	Zinc, Zn	mg/kg	0.5	<0.5
	Manganese, Mn	mg/kg	1	<1
LB119111.001	Arsenic, As	mg/kg	3	<3
	Cadmium, Cd	mg/kg	0.3	<0.3
	Chromium, Cr	mg/kg	0.3	<0.3
	Copper, Cu	mg/kg	0.5	<0.5
	Lead, Pb	mg/kg	1	<1
	Nickel, Ni	mg/kg	0.5	<0.5

18/5/2017 Page 11 of 21

METHOD BLANKS

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES (continued)

Method: ME-(AU)-[ENV]AN040/AN320

Sample Number	Parameter	Units	LOR	Result
LB119111.001	Zinc, Zn	mg/kg	0.5	<0.5
	Manganese, Mn	mg/kg	1	<1
LB119112.001	Arsenic, As	mg/kg	3	<3
	Cadmium, Cd	mg/kg	0.3	<0.3
	Chromium, Cr	mg/kg	0.3	<0.3
	Copper, Cu	mg/kg	0.5	<0.5
	Lead, Pb	mg/kg	1	<1
	Nickel, Ni	mg/kg	0.5	<0.5
	Zinc, Zn	mg/kg	0.5	<0.5
	Manganese, Mn	mg/kg	1	<1
LB119113.001	Arsenic, As	mg/kg	3	<3
	Cadmium, Cd	mg/kg	0.3	<0.3
	Chromium, Cr	mg/kg	0.3	<0.3
	Copper, Cu	mg/kg	0.5	<0.5
	Lead, Pb	mg/kg	1	<1
	Nickel, Ni	mg/kg	0.5	<0.5
	Zinc, Zn	mg/kg	0.5	<0.5
	Manganese, Mn	mg/kg	1	<1
LB119114.001	Arsenic, As	mg/kg	3	<3
	Cadmium, Cd	mg/kg	0.3	<0.3
	Chromium, Cr	mg/kg	0.3	<0.3
	Copper, Cu	mg/kg	0.5	<0.5
	Lead, Pb	mg/kg	1	<1
	Nickel, Ni	mg/kg	0.5	<0.5
	Zinc, Zn	mg/kg	0.5	<0.5
	Manganese, Mn	mg/kg	1	<1

18/5/2017 Page 12 of 21

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury (dissolved) in Water

Method: ME-(AU)-[ENV]AN311(Perth)/AN312

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE162275.019	LB119219.010	Mercury	μg/L	0.0001	<0.0001	<0.0001	200	0

Mercury in Soil

Method: ME-(AU)-[ENV]AN312

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE162178.007	LB119168.014	Mercury	mg/kg	0.05	<0.05	<0.05	200	0
SE162178.016	LB119168.024	Mercury	mg/kg	0.05	<0.05	<0.05	200	0
SE162178.026	LB119169.014	Mercury	mg/kg	0.05	<0.05	<0.05	200	0
SE162178.035	LB119169.024	Mercury	mg/kg	0.05	<0.05	<0.05	200	0
SE162178.045	LB119170.014	Mercury	mg/kg	0.05	<0.05	<0.05	200	0
SE162178.054	LB119170.024	Mercury	mg/kg	0.05	<0.05	<0.05	200	0
SE162178.064	LB119171.014	Mercury	mg/kg	0.05	<0.05	<0.05	200	0
SE162178.073	LB119171.024	Mercury	mg/kg	0.05	<0.05	<0.05	200	0
SE162178.083	LB119172.014	Mercury	mg/kg	0.05	<0.05	<0.05	200	0
SE162178.092	LB119172.024	Mercury	mg/kg	0.05	<0.05	<0.05	200	0
SE162178.102	LB119173.014	Mercury	mg/kg	0.05	0.07	0.05	114	31
SE162178.111	LB119173.024	Mercury	mg/kg	0.05	<0.05	<0.05	200	0
SE162178.118	LB119174.014	Mercury	mg/kg	0.05	<0.05	<0.05	200	0
SE162188.001	LB119174.023	Mercury	mg/kg	0.05	0.09	0.10	84	5

Moisture Content

Method: ME-(AU)-[ENV]AN002

								-
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE162178.010	LB119034.011	% Moisture	%w/w	0.5	2.3	2.2	75	5
SE162178.020	LB119034.022	% Moisture	%w/w	0.5	4.1	4.0	55	2
SE162178.030	LB119034.033	% Moisture	%w/w	0.5	18	17	36	5
SE162178.040	LB119034.044	% Moisture	%w/w	0.5	14	12	38	21
SE162178.050	LB119034.055	% Moisture	%w/w	0.5	7.2	5.8	45	22
SE162178.060	LB119034.066	% Moisture	%w/w	0.5	2.5	2.5	70	2
SE162178.070	LB119034.077	% Moisture	%w/w	0.5	4.9	5.0	50	2
SE162178.080	LB119034.088	% Moisture	%w/w	0.5	5.5	7.8	45	34
SE162178.090	LB119034.099	% Moisture	%w/w	0.5	2.2	1.9	78	12
SE162178.100	LB119034.110	% Moisture	%w/w	0.5	5.3	5.2	49	2
SE162178.110	LB119034.121	% Moisture	%w/w	0.5	5.5	5.0	49	11
SE162178.120	LB119034.132	% Moisture	%w/w	0.5	2.2	2.3	75	5

pH in soil (1:5)

Method: ME-(AU)-[ENV]AN101

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE162178.013	LB119063.014	рН	pH Units	-	7.7	7.6	31	1
SE162178.112	LB119063.022	pH	pH Units	-	6.4	6.4	32	0

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES

Method: ME-(AU)-[ENV]AN040/AN320

		-						
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE162175.010	LB119114.014	Arsenic, As	mg/kg	3	62	61	32	2
		Cadmium, Cd	mg/kg	0.3	0.6	0.6	77	0
		Chromium, Cr	mg/kg	0.3	39	39	31	0
		Copper, Cu	mg/kg	0.5	61	61	31	1
		Lead, Pb	mg/kg	1	13	13	32 77 31	4
		Nickel, Ni	mg/kg	0.5	74	77	31	5
		Zinc, Zn	mg/kg	0.5	320	320	31	1
		Manganese, Mn	mg/kg	1	840	910	30	8
SE162178.010	LB119108.014	Arsenic, As	mg/kg	3	75	47	32	45 ②
		Cadmium, Cd	mg/kg	0.3	0.5	0.4	100	26
		Chromium, Cr	mg/kg	0.3	31	27	777 31 31 38 31 39 31 30 32 100 32 33 31 38 33 31	14
		Copper, Cu	mg/kg	0.5	22	13	33	51 ②
		Lead, Pb	mg/kg	1	150	98	31	39 ②
		Nickel, Ni	mg/kg	0.5	7.2	5.7	38	23
		Zinc, Zn	mg/kg	0.5	79	59	33	29
		Manganese, Mn	mg/kg	1	220	130	31	48 ②
SE162178.019	LB119108.024	Arsenic, As	mg/kg	3	13	10	39	34
		Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	157	0

18/5/2017 Page 13 of 21

DUPLICATES

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES (continued)

Method: ME-(AU)-[ENV]AN040/AN320

011	D linete	D	11-14-	LOD	Outstant	Domlingto	Ouitania 0/	DDD 0/
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate		RPD %
SE162178.019	LB119108.024	Chromium, Cr	mg/kg	0.3	38	34	31	12
		Copper, Cu	mg/kg	0.5	21	18	33	15
		Lead, Pb	mg/kg	1	12	9	40	25
		Nickel, Ni	mg/kg	0.5	13	13	34	4
		Zinc, Zn	mg/kg	0.5	30	28	37	8
		Manganese, Mn	mg/kg	1	160	140	31	15
SE162178.029	LB119109.014	Arsenic, As	mg/kg	3	19	17	36	8
		Cadmium, Cd	mg/kg	0.3	0.3	0.3	124	2
		Chromium, Cr	mg/kg	0.3	38	37	31	5
		Copper, Cu	mg/kg	0.5	24	23		7
		Lead, Pb	mg/kg	1	18	17		6
		Nickel, Ni	mg/kg	0.5	21	20		4
		Zinc, Zn	mg/kg	0.5	55	52		4
					62	65		6
05400470.000	L D440400 004	Manganese, Mn	mg/kg	3				
SE162178.038	LB119109.024	Arsenic, As	mg/kg		40	38		4
		Cadmium, Cd	mg/kg	0.3	0.7	0.8		7
		Chromium, Cr	mg/kg	0.3	26	25		5
		Copper, Cu	mg/kg	0.5	14	14		4
		Lead, Pb	mg/kg	1	50	49	32	3
		Nickel, Ni	mg/kg	0.5	12	13	34	12
		Zinc, Zn	mg/kg	0.5	190	180	31	4
		Manganese, Mn	mg/kg	1	1400	1500	30	10
SE162178.048	LB119110.014	Arsenic, As	mg/kg	3	6	7	46	14
		Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	169	0
		Chromium, Cr	mg/kg	0.3	31	32	32	2
		Copper, Cu	mg/kg	0.5	14	14	34	3
		Lead, Pb	mg/kg	1	5	6	34 47 33	16
		Nickel, Ni	mg/kg	0.5	15	15		2
		Zinc, Zn	mg/kg	0.5	28	27		2
05,00,130,053	1.54.64.6.004	Manganese, Mn	mg/kg	1	140	180		26
SE162178.057	LB119110.024	Arsenic, As	mg/kg	3	69	78	37 31 31 73 31 36 31	12
		Cadmium, Cd	mg/kg	0.3	0.6	0.8		29
		Chromium, Cr	mg/kg	0.3	61	74		20
		Copper, Cu	mg/kg	0.5	9.4	7.1		28
		Lead, Pb	mg/kg	1	110	150		27
		Nickel, Ni	mg/kg	0.5	4.2	4.6	41	9
		Zinc, Zn	mg/kg	0.5	50	66	34 31 30 46 169 32 34 47 33 37 31 31 31 32 32 31 33 30 32 101 32 32 31 38 33 30 32 66 31 31	28
		Manganese, Mn	mg/kg	1	430	550	30	24
SE162178.067	LB119111.014	Arsenic, As	mg/kg	3	37	44	32	18
		Cadmium, Cd	mg/kg	0.3	0.4	0.5	101	18
		Chromium, Cr	mg/kg	0.3	26	40	32	43 ②
		Copper, Cu	mg/kg	0.5	23	23		0
		Lead, Pb	mg/kg	1	66	110		48 ②
		Nickel, Ni		0.5	5.8	6.5		11
		Zinc, Zn	mg/kg	0.5	66	71		7
			mg/kg					
25400470 272		Manganese, Mn	mg/kg	1	1400	750		58 ②
SE162178.076	LB119111.024	Arsenic, As	mg/kg	3	70	59	31 32 36 32 34 32 33 37 70 32 34 32 34 31 30 46 169 32 34 47 33 37 31 31 31 33 31 32 31 31 32 32 31 33 30 32 32 31 38 33 30 32 66 31	18
		Cadmium, Cd	mg/kg	0.3	0.9	0.8		13
		Chromium, Cr	mg/kg	0.3	70	39		56 ②
		Copper, Cu	mg/kg	0.5	37	37		1
		Lead, Pb	mg/kg	1	59	70	32	16
		Nickel, Ni	mg/kg	0.5	17	19	33	11
		Zinc, Zn	mg/kg	0.5	200	170	31	17
		Manganese, Mn	mg/kg	1	510	640	30	22
SE162178.086	LB119112.014	Arsenic, As	mg/kg	3	15	16	37	3
		Cadmium, Cd	mg/kg	0.3	0.3	<0.3		4
		Chromium, Cr	mg/kg	0.3	17	18		3
		Copper, Cu	mg/kg	0.5	8.5	8.7		2
				1				15
		Lead, Pb	mg/kg		90	78		
		Nickel, Ni	mg/kg	0.5	12	12		0
		Zinc, Zn	mg/kg	0.5	87	87	00	1

18/5/2017 Page 14 of 21

DUPLICATES

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES (continued)

Method: ME-(AU)-[ENV]AN040/AN320

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE162178.086	LB119112.014	Manganese, Mn	mg/kg	1	250	190	30	30 †
SE162178.095	LB119112.024	Arsenic, As	mg/kg	3	260	220	30	18
		Cadmium, Cd	mg/kg	0.3	9.8	9.9	33	1
		Chromium, Cr	mg/kg	0.3	22	19	32	16
		Copper, Cu	mg/kg	0.5	61	58	31	4
		Lead, Pb	mg/kg	1	64	100	31	48 ②
		Nickel, Ni	mg/kg	0.5	11	11	35	2
		Zinc, Zn	mg/kg	0.5	1600	1300	30	16
		Manganese, Mn	mg/kg	1	2600	3600	30	34 ②
SE162178.105	LB119113.014	Arsenic, As	mg/kg	3	15	15	37	1
		Cadmium, Cd	mg/kg	0.3	0.3	<0.3	125	10
		Chromium, Cr	mg/kg	0.3	21	22	32	1
		Copper, Cu	mg/kg	0.5	14	16	33	11
		Lead, Pb	mg/kg	1	25	26	34	5
		Nickel, Ni	mg/kg	0.5	26	24	32	9
		Zinc, Zn	mg/kg	0.5	180	170	31	7
		Manganese, Mn	mg/kg	1	240	160	31	38 ②
SE162178.114	LB119113.024	Arsenic, As	mg/kg	3	34	37	33	9
		Cadmium, Cd	mg/kg	0.3	0.5	0.5	89	4
		Chromium, Cr	mg/kg	0.3	31	32	30 33 32 31 31 35 30 30 37 125 32 33 34 32 31 31 33	5
		Copper, Cu	mg/kg	0.5	14	16		13
		Lead, Pb	mg/kg	1	69	76	31	11
		Nickel, Ni	mg/kg	0.5	4.9	4.7	40	3
		Zinc, Zn	mg/kg	0.5	65	69	33	6
		Manganese, Mn	mg/kg	1	710	830	30	15
SE162178.120	LB119114.022	Arsenic, As	mg/kg	3	24	24	30 30 31 32 31 31 35 30 30 37 125 32 33 34 32 31 31 33 39 32 33 34 40 33 30 31 40 33 34 35 36 37 38 39 30 30 30 30 30 30 30 30 30 30	0
		Cadmium, Cd	mg/kg	0.3	0.3	0.3		1
		Chromium, Cr	mg/kg	0.3	20	19		6
		Copper, Cu	mg/kg	0.5	27	26		4
		Lead, Pb	mg/kg	1	18	18		3
		Nickel, Ni	mg/kg	0.5	16	15		3
		Zinc, Zn	mg/kg	0.5	56	54		3
		Manganese, Mn	mg/kg	1	290	280		1

18/5/2017 Page 15 of 21

LABORATORY CONTROL SAMPLES

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Exchangeable Cations and Cation Exchange Capacity (CEC/ESP/SAR)

Method: ME-(AU)-[ENV]AN122

Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB119136.002	Exchangeable Sodium, Na	mg/kg	2	NA	390	80 - 120	92
	Exchangeable Potassium, K	mg/kg	2	NA	343	80 - 120	89
	Exchangeable Calcium, Ca	mg/kg	2	NA	2570	80 - 120	88
	Exchangeable Magnesium, Mg	mg/kg	2	NA	635	80 - 120	97
LB119138.002	Exchangeable Sodium, Na	mg/kg	2	NA	390	80 - 120	90
	Exchangeable Potassium, K	mg/kg	2	NA	343	80 - 120	88
	Exchangeable Calcium, Ca	mg/kg	2	NA	2570	80 - 120	87
	Exchangeable Magnesium, Mg	mg/kg	2	NA	635	80 - 120	96

Mercury in Soil

Method: ME-(AU)-[ENV]AN312

Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB119168.002	Mercury	mg/kg	0.05	0.20	0.2	70 - 130	100
LB119169.002	Mercury	mg/kg	0.05	0.19	0.2	70 - 130	96
LB119170.002	Mercury	mg/kg	0.05	0.20	0.2	70 - 130	102
LB119171.002	Mercury	mg/kg	0.05	0.21	0.2	70 - 130	104
LB119172.002	Mercury	mg/kg	0.05	0.21	0.2	70 - 130	106
LB119173.002	Mercury	mg/kg	0.05	0.20	0.2	70 - 130	102
I B119174 002	Mercury	ma/ka	0.05	0.21	0.2	70 - 130	105

Metals in Water (Dissolved) by ICPOES

Method: ME-(AU)-[ENV]AN320/AN321

Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB119273.002	Arsenic, As	mg/L	0.02	2.0	2	80 - 120	99
	Cadmium, Cd	mg/L	0.001	2.0	2	80 - 120	100
	Chromium, Cr	mg/L	0.005	2.0	2	80 - 120	101
	Copper, Cu	mg/L	0.005	2.0	2	80 - 120	100
	Lead, Pb	mg/L	0.02	2.0	2	80 - 120	101
	Manganese, Mn	mg/L	0.005	2.0	2	80 - 120	100
	Nickel, Ni	mg/L	0.005	2.0	2	80 - 120	101
	Zinc, Zn	mg/L	0.01	2.0	2	80 - 120	100

pH in soil (1:5)

Method: ME-(AU)-[ENV]AN101

Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB119063.003	pH	pH Units	-	7.5	7.415	98 - 102	101

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES

Method: ME-(AU)-[ENV]AN040/AN320

Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB119108.002	Arsenic, As	mg/kg	3	51	50	80 - 120	101
	Cadmium, Cd	mg/kg	0.3	49	50	80 - 120	97
	Chromium, Cr	mg/kg	0.3	50	50	80 - 120	101
	Copper, Cu	mg/kg	0.5	51	50	80 - 120	103
	Lead, Pb	mg/kg	1	49	50	80 - 120	98
	Nickel, Ni	mg/kg	0.5	52	50	80 - 120	103
	Zinc, Zn	mg/kg	0.5	51	50	80 - 120	102
	Manganese, Mn	mg/kg	1	51	50	80 - 120	101
LB119109.002	Arsenic, As	mg/kg	3	51	50	80 - 120	103
	Cadmium, Cd	mg/kg	0.3	49	50	80 - 120	98
	Chromium, Cr	mg/kg	0.3	51	50	80 - 120	102
	Copper, Cu	mg/kg	0.5	51	50	80 - 120	102
	Lead, Pb	mg/kg	1	50	50	80 - 120	100
	Nickel, Ni	mg/kg	0.5	52	50	80 - 120	104
	Zinc, Zn	mg/kg	0.5	53	50	80 - 120	106
	Manganese, Mn	mg/kg	1	52	50	80 - 120	104
LB119110.002	Arsenic, As	mg/kg	3	52	50	80 - 120	104
	Cadmium, Cd	mg/kg	0.3	51	50	80 - 120	103
	Chromium, Cr	mg/kg	0.3	52	50	80 - 120	104
	Copper, Cu	mg/kg	0.5	51	50	80 - 120	102
	Lead, Pb	mg/kg	1	52	50	80 - 120	104
	Nickel, Ni	mg/kg	0.5	51	50	80 - 120	103
	Zinc, Zn	mg/kg	0.5	52	50	80 - 120	103
	Manganese, Mn	mg/kg	1	52	50	80 - 120	104
LB119111.002	Arsenic, As	mg/kg	3	49	50	80 - 120	99

18/5/2017 Page 16 of 21

LABORATORY CONTROL SAMPLES

SE162178 R1

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES (continued)

Method: ME-(AU)-[ENV]AN040/AN320

Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB119111.002	Cadmium, Cd	mg/kg	0.3	49	50	80 - 120	98
LD119111.002	Chromium, Cr	mg/kg	0.3	50	50	80 - 120	99
	Copper, Cu	mg/kg	0.5	49	50	80 - 120	97
	Lead, Pb	mg/kg	1	49	50	80 - 120	99
	Nickel, Ni	mg/kg	0.5	49	50	80 - 120	98
	Zinc, Zn	mg/kg	0.5	49	50	80 - 120	99
	Manganese, Mn	mg/kg	1	49	50	80 - 120	99
LB119112.002	Arsenic, As	mg/kg	3	49	50	80 - 120	99
LB119112.002	Cadmium, Cd	mg/kg	0.3	50	50	80 - 120	101
	Chromium, Cr	mg/kg	0.3	51	50	80 - 120	101
	Copper, Cu	mg/kg	0.5	51	50	80 - 120	101
	Lead, Pb		1		50	80 - 120	101
	Nickel, Ni	mg/kg	0.5	51 51	50	80 - 120	102
	Zinc, Zn	mg/kg	0.5		50	80 - 120	101
	*	mg/kg		51			
L D440440 000	Manganese, Mn	mg/kg	1	51	50	80 - 120	101
LB119113.002	Arsenic, As	mg/kg	3	52	50	80 - 120	103
	Cadmium, Cd	mg/kg	0.3	52	50	80 - 120	103
	Chromium, Cr	mg/kg	0.3	53	50	80 - 120	105
	Copper, Cu	mg/kg	0.5	52	50	80 - 120	103
	Lead, Pb	mg/kg	1	53	50	80 - 120	105
	Nickel, Ni	mg/kg	0.5	53	50	80 - 120	107
	Zinc, Zn	mg/kg	0.5	52	50	80 - 120	103
	Manganese, Mn	mg/kg	1	53	50	80 - 120	105
LB119114.002	Arsenic, As	mg/kg	3	50	50	80 - 120	99
	Cadmium, Cd	mg/kg	0.3	50	50	80 - 120	100
	Chromium, Cr	mg/kg	0.3	50	50	80 - 120	101
	Copper, Cu	mg/kg	0.5	49	50	80 - 120	99
	Lead, Pb	mg/kg	1	50	50	80 - 120	101
	Nickel, Ni	mg/kg	0.5	51	50	80 - 120	102
	Zinc, Zn	mg/kg	0.5	50	50	80 - 120	100
	Manganese, Mn	mg/kg	1	50	50	80 - 120	101

18/5/2017 Page 17 of 21

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury (dissolved) in Water

Method: ME-(AU)-[ENV]AN311(Perth)/AN312

QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE162156.116	LB119219.004	Mercury	mg/L	0.0001	0.0082	<0.0001	0.008	103

Mercury in Soil

Method: ME-(AU)-[ENV]AN312

QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE162175.009	LB119168.004	Mercury	mg/kg	0.05	0.18	<0.05	0.2	90
SE162178.017	LB119169.004	Mercury	mg/kg	0.05	0.19	< 0.05	0.2	91
SE162178.036	LB119170.004	Mercury	mg/kg	0.05	0.19	<0.05	0.2	83
SE162178.055	LB119171.004	Mercury	mg/kg	0.05	0.18	<0.05	0.2	78
SE162178.074	LB119172.004	Mercury	mg/kg	0.05	0.23	<0.05	0.2	103
SE162178.093	LB119173.004	Mercury	mg/kg	0.05	0.20	<0.05	0.2	89
SE162263.001	LB119174.004	Mercury	mg/kg	0.05	0.17	0.02	0.2	77

Metals in Water (Dissolved) by ICPOES

Method: ME-(AU)-[ENV]AN320/AN321

	(=, =,							,
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery
SE162156.116	LB119273.004	Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Manganese, Mn Nickel, Ni Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni	mg/L	0.02	2.0	<0.02	2	100
		Cadmium, Cd	mg/L	0.001	2.0	<0.001	2	100
		Chromium, Cr	mg/L	0.005	2.0	<0.005	2	100
		Copper, Cu	mg/L	0.005	2.0	<0.005	2	101
		Lead, Pb	mg/L	0.02	2.0	<0.02	2	102
		Manganese, Mn	mg/L	0.005	2.0	<0.005	2	100
		Nickel, Ni	mg/L	0.005	2.0	<0.005	2	101
	Zinc, Zn	mg/L	0.01	2.0	<0.01	2	100	
	LB119273.030	Arsenic, As	mg/L	0.02	2.1	<0.02	2	104
		Cadmium, Cd	mg/L	0.001	2.1	<0.001	2	104
		Chromium, Cr	mg/L	0.005	2.1	<0.005	2	104
		Copper, Cu	mg/L	0.005	2.1	<0.005	2	105
		Lead, Pb	mg/L	0.02	2.1	<0.02	2	106
		Nickel, Ni	mg/L	0.005	2.1	<0.005	2	105
		Zinc, Zn mg/L 0.01 2.1		<0.01	2	105		

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES

Method: ME-(AU)-[ENV]AN040/AN320

QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE162175.001 LB119114.00 SE162178.020 LB119109.00	LB119114.004	Arsenic, As	mg/kg	3	48	8	50	81
		Cadmium, Cd	mg/kg	0.3	41	0.5	50	81
		Chromium, Cr	mg/kg	0.3	65	24	50	81
		Copper, Cu	mg/kg	0.5	71	28	50	86
		Lead, Pb	mg/kg	1	57	20	50	75
		Nickel, Ni	mg/kg	0.5	67	29	50	77
		Zinc, Zn	mg/kg	0.5	200	170	50	63 ⑨
		Manganese, Mn	mg/kg	1	290	300	50	-15 ⑨
SE162178.020	LB119109.004	Arsenic, As	mg/kg	3	50	11	50	77
		Cadmium, Cd	mg/kg	0.3	35	<0.3	50	70
		Chromium, Cr	mg/kg	0.3	76	38	50	75
		Copper, Cu	mg/kg	0.5	60	17	50	85
		Lead, Pb	mg/kg	1	44	10	50	67 ⑨
		Nickel, Ni	mg/kg	0.5	52	15	50	75
		Zinc, Zn	mg/kg	0.5	71	29	50	84
		Manganese, Mn	mg/kg	1	190	150	50	77
SE162178.039	LB119110.004	Arsenic, As	mg/kg	3	170	38	50	256 ⑨
		Cadmium, Cd	mg/kg	0.3	40	0.3	50	79
		Chromium, Cr	mg/kg	0.3	71	32	50	79
		Copper, Cu	mg/kg	0.5	92	34	50	116
		Lead, Pb	mg/kg	1	93	29	50	128
		Nickel, Ni	mg/kg	0.5	56	19	50	73
		Zinc, Zn	mg/kg	0.5	110	78	50	70 ⑨
		Manganese, Mn	mg/kg	1	180	170	50	15 ⑨
SE162178.058	LB119111.004	Arsenic, As	mg/kg	3	99	55	50	87
		Cadmium, Cd	mg/kg	0.3	43	0.5	50	85
		Chromium, Cr	mg/kg	0.3	80	41	50	77
		Copper, Cu	mg/kg	0.5	76	30	50	91

18/5/2017 Page 18 of 21

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES (continued)

Method: ME-(AU)-[ENV]AN040/AN320

QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE162178.058	LB119111.004	Lead, Pb	mg/kg	1	110	75	50	63 ⑨
		Nickel, Ni	mg/kg	0.5	52	10	50	82
		Zinc, Zn	mg/kg	0.5	140	74	50	124
		Manganese, Mn	mg/kg	1	160	120	50	77
SE162178.077	LB119112.004	Arsenic, As	mg/kg	3	330	280	50	92
		Cadmium, Cd	mg/kg	0.3	41	3.4	50	75
		Chromium, Cr	mg/kg	0.3	65	26	50	78
		Copper, Cu	mg/kg	0.5	90	47	50	86
		Lead, Pb	mg/kg	1	370	310	50	115
		Nickel, Ni	mg/kg	0.5	55	18	50	75
		Zinc, Zn	mg/kg	0.5	600	570	50	69 ⑤
		Manganese, Mn	mg/kg	1	4500	4300	50	380 ⑤
SE162178.096	LB119113.004	Arsenic, As	mg/kg	3	71	26	50	91
		Cadmium, Cd	mg/kg	0.3	47	0.4	50	93
		Chromium, Cr	mg/kg	0.3	77	31	50	91
		Copper, Cu	mg/kg	0.5	60	9.6	50	100
		Lead, Pb	mg/kg	1	100	58	50	86
		Nickel, Ni	mg/kg	0.5	53	5.5	50	96
		Zinc, Zn	mg/kg	0.5	95	44	50	102
		Manganese, Mn	mg/kg	1	1800	1900	50	-112 ⑤

18/5/2017 Page 19 of 21

MATRIX SPIKE DUPLICATES

SE162178 R1

Matrix spike duplicates are calculated as Relative Percent Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spike duplicates were required for this job.

18/5/2017 Page 20 of 21

FOOTNOTES

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover the performance of this service.
- Sample not analysed for this analyte.

IS Insufficient sample for analysis. LNR Sample listed, but not received.

LOR Limit of reporting.

QFH QC result is above the upper tolerance.
QFL QC result is below the lower tolerance.

- ① At least 2 of 3 surrogates are within acceptance criteria.
- ② RPD failed acceptance criteria due to sample heterogeneity.
- 3 Results less than 5 times LOR preclude acceptance criteria for RPD.
- Recovery failed acceptance criteria due to matrix interference.
- ® Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- © LOR was raised due to sample matrix interference.
- ① LOR was raised due to dilution of significantly high concentration of analyte in sample.
- ® Reanalysis of sample in duplicate confirmed sample heterogeneity and inconsistency of results.
- Recovery failed acceptance criteria due to sample heterogeneity.
- © LOR was raised due to high conductivity of the sample (required dilution).
- † Refer to Analytical Report comments for further information.

This document is issued by the Company under its General Conditions of Service accessible at www.sgs.com/en/Terms-and-Conditions.aspx.

Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.

18/5/2017 Page 21 of 21

	O Place	0 IRONMENTAL	0500000	PEN		Box 880 SW 2751	Fax: (0:	2) 4722 2700 2) 4722 6161 nfo@geotech.com.au				D			
PH:	UNIT 16 33 MADD ALEXAND 02 8594 0	OX STREET PRIA NSW 201 400			FAX:	02 8594		Sampling By: Project Manager:	SS	/JH	Job No: Project: Location:	Page 12675/4 Googong NH	1 1A-7 & NH2	of	9
		Sampling de	tails	-	Samr	le type									
	Location	Depth (m)	Date	Time	Soil	Water		F	Results req	uired by:	Normal T	AT			
	D226						Heavy Metals As, Cd, Cr, Cu, Pb, Mn, Hg, Ni and Zn	рН	CEC						KEEP SAMPLE
2	D226	0-0.1	15/02/2017		SG		V		1						SAIVIPLE
2	D226	0.2-0.3	15/02/2017	1.9	SG		V								YES
4	D229	1.0-1.1	15/02/2017		SG		✓								YES
r	D229	0-0.1	15/02/2017		SG		V			-+-					YES
7	D229		15/02/2017		SG		✓								YES
7	D230	1.0-1.1 0-0.1	15/02/2017		SG		✓	V	1						YES
0'	D230	0.2-0.3	15/02/2017	9	SG		✓								YES
4	D230	1.0-1.1	15/02/2017	0.00	SG		✓							6	YES
10	D231	0-0.1	15/02/2017 15/02/2017		SG		✓	V	1		-				YES
:1	D231	0.2-0.3		-	SG										YES
12	D231	1.0-1.1	15/02/2017 15/02/2017		SG		√								YES
.3	D231		15/02/2017		SG		√	V	1						YES
	201	1.0-2.0		uished by	SG		✓	/	V						YES
	Name		Keiiriqi	Signature						F	Received by				YES
	JOHN XU			ix			Date	Nai Nai	me		Signatur	e		Dete	
egend.				J.			20/02/2017	Chan		ae	un		20/2/17	Date	
VG VP		le, glass bottle le, plastic bottle			SG :	Soil sampl	e (glass jar)		/	ample (plastic t	9		Purge & Trap		

Lemko PENRI	Place TH NSW 275	50		DEN		Box 880 SW 2751	Fax: (02) 4722 2700 2) 4722 6161							
TO: PH: ATTN:	SGS ENV UNIT 16 33 MADD	TRONMENTAL OX STREET DRIA NSW 201 400		FEN		02 8594		Sampling By: Project Manager:	S	S/JH X	Job No: Project: Location:	Page 12675/4 Googong NH1	2 A-7 & NH2	of	9
		Sampling de	tails		Samp	le type		1				_			
	Location	Depth (m)	Date	Time	Soil	Water		F	Results red	quired	by: Normal T	AT			
40	200						Heavy Metals As, Cd, Cr, Cu, Pb, Mn, Hg, Ni and Zn	рН	CEC						KEEP SAMPLE
14	D243	0-0.1	15/02/2017	A	SG		V								YES
15	D243	0.2-0.3	15/02/2017	-	SG		✓			107				+	YES
17	D243 D243	1.0-1.1	15/02/2017		SG		/							+	YES
18	D243	1.9-2.0	15/02/2017		SG		✓						_		YES
10	D244	0-0.1	15/02/2017	-	SG		✓							+	YES
	D244	0.2-0.3	15/02/2017		SG		√		10112231117						YES
20	D244 D245	1.0-1.1	15/02/2017	-	SG		√								YES
22	D245	0-0.1 0.2-0.3	15/02/2017	9	SG		√								YES
27	D245	1.0-1.1	15/02/2017		SG		√					1. 7			YES
24	D245	1.9-2.0	15/02/2017 15/02/2017	•	SG		√							1 - 1	YES
25	D246	0-0.1	15/02/2017		SG		V	✓	1						YES
26	D246	0.2-0.3	15/02/2017		SG		√								YES
27	D246	1.0-1.1	15/02/2017		SG		√								YES
	5240	1.0-1.1		uished by	SG		✓		V						YES
	Name		Kellilo	Signature		-	Date				Received by				1,20
	JOHN XU ix			ix		-	Date 20/02/2017		me		Signatu			Date	
egend:				J*			20/02/2017	Crosen			anny		20/2/7	@12	.15
VG VP	3.700	ple, glass bottle ple, plastic bottl			SG	Soil samp	ole (glass jar)		/	il sample (p	plastic bag)		Purge & Trap)	

Lemko	Place ITH NSW 275	0		PEN	P O RITH NS	Box 880	Fax: (02) 4722 2700 2) 4722 6161 fo@geotech.com.au			B 33			
TO: PH:	SGS ENVI UNIT 16 33 MADDO	IRONMENTAL OX STREET ORIA NSW 201			FAX:	02 8594		Sampling By: Project Manager:	SS/J	H Job No: Project: Location:	Page 12675/4 Googong NH1A	3 -7 & NH2	of	9
ATTN:	MS EMILY	YIN									70-20-2			
		Sampling de	tails		Samp	ole type								
	Location	Depth (m)	Date	Time	Soil	Water		F	Results requ	ired by: Normal	TAT			
37							Heavy Metals As, Cd, Cr, Cu, Pb, Mn, Hg, Ni and Zn	рН	CEC					KEEP SAMPLE
25	D247	0-0.1	15/02/2017	- 9.	SG		V							VEO
30	D247	0.2-0.3	15/02/2017	-6	SG	4-7-2	V		V		+			YES YES
31	D247	1.0-1.1	15/02/2017		SG		✓						1	YES
21	D247 D248	1.9-2.0	15/02/2017	•	SG		✓		1				-	YES
33	D248	0-0.1	15/02/2017		SG		√							YES
34	D248	0.2-0.3	15/02/2017		SG		✓	V	/				1	YES
31	D248 D249	1.0-1.1	15/02/2017	10.75	SG		✓						4-1-1	YES
36	D249	0-0.1	15/02/2017	*	SG		✓							YES
77	D249 D249	0.2-0.3	15/02/2017	- •	SG		✓		/				1	YES
38	D249 D259	1.0-1.1 0-0.1	15/02/2017	- *	SG		\		7					YES
9	D259	0.2-0.3	16/02/2017		SG		√							YES
40	D259	1.0-1.1	16/02/2017		SG		V		/					YES
41	D259	1.9-2.0	16/02/2017		SG		· /							YES
7/_	D239	1.9-2.0	16/02/2017	rulahad bu	SG		√		/					YES
-	Name		Reillic	uished by Signature		-	B.1			Received by			4	, 20
	JOHN XU	J		ix	_		Date 20/02/2017	Nai	me	Signat	ure		Date	
egend				JA			20/02/2017	Oven		any		0/2/19	001	215.
NG NP		ple, glass bottle ple, plastic bottle			SG	Soil samp	ole (glass jar)		,	ample (plastic bag)	* F	ourge & Trap)	

TO:	TH NSW 275	U			DITU NIC	141 2751	2.22.20, 50	2) 4722 6161				6			
PH: ATTN:	UNIT 16 33 MADDOX STREET ALEXANDRIA NSW 2015 : 02 8594 0400 TN: MS EMILY YIN Sampling details		SERVICES 5	PEN	RITH NS	02 8594		Sampling By: Project Manager:	SS/	/JH	Job No: Project: Location:	Page 12675/4 Googong NH1A	-7 & NH2	of	9
ATTIN,	WO CIVILT		tails		Samo	le type									
	Location	Depth (m)	Date	Time	Soil	Water		F	Results req	uired l	oy: Normal T	AT			
							Heavy Metals As, Cd, Cr, Cu, Pb, Mn, Hg, Ni and Zn	рН	CEC						KEEP SAMPLE
429345454 42945454	D263	0-0.1	15/02/2017	13.	SG		✓		I Lot of the			1		10.	YES
43	D263	0.2-0.3	15/02/2017	8	SG		√			- 18					YES
44	D264	0-0.1	15/02/2017		SG		√		/						YES
75	D264	0.2-0.3	15/02/2017	-	SG		√								YES
76	D265	0-0.1	15/02/2017	*	SG		√								YES
41	D265	0.2-0.3	15/02/2017		SG		√		1						YES
44	D265	1.0-1.1	15/02/2017	1+	SG		√								YES
	D271	0-0.1	16/02/2017	-	SG		√								YES
50	D271	0.2-0.3	16/02/2017		SG		√	A							YES
51	D271	1.0-1.1	16/02/2017	-	SG		· /	/	V						YES
53	D271	1.9-2.0	16/02/2017		SG		√	/	/						YES
	D272	0-0.1	16/02/2017	-	SG		√ .		/						YES
54	D272	0.2-0.3	16/02/2017	- 4	SG										YES
55	D272	0.7-0.8	16/02/2017		SG		✓		V						YES
	None		Reling	uished by							Received by			•	
	Name Signature JOHN XU ix					Date		ime		Signatu		,	Date		
Legend:						20/02/2017	Olver		-	any		20/2/17	C 12	.75	

Lemko PENRI	TH NSW 275	0		PEN	P O RITH NS	Box 880 W 2751	Fax: (02) 4722 2700 2) 4722 6161 nfo@geotech.com.au				Page	_	-4	
TO: PH:	UNIT 16 33 MADD	IRONMENTAL OX STREET PRIA NSW 201 400				02 8594		Sampling By: Project Manager:	SS	/JH	Job No: Project: Location:	Page 12675/4 Googong NH1A	5	of	9
ATTN:	MS EMILY	YIN									Location.	Googong NH IA	/ OK INFIZ		
13.13.13		Sampling de	tails		Samo	le type									
	Location	Depth (m)	Date	Time	Soil	Water		F	Results req	uired b	y: Normal T	AT			
							Heavy Metals As, Cd, Cr, Cu, Pb, Mn, Hg, Ni and Zn	рН	CEC						KEEP SAMPLE
56	D273	0-0.1	16/02/2017		SG		✓		1						YES
57	D273	0.2-0.3	16/02/2017	T. CYCL.	SG	1	✓					1		+	YES
5 Y	D273	1.0-1,1	16/02/2017		SG		✓								YES
20	D273	1.9-2.0	16/02/2017		SG				V				-	-	YES
61	D274 D274	0-0.1	16/02/2017		SG	3	✓				- 1				YES
62	D274	0.2-0.3	16/02/2017	-	SG		√							1	YES
65	D274 D275	1.0-1.1	16/02/2017	-	SG		✓		V						YES
65	D275	0-0.1 0.2-0.3	16/02/2017	-	SG		√								YES
5	D275	1.0-1.1	16/02/2017	-	SG		~			100					YES
16	D275	1.9-2.0	16/02/2017	-	SG		√								YES
3	D275	0-0.1	16/02/2017		SG		√		1						YES
	D276	0.2-0.3	16/02/2017	r û	SG		√		17-2-176-		11/1/ =				YES
9	D276	1.0-1.1	16/02/2017		SG		√								YES
4_	D210	1.0-1.1	16/02/2017	e de la constant	SG		✓								YES
	Name		Relind	uished by							Received by			1	120
	JOHN XI]	-	Signature			Date	Nar	me		Signatu	re		Date	
egend:							20/02/2017	owen			anny		1/2/02	701	2:15
NG NP		ole, glass bottle ole, plastic bottle			SG	Soil samp	ele (glass jar)			sample (pla	astic bag)	* P	urge & Trap		12

	TH NSW 275			PENI		Box 880 SW 2751	Fax: (0:	2) 4722 2700 2) 4722 6161 nfo@geotech.com.au				Dage			
TO:	UNIT 16 33 MADD	IRONMENTAL OX STREET ORIA NSW 201					onan. II	Sampling By:		SS/JH	Job No: Project:	Page 12675/4	6	of	9
PH: ATTN:	02 8594 0 MS EMIL				FAX:	02 8594	0499	Project Manager:		JX	Location:	Googong NH1	A-7 & NH2		
		Sampling de	tails		Samp	le type			_						
	Location	Depth (m)	Date	Time	Soil	Water		F	Results re	equired	by: Normal T	AT			
,							Heavy Metals As, Cd, Cr, Cu, Pb, Mn, Hg, Ni and Zn	рН	CEC						KEEP SAMPLE
10	D277	0-0.1	16/02/2017	140	SG		✓					1			YES
11	D277	0.2-0.3	16/02/2017	-	SG		✓		1						YES
YE	D277	1.0-1.1	16/02/2017	- 4	SG		✓								YES
15	D277	1.9-2.0	16/02/2017	9	SG		✓		1			1			YES
14	D278	0-0.1	16/02/2017		SG		✓								YES
75	D278	0.2-0.3	16/02/2017		SG		✓								YES
46	D278	1.0-1.1	16/02/2017		SG	-	✓		1					*	YES
11	D279	0-0.1	16/02/2017		SG		✓								YES
11	D279	0.2-0.3	16/02/2017	91	SG		✓								YES
11	D280	0-0.1	16/02/2017		SG		✓								YES
200	D280	0.2-0.3	16/02/2017		SG		✓		70						YES
81	D280	1.0-1.1	16/02/2017	(*)	SG	(A = 1.1)	✓								YES
82-	D281	0-0.1	16/02/2017	1	SG		✓						_	-	YES
93	D281	0.2-0.3	16/02/2017		SG		✓		1 2 3 7 1						YES
DT	D281	1.0-1.1	16/02/2017	- 4	SG		_								YES
			Reling	uished by							Received by				YES
	Name Signature				Date	Nai	me		Signatur	e T		Date	_		
_egend:	JOHN XU jx					20/02/2017	aver			any		20/2/1		:/=	
WG WP	Water sam	ple, glass bottle			SG	Soil samp	le (glass jar)			oil sample (p est required	0	*	Purge & Trap		-/>

Lemko Place PENRITH NSV	V 2750		PEN		Box 880 W 2751	Fax: (02) 4722 2700 ?) 4722 6161 fo@geotech.com.au			Page	-		
UNI 33 I ALE	S ENVIRONMENTAL T 16 MADDOX STREET EXANDRIA NSW 20						Sampling By:	SS/S	H Job No: Project:	12675/4	7	of	9
	3594 0400			FAX:	02 8594	0499	Project Manager:	JX	Location:	Googong NH	1A-7 & NH2		
ATTN. WIS	EMILY YIN Sampling de	ataile		1.0									
		lans		Samp	le type					- 1			
Locatio	n Depth (m)	Date	Time	Soil	Water			require requ	ired by: Normal	TAT			
§ 5 D282	201					Heavy Metals As, Cd, Cr, Cu, Pb, Mn, Hg, Ni and Zn	рН	CEC				1	KEEP SAMPLE
26 D282	0-0.1	16/02/2017		SG		✓				+	-	-	VEO
D282	0.2-0.3	16/02/2017	•0	SG	3	✓				+			YES
D282 D282 D283 D283	1.0-1.1	16/02/2017		SG		✓					-		YES
87 D283	0-0.1	17/02/2017		SG		✓					-		YES
D284	0.2-0.3	17/02/2017		SG		√		/			-	1000	YES
D284 D284 D285	0.2-0.3	17/02/2017	- 4	SG		✓							YES
D285	2000 - 0000 -	17/02/2017	1.01	SG		√						1	YES
3 D285	0-0.1	17/02/2017		SG		√				-	-	-	YES
74 D285	0.2-0.3	17/02/2017	-	SG		✓						-	YES
75 D285	1.0-1.1	17/02/2017		SG		✓						-	YES
D286	1.9-2.0	17/02/2017	- *	SG		✓						-	YES
D286	0-0.1	17/02/2017	0.00	SG		✓		1/2				-	YES
D286	0.2-0.3	17/02/2017	-	SG		✓							YES
D200	1.0-1.1	17/02/2017	1.0	SG		✓		1				-	YES
<u> </u>	lame I	Reling	uished by						Received by				YES
	HN XU		Signature			Date	Nar	ne	Signate	ire		Data	
egend:	r sample, glass bottle		jx	20	0.11	20/02/2017	aven		augos	,,,,	20/2/17	Date	
	r sample, plastic bottl			SG	Soil samp	le (glass jar)		,	imple (plastic bag) equired		* Purge & Trap)	

	NSW 2750 SGS ENVIRONI	MENTAL	SERVICES	PEN	RITH NS	Box 880 W 2751) 4722 6161 fo@geotech.com.au				Page	8	of	9
1 3 A	UNIT 16 33 MADDOX ST ALEXANDRIA 1	TREET						Sampling By:	S	SS/JH	Job No: Project:	12675/4			
	02 8594 0400				FAX:	02 8594	0499	Project Manager:	J.	X	Location:	Googong NH1	A-7 & NH2		
TTN: A	MS EMILY YIN San	npling de	tails		Samo	le type									
Loca		epth (m)	Date	Time	Soil	Water		F	Results re	quired	by: Normal 1	AT			
							Heavy Metals As, Cd, Cr, Cu, Pb, Mn, Hg, Ni and Zn	рН	CEC						KEEP SAMPLE
7 D2		0-0.1	17/02/2017	-	SG	(=_=]	V							-	YES
D2		0.2-0.3	17/02/2017		SG		✓								YES
D28		1,0-1,1	17/02/2017		SG		✓								YES
D28		1.9-2.0	17/02/2017		SG		✓								YES
05 D28		0-0.1	17/02/2017	-	SG		√								YES
07 D28		0.2-0.3	17/02/2017	-	SG		√								YES
D28	N/A	0.6-0.7	17/02/2017		SG		√	✓	/						YES
AL.		0-0.1	17/02/2017		SG		√								YES
D28		0.2-0.3	17/02/2017		SG		√								YES
D28		0.5-0.6 1.0-1.1	17/02/2017		SG		<i></i>								YES
	The state of the s	0-0.1	17/02/2017 17/02/2017		SG			√	/				-		YES
D29		0.2-0.3	17/02/2017		SG SG										YES
2 D29		1.0-1.1	17/02/2017	-	SG ·										YES
DZ:		1.0-1.1		uished by	36		y	· ·	/						YES
						Date	Ala.	m a		Received by					
	JOHN XU jx 20/02/2013							Plan	me			re	30/21		177
gend:				Je			ZOIOZIZOTI	- Cour			(Surply)		20/2/17	10 /2	:15
G W	Name Signature JOHN XU jx 20							Aver	SP So	oil sample	Signatu (plastic bag)			/	Date P/2/17 @ 12 ne & Trap

Lemko Place PENRITH NSW 2750	0		PENF	P O RITH NS	Box 880 W 2751	Fax: (02	4722 2700) 4722 6161 fo@geotech.com.au				Page	9 o	f 9
UNIT 16 33 MADDO	RONMENTAL DX STREET RIA NSW 201			FAX:	02 8594		Sampling By: Project Manager:		SS/JH JX	Job No: Project: Location:	12675/4 Googong NH1A-7 &		COC 2
ATTN: MS EMILY													
	Sampling de	tails		Samp	le type		-						
Location	Depth (m)	Date	Time	Soil	Water			kesuits re	equirea	by: Normal T	AI		
-						Heavy Metals As, Cd, Cr, Cu, Pb, Mn, Hg, Ni and Zn	рН	CEC					KEEP SAMPLE
Duplicate DS8		17/02/2017	B. Office	SG	1	· /							YES
114 Duplicate DS9		17/02/2017		SG		√							YES
115 Duplicate DS10		17/02/2017	7	SG		√							YES
Duplicate DS11		17/02/2017	1.00	SG		✓		1112 - 1					YES
113 Duplicate DS12		16/02/2017		SG		✓		7111					YES
Duplicate DS13		16/02/2017	*	SG		√							YES
ng Duplicate DS14		16/02/2017	-	SG		✓							YES
Duplicate DS15		16/02/2017		SG		√							YES
Rinsate RS3		15/02/2017		SG		<u> </u>				1			YES
Rinsate RS4		16/02/2017	-	SG		✓				- 4			YES
123 Rinsate RS5		17/02/2017	14	SG		√					4		YES
										1 1			
								J 1/2 15					
		Relino	quished by							Received by			
Name			Signature	k		Date	Na	ime		Signatu	re	Dat	ρ.
	JOHN XU jx				20/02/2017	aren	10/00/		out	26	12/17 62		
	ple, glass bottle ple, plastic bott			SG	Soil sam	ple (glass jar)		,	Soil sample est required	(plastic bag)		e & Trap	

CLIENT DETAILS

LABORATORY DETAILS

Contact John Xu

Client Geotechnique Address P.O. Box 880

P.O. Box 880 PENRITH NSW 2751 Manager Huong Crawford

Laboratory SGS Alexandria Environmental

Address Unit 16, 33 Maddox St

Alexandria NSW 2015

+61 2 8594 0400

Telephone 02 4722 2700 Telephone

Facsimile 02 4722 6161 Facsimile +61 2 8594 0499

Email john.xu@geotech.com.au Email au.environmental.sydney@sgs.com

Project 12675-4 Goongong NH1A-7 & NH2 Samples Received Mon 20/2/2017
Order Number (Not specified) Report Due Mon 27/2/2017

Samples 123 SGS Reference SE162178

SUBMISSION DETAILS

COMMENTS -

This is to confirm that 123 samples were received on Monday 20/2/2017. Results are expected to be ready by Monday 27/2/2017. Please quote SGS reference SE162178 when making enquiries. Refer below for details relating to sample integrity upon receipt.

Samples clearly labelled
Yes
Complete documentation received
Yes
Sample container provider
SGS
Sample cooling method
Ice Bricks
Samples received in correct containers
Yes
Sample counts by matrix
120 Soil, 3 Water

Date documentation received 20/2/2017 Type of documentation received COC
Samples received in good order Yes Samples received without headspace Yes
Sample temperature upon receipt 17.0°C Sufficient sample for analysis Yes
Turnaround time requested Standard

Unless otherwise instructed, water and bulk samples will be held for one month from date of report, and soil samples will be held for two months.

This document is issued by the Company under its General Conditions of Service accessible at www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia Australia t +61 2 8594 0400 f +61 2 8594 0499 www.sgs.com.au

CLIENT DETAILS -

Client Geotechnique

Project 12675-4 Goongong NH1A-7 & NH2

- SUMMARY OF ANALYSIS

No.	Sample ID	Exchangeable Cations and Cation Exchange Capacity	Mercury in Soil	Moisture Content	pH in soil (1:5)	Total Recoverable Metals in Soil/Waste
001	D226 0.0-0.1	13	1	1	-	8
002	D226 0.2-0.3	-	1	1	-	8
003	D226 1.0-1.1	13	1	1	-	8
004	D229 0.0-0.1	-	1	1	-	8
005	D229 0.2-0.3	-	1	1	-	8
006	D229 1.0-1.1	13	1	1	1	8
007	D230 0.0-0.1	-	1	1	-	8
008	D230 0.2-0.3	-	1	1	-	8
009	D230 1.0-1.1	13	1	1	1	8
010	D231 0.0-0.1	-	1	1	-	8
011	D231 0.2-0.3	-	1	1	-	8
012	D231 1.0-1.1	13	1	1	1	8
013	D231 1.9-2.0	13	1	1	1	8
014	D243 0.0-0.1	-	1	1	-	8
015	D243 0.2-0.3	-	1	1	-	8
016	D243 1.0-1.1	-	1	1	-	8
017	D243 1.9-2.0	-	1	1	-	8
018	D244 0.0-0.1	-	1	1	-	8
019	D244 0.2-0.3	-	1	1	-	8
020	D244 1.0-1.1	-	1	1	-	8
021	D245 0.0-0.1	-	1	1	-	8
022	D245 0.2-0.3	-	1	1	-	8
023	D245 1.0-1.1	-	1	1	-	8
024	D245 1.9-2.0	13	1	1	1	8

_ CONTINUED OVERLEAF

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document.

The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details.

Testing as per this table shall commence immediately unless the client intervenes with a correction .

CLIENT DETAILS -

Client Geotechnique

Project 12675-4 Goongong NH1A-7 & NH2

- SUMMARY OF ANALYSIS

No.	Sample ID	Exchangeable Cations and Cation Exchange Capacity	Mercury in Soil	Moisture Content	pH in soil (1:5)	Total Recoverable Metals in Soil/Waste
025	D246 0.0-0.1	-	1	1	-	8
026	D246 0.2-0.3	-	1	1	-	8
027	D246 1.0-1.1	13	1	1	-	8
028	D247 0.0-0.1	-	1	1	-	8
029	D247 0.2-0.3	13	1	1	-	8
030	D247 1.0-1.1	-	1	1	-	8
031	D247 1.9-2.0	13	1	1	-	8
032	D248 0.0-0.1	-	1	1	-	8
033	D248 0.2-0.3	13	1	1	1	8
034	D248 1.0-1.1	-	1	1	-	8
035	D249 0.0-0.1	-	1	1	-	8
036	D249 0.2-0.3	13	1	1	-	8
037	D249 1.0-1.1	13	1	1	-	8
038	D259 0.0-0.1	-	1	1	-	8
039	D259 0.2-0.3	13	1	1	-	8
040	D259 1.0-1.1	-	1	1	-	8
041	D259 1.9-2.0	13	1	1	-	8
042	D263 0.0-0.1	-	1	1	-	8
043	D263 0.2-0.3	13	1	1	-	8
044	D264 0.0-0.1	13	1	1	-	8
045	D264 0.2-0.3	-	1	1	-	8
046	D265 0.0-0.1	-	1	1	-	8
047	D265 0.2-0.3	13	1	1	-	8
048	D265 1.0-1.1	-	1	1	-	8

_ CONTINUED OVERLEAF

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document.

The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details.

Testing as per this table shall commence immediately unless the client intervenes with a correction .

CLIENT DETAILS -

Client Geotechnique

Project 12675-4 Goongong NH1A-7 & NH2

- SUMMARY OF ANALYSIS

No.	Sample ID	Exchangeable Cations and Cation Exchange Capacity	Mercury in Soil	Moisture Content	pH in soil (1:5)	Total Recoverable Metals in Soil/Waste
049	D271 0.0-0.1	-	1	1	-	8
050	D271 0.2-0.3	-	1	1	-	8
051	D271 1.0-1.1	13	1	1	1	8
052	D271 1.9-2.0	13	1	1	1	8
053	D272 0.0-0.1	13	1	1	-	8
054	D272 0.2-0.3	-	1	1	-	8
055	D272 0.7-0.8	13	1	1	-	8
056	D273 0.0-0.1	13	1	1	-	8
057	D273 0.2-0.3	-	1	1	-	8
058	D273 1.0-1.1	-	1	1	-	8
059	D273 1.9-2.0	13	1	1	-	8
060	D274 0.0-0.1	-	1	1	-	8
061	D274 0.2-0.3	-	1	1	-	8
062	D274 1.0-1.1	13	1	1	-	8
063	D275 0.0-0.1	-	1	1	-	8
064	D275 0.2-0.3	-	1	1	-	8
065	D275 1.0-1.1	-	1	1	-	8
066	D275 1.9-2.0	13	1	1	-	8
067	D276 0.0-0.1	-	1	1	-	8
068	D276 0.2-0.3	-	1	1	-	8
069	D276 1.0-1.1	-	1	1	-	8
070	D277 0.0-0.1	-	1	1	-	8
071	D277 0.2-0.3	13	1	1	-	8
072	D277 1.0-1.1	-	1	1	-	8

_ CONTINUED OVERLEAF

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document.

The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details.

Testing as per this table shall commence immediately unless the client intervenes with a correction .

CLIENT DETAILS -

Client Geotechnique

Project 12675-4 Goongong NH1A-7 & NH2

- SUMMARY OF ANALYSIS

No.	Sample ID	Exchangeable Cations and Cation Exchange Capacity	Mercury in Soil	Moisture Content	Total Recoverable Metals in Soil/Waste
073	D277 1.9-2.0	13	1	1	8
074	D278 0.0-0.1	-	1	1	8
075	D278 0.2-0.3	-	1	1	8
076	D278 1.0-1.1	13	1	1	8
077	D279 0.0-0.1	-	1	1	8
078	D279 0.2-0.3	-	1	1	8
079	D280 0.0-0.1	-	1	1	8
080	D280 0.2-0.3	-	1	1	8
081	D280 1.0-1.1	-	1	1	8
082	D281 0.0-0.1	-	1	1	8
083	D281 0.2-0.3	-	1	1	8
084	D281 1.0-1.1	-	1	1	8
085	D282 0.0-0.1	-	1	1	8
086	D282 0.2-0.3	-	1	1	8
087	D282 1.0-1.1	-	1	1	8
088	D283 0.0-0.1	-	1	1	8
089	D283 0.2-0.3	13	1	1	8
090	D284 0.0-0.1	-	1	1	8
091	D284 0.2-0.3	-	1	1	8
092	D285 0.0-0.1	-	1	1	8
093	D285 0.2-0.3	-	1	1	8
094	D285 1.0-1.1	-	1	1	8
095	D285 1.9-2.0	-	1	1	8
096	D286 0.0-0.1	-	1	1	8

_ CONTINUED OVERLEAF

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document.

The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details.

Testing as per this table shall commence immediately unless the client intervenes with a correction .

CLIENT DETAILS -

Client Geotechnique

Project 12675-4 Goongong NH1A-7 & NH2

- SUMMARY OF ANALYSIS

No.	Sample ID	Exchangeable Cations and Cation Exchange Capacity	Mercury in Soil	Moisture Content	pH in soil (1:5)	Total Recoverable Metals in Soil/Waste
097	D286 0.2-0.3	-	1	1	-	8
098	D286 1.0-1.1	13	1	1	-	8
099	D287 0.0-0.1	-	1	1	-	8
100	D287 0.2-0.3	-	1	1	-	8
101	D287 1.0-1.1	-	1	1	-	8
102	D287 1.9-2.0	-	1	1	-	8
103	D288 0.0-0.1	-	1	1	-	8
104	D288 0.2-0.3	-	1	1	-	8
105	D288 0.6-0.7	13	1	1	1	8
106	D289 0.0-0.1	-	1	1	-	8
107	D289 0.2-0.3	-	1	1	-	8
108	D289 0.5-0.6	-	1	1	-	8
109	D289 1.0-1.1	13	1	1	1	8
110	D290 0.0-0.1	-	1	1	-	8
111	D290 0.2-0.3	-	1	1	-	8
112	D290 1.0-1.1	13	1	1	1	8
113	Duplicate DS8	-	1	1	-	8
114	Duplicate DS9	-	1	1	-	8
115	Duplicate DS10	-	1	1	-	8
116	Duplicate DS11	-	1	1	-	8
117	Duplicate DS12	-	1	1	-	8
118	Duplicate DS13	-	1	1	-	8
119	Duplicate DS14	-	1	1	-	8
120	Duplicate DS15	-	1	1	-	8

_ CONTINUED OVERLEAF

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document.

The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details.

Testing as per this table shall commence immediately unless the client intervenes with a correction .

_ CLIENT	DETAILS		
Client	Geotechnique	Project	12675-4 Goongong NH1A-7 & NH2

STIMMARY	OF ANALYSIS — — — — — — — — — — — — — — — — — —		
SOMMAKI	OI ANALISIS -		
		Mercury (dissolved) in Water	Metals in Water (Dissolved) by ICPOES
No.	Sample ID	2 >	25
121	Rinsate RS3	1	8
122	Rinsate RS4	1	8
123	Rinsate RS5	1	8

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document.

17/05/2017 Page 7 of 7

The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details.

Testing as per this table shall commence immediately unless the client intervenes with a correction .

ANALYTICAL REPORT

CLIENT DETAILS

Address

LABORATORY DETAILS

Contact John Xu
Client Geotechnique

PENRITH NSW 2751

P.O. Box 880

Manager Huong Crawford

Laboratory SGS Alexandria Environmental Address Unit 16, 33 Maddox St

Alexandria NSW 2015

 Telephone
 02 4722 2700
 Telephone
 +61 2 8594 0400

 Facsimile
 02 4722 6161
 Facsimile
 +61 2 8594 0499

Email john.xu@geotech.com.au Email au.environmental.sydney@sgs.com

Project 12675-4 Goongong NH1A-7 & NH2 SGS Reference SE162178A R0
Order Number (Not specified) Date Received 7/3/2017

Samples 123 Date Reported 13/3/2017

COMMENTS

Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562(4354).

SIGNATORIES

Bennet Lo

Senior Organic Chemist/Metals Chemist

Shane McDermott

Senior Laboratory Technician

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015

Australia Australia t +61 2 8594 0400 f +61 2 8594 0499 www.sgs.com.au

ANALYTICAL RESULTS

SE162178A R0

pH in soil (1:5) [AN101] Tested: 9/3/2017

			D259 0.0-0.1	D259 1.9-2.0	D285 0.0-0.1	D288 0.0-0.1	D290 0.0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
							- 1
			16/2/2017			17/2/2017	17/2/2017
PARAMETER	UOM	LOR	SE162178A.038	SE162178A.041	SE162178A.092	SE162178A.103	SE162178A.110
рН	pH Units	-	6.2	8.7	5.6	6.4	5.7

13/03/2017 Page 2 of 5

ANALYTICAL RESULTS

Exchangeable Cations and Cation Exchange Capacity (CEC/ESP/SAR) [AN122] Tested: 9/3/2017

			D259 0.0-0.1	D271 0.2-0.3	D278 0.0-0.1	D280 0.0-0.1	D280 0.2-0.3
			SOIL - 16/2/2017	SOIL - 16/2/2017	SOIL - 16/2/2017	SOIL - 16/2/2017	SOIL - 16/2/2017
PARAMETER	UOM	LOR	SE162178A.038	SE162178A.050	SE162178A.074	SE162178A.079	SE162178A.080
Exchangeable Sodium, Na	mg/kg	2	76	36	21	15	25
Exchangeable Sodium, Na	meq/100g	0.01	0.33	0.15	0.09	0.06	0.11
Exchangeable Sodium Percentage*	%	0.1	4.0	2.0	0.9	1.0	1.0
Exchangeable Potassium, K	mg/kg	2	61	49	180	120	110
Exchangeable Potassium, K	meq/100g	0.01	0.16	0.13	0.47	0.30	0.29
Exchangeable Potassium Percentage*	%	0.1	1.9	1.6	4.4	4.6	2.7
Exchangeable Calcium, Ca	mg/kg	2	760	950	1500	890	810
Exchangeable Calcium, Ca	meq/100g	0.01	3.8	4.7	7.5	4.4	4.0
Exchangeable Calcium Percentage*	%	0.1	46.9	61.4	71.7	66.6	37.3
Exchangeable Magnesium, Mg	mg/kg	2	470	330	290	230	780
Exchangeable Magnesium, Mg	meq/100g	0.02	3.8	2.7	2.4	1.8	6.4
Exchangeable Magnesium Percentage*	%	0.1	47.1	35.0	22.9	27.8	59.1
Cation Exchange Capacity	meq/100g	0.02	8.1	7.7	10	6.6	11

			D280 1.0-1.1	D281 0.0-0.1	D281 0.2-0.3	D282 0.0-0.1	D284 0.2-0.3
			SOIL - 16/2/2017	SOIL - 16/2/2017	SOIL - 16/2/2017	SOIL - 16/2/2017	SOIL - 17/2/2017
PARAMETER	UOM	LOR	SE162178A.081	SE162178A.082	SE162178A.083	SE162178A.085	SE162178A.091
Exchangeable Sodium, Na	mg/kg	2	33	17	24	23	21
Exchangeable Sodium, Na	meq/100g	0.01	0.14	0.07	0.10	0.10	0.09
Exchangeable Sodium Percentage*	%	0.1	1.0	1.8	2.1	1.5	2.4
Exchangeable Potassium, K	mg/kg	2	130	76	37	63	32
Exchangeable Potassium, K	meq/100g	0.01	0.33	0.19	0.10	0.16	0.08
Exchangeable Potassium Percentage*	%	0.1	2.4	4.8	2.0	2.4	2.1
Exchangeable Calcium, Ca	mg/kg	2	740	350	160	780	230
Exchangeable Calcium, Ca	meq/100g	0.01	3.7	1.7	0.81	3.9	1.1
Exchangeable Calcium Percentage*	%	0.1	26.6	43.0	16.9	57.8	28.9
Exchangeable Magnesium, Mg	mg/kg	2	1200	250	460	320	320
Exchangeable Magnesium, Mg	meq/100g	0.02	9.8	2.0	3.8	2.6	2.6
Exchangeable Magnesium Percentage*	%	0.1	70.0	50.3	79.0	38.3	66.6
Cation Exchange Capacity	meq/100g	0.02	14	4.0	4.8	6.7	4.0

			D285 0.0-0.1	D287 0.2-0.3	D288 0.0-0.1	D289 0.0-0.1	D289 0.5-0.6
			SOIL - 17/2/2017	SOIL - 17/2/2017	SOIL - 17/2/2017	SOIL - 17/2/2017	SOIL - 17/2/2017
PARAMETER	UOM	LOR	SE162178A.092	SE162178A.100	SE162178A.103	SE162178A.106	SE162178A.108
Exchangeable Sodium, Na	mg/kg	2	11	15	24	18	54
Exchangeable Sodium, Na	meq/100g	0.01	0.05	0.06	0.10	0.08	0.23
Exchangeable Sodium Percentage*	%	0.1	0.8	1.2	0.9	1.2	1.5
Exchangeable Potassium, K	mg/kg	2	190	74	65	110	81
Exchangeable Potassium, K	meq/100g	0.01	0.48	0.19	0.17	0.29	0.21
Exchangeable Potassium Percentage*	%	0.1	7.3	3.6	1.4	4.3	1.3
Exchangeable Calcium, Ca	mg/kg	2	860	660	1200	690	250
Exchangeable Calcium, Ca	meq/100g	0.01	4.3	3.3	6.0	3.4	1.2
Exchangeable Calcium Percentage*	%	0.1	65.9	62.3	51.9	50.9	8.0
Exchangeable Magnesium, Mg	mg/kg	2	210	210	650	360	1700
Exchangeable Magnesium, Mg	meq/100g	0.02	1.7	1.7	5.3	3.0	14
Exchangeable Magnesium Percentage*	%	0.1	26.0	32.9	45.8	43.7	89.2
Cation Exchange Capacity	meq/100g	0.02	6.5	5.3	12	6.8	16

13/03/2017 Page 3 of 5

ANALYTICAL RESULTS

Exchangeable Cations and Cation Exchange Capacity (CEC/ESP/SAR) [AN122] Tested: 9/3/2017 (continued)

PARAMETER	иом	LOR	D290 0.0-0.1 SOIL
Exchangeable Sodium, Na	mg/kg	2	12
Exchangeable Sodium, Na	meq/100g	0.01	0.05
Exchangeable Sodium Percentage*	%	0.1	0.9
Exchangeable Potassium, K	mg/kg	2	190
Exchangeable Potassium, K	meq/100g	0.01	0.48
Exchangeable Potassium Percentage*	%	0.1	8.2
Exchangeable Calcium, Ca	mg/kg	2	870
Exchangeable Calcium, Ca	meq/100g	0.01	4.4
Exchangeable Calcium Percentage*	%	0.1	74.3
Exchangeable Magnesium, Mg	mg/kg	2	120
Exchangeable Magnesium, Mg	meq/100g	0.02	0.97
Exchangeable Magnesium Percentage*	%	0.1	16.5
Cation Exchange Capacity	meq/100g	0.02	5.9

13/03/2017 Page 4 of 5

METHOD SUMMARY

SE162178A R0

METHOD -

METHODOLOGY SUMMARY -

AN101

pH in Soil Sludge Sediment and Water: pH is measured electrometrically using a combination electrode and is calibrated against 3 buffers purchased commercially. For soils, sediments and sludges, an extract with water (or 0.01M CaCl2) is made at a ratio of 1:5 and the pH determined and reported on the extract. Reference APHA 4500-H+.

AN122

Exchangeable Cations, CEC and ESP: Soil sample is extracted in 1M Ammonium Acetate at pH=7 (or 1M Ammonium Chloride at pH=7) with cations (Na, K, Ca & Mg) then determined by ICP OES/ICP MS and reported as Exchangeable Cations. For saline soils, these results can be corrected for water soluble cations and reported as Exchangeable cations in meq/100g or soil can be pre-treated (aqueous ethanol/aqueous glycerol) prior to extraction. Cation Exchange Capacity (CEC) is the sum of the exchangeable cations in meq/100g.

AN122

The Exchangeable Sodium Percentage (ESP) is calculated as the exchangeable sodium divided by the CEC (all in meg/100g) times 100.

ESP can be used to categorise the sodicity of the soil as below:

ESP < 6% non-sodic ESP 6-15% sodic ESP >15% strongly sodic

Method is refernced to Rayment and Higginson, 1992, sections 15D3 and 15N1.-

FOOTNOTES -

Not analysed. UOM NATA accreditation does not cover Unit of Measure. NVL LOR Limit of Reporting. the performance of this service. Not validated. Raised/lowered Limit of Indicative data, theoretical holding Insufficient sample for analysis. IS ↑↓ time exceeded. LNR Sample listed, but not received. Reporting.

Samples analysed as received.

Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the \pm sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/en/terms-and-conditions. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein

Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full.

13/03/2017 Page 5 of 5

STATEMENT OF QA/QC **PERFORMANCE**

CLIENT DETAILS LABORATORY DETAILS

John Xu **Huong Crawford** Manager Contact

Geotechnique SGS Alexandria Environmental Client Laboratory Address P.O. Box 880 Unit 16, 33 Maddox St

Address PENRITH NSW 2751 Alexandria NSW 2015

02 4722 2700 Telephone +61 2 8594 0400 Telephone

02 4722 6161 +61 2 8594 0499 Facsimile Facsimile

john.xu@geotech.com.au au.environmental.sydney@sgs.com Fmail Email

12675-4 Goongong NH1A-7 & NH2 SE162178A R0 SGS Reference Project 07 Mar 2017 (Not specified) Date Received Order Number

13 Mar 2017 123 Date Reported Samples

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document and was supplied by the Client.

This QA/QC Statement must be read in conjunction with the referenced Analytical Report.

The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met with the exception of the following:

Extraction Date pH in soil (1:5) 5 items

SAMPLE SUMMARY

Samples clearly labelled Sample container provider Samples received in correct containers Date documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested

Yes SGS Yes 7/3/17@1.30pm

17.0°C

Sample cooling method Sample counts by matrix Type of documentation received Samples received without headspace Sufficient sample for analysis Standard

Yes Ice Bricks 17 Soils COC Yes Yes

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015

Complete documentation received

Australia Australia t +61 2 8594 0400 f+61 2 8594 0499 www.sgs.com.au

Member of the SGS Group

HOLDING TIME SUMMARY

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Exchangeable Cations and Cation Exchange Capacity (CEC/ESP/SAR)

Method: ME-(AU)-[ENV]AN122

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
D259 0.0-0.1	SE162178A.038	LB120105	16 Feb 2017	07 Mar 2017	16 Mar 2017	09 Mar 2017	16 Mar 2017	13 Mar 2017
D271 0.2-0.3	SE162178A.050	LB120105	16 Feb 2017	07 Mar 2017	16 Mar 2017	09 Mar 2017	16 Mar 2017	13 Mar 2017
D278 0.0-0.1	SE162178A.074	LB120105	16 Feb 2017	07 Mar 2017	16 Mar 2017	09 Mar 2017	16 Mar 2017	13 Mar 2017
D280 0.0-0.1	SE162178A.079	LB120105	16 Feb 2017	07 Mar 2017	16 Mar 2017	09 Mar 2017	16 Mar 2017	13 Mar 2017
D280 0.2-0.3	SE162178A.080	LB120105	16 Feb 2017	07 Mar 2017	16 Mar 2017	09 Mar 2017	16 Mar 2017	13 Mar 2017
D280 1.0-1.1	SE162178A.081	LB120105	16 Feb 2017	07 Mar 2017	16 Mar 2017	09 Mar 2017	16 Mar 2017	13 Mar 2017
D281 0.0-0.1	SE162178A.082	LB120105	16 Feb 2017	07 Mar 2017	16 Mar 2017	09 Mar 2017	16 Mar 2017	13 Mar 2017
D281 0.2-0.3	SE162178A.083	LB120105	16 Feb 2017	07 Mar 2017	16 Mar 2017	09 Mar 2017	16 Mar 2017	13 Mar 2017
D282 0.0-0.1	SE162178A.085	LB120105	16 Feb 2017	07 Mar 2017	16 Mar 2017	09 Mar 2017	16 Mar 2017	13 Mar 2017
D284 0.2-0.3	SE162178A.091	LB120105	17 Feb 2017	07 Mar 2017	17 Mar 2017	09 Mar 2017	17 Mar 2017	13 Mar 2017
D285 0.0-0.1	SE162178A.092	LB120105	17 Feb 2017	07 Mar 2017	17 Mar 2017	09 Mar 2017	17 Mar 2017	13 Mar 2017
D287 0.2-0.3	SE162178A.100	LB120105	17 Feb 2017	07 Mar 2017	17 Mar 2017	09 Mar 2017	17 Mar 2017	13 Mar 2017
D288 0.0-0.1	SE162178A.103	LB120105	17 Feb 2017	07 Mar 2017	17 Mar 2017	09 Mar 2017	17 Mar 2017	13 Mar 2017
D289 0.0-0.1	SE162178A.106	LB120105	17 Feb 2017	07 Mar 2017	17 Mar 2017	09 Mar 2017	17 Mar 2017	13 Mar 2017
D289 0.5-0.6	SE162178A.108	LB120105	17 Feb 2017	07 Mar 2017	17 Mar 2017	09 Mar 2017	17 Mar 2017	13 Mar 2017
D290 0.0-0.1	SE162178A.110	LB120105	17 Feb 2017	07 Mar 2017	17 Mar 2017	09 Mar 2017	17 Mar 2017	13 Mar 2017

pH in soil (1:5)

Method: ME-(AU)-[ENV]AN101

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
D259 0.0-0.1	SE162178A.038	LB120061	16 Feb 2017	07 Mar 2017	23 Feb 2017	09 Mar 2017†	10 Mar 2017	09 Mar 2017
D259 1.9-2.0	SE162178A.041	LB120061	16 Feb 2017	07 Mar 2017	23 Feb 2017	09 Mar 2017†	10 Mar 2017	09 Mar 2017
D285 0.0-0.1	SE162178A.092	LB120061	17 Feb 2017	07 Mar 2017	24 Feb 2017	09 Mar 2017†	10 Mar 2017	09 Mar 2017
D288 0.0-0.1	SE162178A.103	LB120061	17 Feb 2017	07 Mar 2017	24 Feb 2017	09 Mar 2017†	10 Mar 2017	09 Mar 2017
D290 0.0-0.1	SE162178A.110	LB120061	17 Feb 2017	07 Mar 2017	24 Feb 2017	09 Mar 2017†	10 Mar 2017	09 Mar 2017

13/3/2017 Page 2 of 9

SURROGATES

SE162178A R0

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No surrogates were required for this job.

13/3/2017 Page 3 of 9

METHOD BLANKS

SE162178A R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Exchangeable Cations and Cation Exchange Capacity (CEC/ESP/SAR)

Method: ME-(AU)-[ENV]AN122

ample Number Parameter Units LOR

13/3/2017 Page 4 of 9

DUPLICATES

SE162178A R0

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

pH in soil (1:5) Method: ME-(AU)-[ENV]AN101

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE162729.001	LB120061.014	pH	pH Units	-	5.7	5.7	32	0
SE162762.007	LB120061.025	pH	pH Units	-	5.7	5.7	32	0

13/3/2017 Page 5 of 9

LABORATORY CONTROL SAMPLES

SE162178A R0

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Exchangeable Cations and Cation Exchange Capacity (CEC/ESP/SAR)

Method: ME-(AU)-[ENV]AN122

Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB120105.002	Exchangeable Sodium, Na	mg/kg	2	NA	390	80 - 120	92
	Exchangeable Potassium, K	mg/kg	2	NA	343	80 - 120	90
	Exchangeable Calcium, Ca	mg/kg	2	NA	2570	80 - 120	91
	Exchangeable Magnesium, Mg	mg/kg	2	NA	635	80 - 120	89

pH in soil (1:5)

Method: ME-(AU)-[ENV]AN101

Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB120061.003	рН	pH Units	-	7.4	7.415	98 - 102	100

13/3/2017 Page 6 of 9

MATRIX SPIKES

SE162178A R0

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spikes were required for this job.

13/3/2017 Page 7 of 9

MATRIX SPIKE DUPLICATES

SE162178A R0

Matrix spike duplicates are calculated as Relative Percent Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spike duplicates were required for this job.

13/3/2017 Page 8 of 9

FOOTNOTES

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover tthe performance of this service .
- Sample not analysed for this analyte.

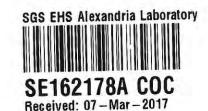
IS Insufficient sample for analysis.

LNR Sample listed, but not received.

LOR Limit of reporting.

QFH QC result is above the upper tolerance.
QFL QC result is below the lower tolerance.

- ① At least 2 of 3 surrogates are within acceptance criteria.
- ② RPD failed acceptance criteria due to sample heterogeneity.
- 3 Results less than 5 times LOR preclude acceptance criteria for RPD.
- Recovery failed acceptance criteria due to matrix interference.
- ® Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- © LOR was raised due to sample matrix interference.
- ① LOR was raised due to dilution of significantly high concentration of analyte in sample.
- ® Reanalysis of sample in duplicate confirmed sample heterogeneity and inconsistency of results.
- Recovery failed acceptance criteria due to sample heterogeneity.
- © LOR was raised due to high conductivity of the sample (required dilution).
- † Refer to Analytical Report comments for further information.


This document is issued, on the Client's behalf, by the Company under its General Conditions of Service, available on request and accessible at http://www.sqs.com/en/terms-and-conditions. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained herein reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This test report shall not be reproduced, except in full.

13/3/2017 Page 9 of 9

GEOTECHNIQUE PTY I TO

Laboratory Test Request / Unain of Custody Record

Tel: (02) 4722 2700 Lemko Place P O Box 880 Fax: (02) 4722 6161 PENRITH NSW 2750 Page of 2 PENRITH NSW 2751 email: info@geotech.com.au SGS ENVIRONMENTAL SERVICES SS/JH Job No: 12675/4 Sampling By: UNIT 16 33 MADDOX STREET Project: **ALEXANDRIA NSW 2015** PH: 02 8594 0400 FAX: 02 8594 0499 Project Manager: JX Location: Googong NH1A-7 & NH2 ATTN: MS EMILY YIN Sampling details Sample type Results required by: Monday 13/03/2017 (Normal TAT) Location Water Depth (m) Date Time Soil SGS Ref. SE162178 KEEP CEC pH SAMPLE D259 0-0.1 16/02/2017 SG YES D259 1.9-2.0 16/02/2017 SG YES 50 D271 0.2-0.3 16/02/2017 SG YES D278 0-0.1 16/02/2017 SG YES 29 D280 0-0.1 16/02/2017 SG YES D280 0.2-0.3 16/02/2017 SG YES ~ D280 1.0-1.1 16/02/2017 SG YES D281 0-0.1 16/02/2017 SG YES D281 0.2-0.3 16/02/2017 SG YES D282 1 0-0.1 16/02/2017 SG YES D284 0.2-0.3 SG YES 17/02/2017 D285 0-0.1 17/02/2017 SG YES D287 0.2-0.3 17/02/2017 SG YES Relinquished by Received by Name Date Signature Name Signature Date JOHN XU 7/03/2017 Frin Aclams Legend: WG Water sample, glass bottle SG Soil sample (glass jar) SP Soil sample (plastic bag) * Purge & Trap WP Water sample, plastic bottle Test required

GEOTECHNIQUE PTY I TD

Laboratory Test Request / Chain of Custody Record

Lemko PENRIT	Place TH NSW 2750	0		PEN	P O	Box 880 W 2751	Fax: (12) 4722 2700 12) 4722 6161 info@geotech.com.au			Page	2	of	2
TO: PH:	UNIT 16 33 MADDO	RONMENTAL S DX STREET RIA NSW 201 400			FAX:	02 8594 0		Sampling By: Project Manager:	SS/JH JX	Job No: Project: Location:	12675/4 Googong NH1A			
ATTN:	MS EMILY	YIN												
		Sampling de	tails		Samp	le type		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	50 54 60 5 A 60 5 A					
	Location	Depth (m)	Date	Time	Soil	Water		Results requi	ired by: Monda SGS Ref. S		(Normal TA	Т)		
							рН	CEC						KEEP SAMPLE
103	D288	0-0.1	17/02/2017		SG		✓	1					1	YES
106	D289	0-0.1	17/02/2017		SG			1						YES
108	D289	0.5-0.6	17/02/2017		SG			√						YES
110	D290	0-0.1	17/02/2017	- 8	SG	E 71.	√	7						YES
	-													
			Relin	quished by						Received by				
	Name	.,		Signature			Date	Name		Signate			Date	
Legend WG WP	Water sam	ople, glass bottle		jx	SG	Soil sampl	7/03/2017 e (glass jar)	En	SP Soil sample (p ✓ Test required	plastic bag)	**	7/3 Purge & Tra		1.30,

CLIENT DETAILS

Telephone

LABORATORY DETAILS

Contact John Xu

Client Geotechnique
Address P.O. Box 880

PENRITH NSW 2751

Manager Huong Crawford

Laboratory SGS Alexandria Environmental

Address Unit 16, 33 Maddox St

Alexandria NSW 2015

02 4722 2700 Telephone +61 2 8594 0400

Facsimile 02 4722 6161 Facsimile +61 2 8594 0499

Email john.xu@geotech.com.au Email au.environmental.sydney@sgs.com

Project12675-4 Goongong NH1A-7 & NH2Samples ReceivedTue 7/3/2017Order Number(Not specified)Report DueMon 13/3/2017Samples123SGS ReferenceSE162178A

SUBMISSION DETAILS

This is to confirm that 123 samples were received on Tuesday 7/3/2017. Results are expected to be ready by Monday 13/3/2017. Please quote SGS reference SE162178A when making enquiries. Refer below for details relating to sample integrity upon receipt.

Samples clearly labelled Complete documentation received Yes Yes Ice Bricks Sample container provider SGS Sample cooling method Samples received in correct containers Yes Sample counts by matrix 17 Soils 7/3/17@1.30pm Date documentation received Type of documentation received COC Samples received in good order Yes Samples received without headspace Yes Sample temperature upon receipt 17.0°C Sufficient sample for analysis Yes Turnaround time requested Standard

Unless otherwise instructed, water and bulk samples will be held for one month from date of report, and soil samples will be held for two months.

COMMENTS -

To the extent not inconsistent with the other provisions of this document and unless specifically agreed otherwise in writing by SGS, all SGS services are rendered in accordance with the applicable SGS General Conditions of Service accessible at http://www.sgs.com/en/terms-and-conditions as at the date of this document. Attention is drawn to the limitations of liability and to the clauses of indemnification.

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia Australia

t +61 2 8594 0400 f +61 2 8594 0499

www.sgs.com.au

	Geotechnique	Project	12675-4 Goongong NH1A-7 & NH2	
SLIMM	ADV OF ANALYSIS			

SUMMARY	OF ANALYSIS —		
No.	Sample ID	Exchangeable Cations and Cation Exchange Capacity	pH in soil (1:5)
038	D259 0.0-0.1	13	1
041	D259 1.9-2.0	-	1

_ CONTINUED OVERLEAF

CLIENT DETAILS Client Geotechnique	Project 12675-4 Goongong NH1A-7 & NH2
SUMMARY OF ANALYSIS —————	
No. Sample ID	Exchangeable Cations and Cation Exchange Capacity
050 D271 0.2-0.3	13

_ CONTINUED OVERLEAF

Client Geotechnique Project 12675-4 Goongong NH1A-7 & NH2

SUMMARY OF ANALYSIS

No.	Sample ID	Exchangeable Cations and Cation Exchange Capacity	pH in soil (1:5)
074	D278 0.0-0.1	13	-
079	D280 0.0-0.1	13	-
080	D280 0.2-0.3	13	-
081	D280 1.0-1.1	13	-
082	D281 0.0-0.1	13	-
083	D281 0.2-0.3	13	-
085	D282 0.0-0.1	13	-
091	D284 0.2-0.3	13	-
092	D285 0.0-0.1	13	1

_ CONTINUED OVERLEAF

CLIENT DETAILS _ Project 12675-4 Goongong NH1A-7 & NH2 Client Geotechnique

SUMMARY OF ANALYSIS —							
No.	Sample ID	Exchangeable Cations and Cation Exchange Capacity	pH in soil (1:5)				
100	D287 0.2-0.3	13	-				
103	D288 0.0-0.1	13	1				
106	D289 0.0-0.1	13	-				
108	D289 0.5-0.6	13	-				
110	D290 0.0-0.1	13	1				

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details.

8/03/2017 Page 5 of 5

Testing as per this table shall commence immediately unless the client intervenes with a correction .

ANALYTICAL REPORT

CLIENT DETAILS

LABORATORY DETAILS

Contact John Xu
Client Geotechnique
Address P.O. Box 880

PENRITH NSW 2751

Manager Huong Crawford

Laboratory SGS Alexandria Environmental
Address Unit 16. 33 Maddox St

Alexandria NSW 2015

Telephone 02 4722 2700 Facsimile 02 4722 6161

Email john.xu@geotech.com.au

Project Googong NH1A-7 & NH2

Order Number (Not specified)

Samples 2

Telephone +61 2 8594 0400 Facsimile +61 2 8594 0499

Email au.environmental.sydney@sgs.com

 SGS Reference
 SE162177 R0

 Date Received
 20/2/2017

 Date Reported
 24/2/2017

COMMENTS

Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562(4354).

No respirable fibres detected in soil sample using trace analysis technique as per AS 4964-2004.

Sample #1: Asbestos found in 50x30x4mm cement sheet fragments in >7mm fraction, and cement sheet fragments in >2 to <7 mm fraction

Asbestos analysed by Approved Identifiers Ravee Sivasubramaniam and Yusuf Kuthpudin .

SIGNATORIES

S. Raveralm.

Ravee Sivasubramaniam

Hygiene Team Leader

ANALYTICAL RESULTS

Gravimetric Determination of Asbestos in Soil [AN605] Tested: 23/2/2017

			FCP1 0-0.1 SOIL
PARAMETER	UOM	LOR	17/2/2017 SE162177.001
Total Sample Weight	9	1	336
ACM in >7mm Sample*	g	0.01	14.9
AF/FA in >2mm to <7mm Sample*	g	0.0001	1.22
AF/FA in <2mm Sample*	g	0.0001	<0.0001
Asbestos in soil (>7mm ACM)*	%w/w	0.01	0.66
Asbestos in soil (>2mm to <7mm AF/FA)*	%w/w	0.001	0.36
Asbestos in soil (<2mm AF/FA)*	%w/w	0.001	<0.001
Asbestos in soil (<7mm AF/FA)*	%w/w	0.001	0.36
Fibre Type	No unit	-	CRY,ORG

24/02/2017 Page 2 of 5

ANALYTICAL RESULTS

SE162177 R0

Fibre ID in bulk materials [AN602] Tested: 24/2/2017

			FCP1
			MATERIAL
			-
			17/2/2017
PARAMETER	UOM	LOR	SE162177.002
Asbestos Detected	No unit	-	Yes

24/02/2017 Page 3 of 5

METHOD SUMMARY

SE162177 R0

METHOD	METHODOLOGY SUMMARY
AN602	Qualitative identification of chrysotile, amosite and crocidolite in bulk samples by polarised light microscopy (PLM) in conjunction with dispersion staining (DS). AS4964 provides the basis for this document. Unequivocal identification of the asbestos minerals present is made by obtaining sufficient diagnostic 'clues', which provide a reasonable degree of certainty, dispersion staining is a mandatory 'clue' for positive identification. If sufficient 'clues' are absent, then positive identification of asbestos is not possible. This procedure requires removal of suspect fibres/bundles from the sample which cannot be returned.
AN602	Fibres/material that cannot be unequivocably identified as one of the three asbestos forms, will be reported as unknown mineral fibres (umf).
AN605	This technique gravimetrically determines the mass of Asbestos Containing Material retained on a 7mm Sieve and assumes that 15% of this ACM is asbestos. This calculated asbestos weight is then calculated as a percentage of the total sample weight.
AN605	This technique also gravimetrically determines the mass of Fibrous Asbestos (FA) and Asbestos Fines (AF) Containing Material retained on and passing a 2mm sieve post 7mm sieving. Assumes that FA and AF are 100% asbestos containing. This calculated asbestos weight is then calculated as a percentage of the total sample weight. This does not include free fibres which are only observed by standard trace analysis as per AN 602.
AN605	AMO = Amosite Detected CRY = Chrysotile Detected CRO = Crocidolite Detected ORG = Organic Fibres Detected SMF = Synthetic Mineral Fibres Detected UMF = Unknown Mineral Fibres Detected NAD = No Asbestos Detected
AN605	Insofar as is technically feasible, this report is consistent with the analytical reporting recommendations in the Western Australian Department of Health Guidelines for the Assessment Remediation and Management of Asbestos - Contaminated Sites in Western Australia - May 2009.

24/02/2017 Page 4 of 5

SE162177 R0

FOOTNOTES -

* NATA accreditation does not cover the performance of this service.

** Indicative data, theoretical holding time exceeded.

Not analysed.NVL Not validated.

IS Insufficient sample for analysis.

LNR Sample listed, but not received.

UOM Unit of Measure.

LOR Limit of Reporting.

↑↓ Raised/lowered Limit of

Reporting.

Samples analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/en/terms-and-conditions. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein

Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full.

24/02/2017 Page 5 of 5

ANALYTICAL REPORT

CLIENT DETAILS -LABORATORY DETAILS

John Xu **Huong Crawford** Contact Manager

Geotechnique SGS Alexandria Environmental Client Laboratory P.O. Box 880 Unit 16, 33 Maddox St Address Address

PENRITH NSW 2751 Alexandria NSW 2015

Date Reported

02 4722 2700 +61 2 8594 0400 Telephone Telephone Facsimile 02 4722 6161 Facsimile +61 2 8594 0499

Email john.xu@geotech.com.au Email au.environmental.sydney@sgs.com

Googong NH1A-7 & NH2 SGS Reference SE162177 R0 Project (Not specified) 20 Feb 2017 Order Number Date Received 24 Feb 2017

COMMENTS

1

Samples

Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562(4354).

No respirable fibres detected in soil sample using trace analysis technique as per AS 4964-2004.

Sample #1: Asbestos found in 50x30x4mm cement sheet fragments in >7mm fraction, and cement sheet fragments in >2 to <7 mm fraction

Asbestos analysed by Approved Identifiers Ravee Sivasubramaniam and Yusuf Kuthpudin .

SIGNATORIES

S. Ravender.

Ravee Sivasubramaniam Hygiene Team Leader

ANALYTICAL REPORT

RESULTS -	k materials			Method AN602	
Laboratory Reference	Client Reference	Matrix	Sample Description	Date Sampled	Fibre Identification
SE162177.002	FCP1	Other	45x40x5mm cement sheet fragment	17 Feb 2017	Chrysotile Asbestos Detected

24/02/2017 Page 2 of 3

METHOD SUMMARY

METHOD -

METHODOLOGY SUMMARY

AN602

Qualitative identification of chrysotile, amosite and crocidolite in bulk samples by polarised light microscopy (PLM) in conjunction with dispersion staining (DS). AS4964 provides the basis for this document. Unequivocal identification of the asbestos minerals present is made by obtaining sufficient diagnostic `clues`, which provide a reasonable degree of certainty, dispersion staining is a mandatory `clue` for positive identification. If sufficient `clues` are absent, then positive identification of asbestos is not possible. This procedure requires removal of suspect fibres/bundles from the sample which cannot be returned.

suspect fibres/bundles from

AN602

Fibres/material that cannot be unequivocably identified as one of the three asbestos forms, will be reported as

unknown mineral fibres (umf).

FOOTNOTES -

Amosite - Brown Asbestos NA - Not Analysed
Chrysotile - White Asbestos LNR - Listed, Not Required

Crocidolite - Blue Asbestos * - NATA accreditation does not cover the performance of this service .

Amphiboles - Amosite and/or Crocidolite ** - Indicative data, theoretical holding time exceeded.

(In reference to soil samples only) This report does not comply with the analytical reporting recommendations in the Western Australian Department of Health Guidelines for the Assessment and Remediation and Management of Asbestos Contaminated sites in Western Australia - May 2009.

Sampled by the client.

Where reported: 'Asbestos Detected': Asbestos detected by polarised light microscopy, including dispersion staining.

Where reported: 'No Asbestos Found': No Asbestos Found by polarised light microscopy, including dispersion staining.

Where reported: 'UMF Detected': Mineral fibres of unknown type detected by polarised light microscopy, including dispersion staining. Confirmation by another independent analytical technique may be necessary.

Even after disintegration it can be very difficult, or impossible, to detect the presence of asbestos in some asbestos -containing bulk materials using polarised light microscopy. This is due to the low grade or small length or diameter of asbestos fibres present in the material, or to the fact that very fine fibres have been distributed intimately throughout the materials.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/en/terms-and-conditions. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This test report shall not be reproduced, except in full.

24/02/2017 Page 3 of 3

GEOTECHNIQUE PTY I TO

Laboratory Test Request / Chain of Custody Record

Tel: (02) 4722 2700 Lemko Place P O Box 880 Fax: (02) 4722 6161 Page PENRITH NSW 2750 PENRITH NSW 2751 email: info@geotech.com.au TO: SGS ENVIRONMENTAL SERVICES Sampling By: COC 4 SS/JH Job No: 12675/4 UNIT 16 33 MADDOX STREET Project: **ALEXANDRIA NSW 2015** PH: 02 8594 0400 Project Manager: JX FAX: 02 8594 0499 Googong NH1A-7 & NH2 Location: ATTN: MS EMILY YIN Sampling details Sample type Results required by: Normal TAT Location Depth (m) Date Time Soil Material KEEP **ASBESTOS** ASBESTOS 0.001% SAMPLE w/w FCP1 0-0.1 17/02/2017 SP YES FCP1 17/02/2017 FCP YES Relinquished by Received by Name Signature Date Name Signature Date **JOHN XU** 20/02/2017 20102/17 @ 12.15 Legend: WG Water sample, glass bottle SG Soil sample (glass jar) SP Soil sample (plastic bag) * Purge & Trap WP Water sample, plastic bottle FCP Fibro Cement Piece (plastic bag) Test required

CLIENT DETAILS

LABORATORY DETAILS

John Xu Contact

Geotechnique Client Address

P.O. Box 880 PENRITH NSW 2751

Huong Crawford Manager

SGS Alexandria Environmental Laboratory

Address Unit 16, 33 Maddox St

Alexandria NSW 2015

02 4722 2700 Telephone

02 4722 6161 Facsimile

john.xu@geotech.com.au Email

+61 2 8594 0400 Telephone +61 2 8594 0499 Facsimile

Email

au.environmental.sydney@sgs.com

Googong NH1A-7 & NH2 Project 2

Order Number (Not specified)

Samples Received Report Due

Mon 20/2/2017 Mon 27/2/2017

SGS Reference

SF162177

SUBMISSION DETAILS

Samples

This is to confirm that 2 samples were received on Monday 20/2/2017. Results are expected to be ready by Monday 27/2/2017. Please quote SGS reference SE162177 when making enquiries. Refer below for details relating to sample integrity upon receipt.

Samples clearly labelled Sample container provider Samples received in correct containers

Date documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested

Yes Client Yes 20/2/2017 Yes 17.3°C Standard

Complete documentation received

Yes Ice Bricks Sample cooling method Sample counts by matrix 1 Soil, 1 Material

Type of documentation received COC Samples received without headspace Yes Sufficient sample for analysis Yes

Unless otherwise instructed, water and bulk samples will be held for one month from date of report, and soil samples will be held for two months.

COMMENTS -

To the extent not inconsistent with the other provisions of this document and unless specifically agreed otherwise in writing by SGS, all SGS services are rendered in accordance with the applicable SGS General Conditions of Service accessible at http://www.sgs.com/en/terms-and-conditions as at the date of this document. Attention is drawn to the limitations of liability and to the clauses of indemnification.

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia Australia

t +61 2 8594 0400 f +61 2 8594 0499

www.sgs.com.au

	Client Geotechnique	Project Googong NH1A-7 & NH2
(SUMMARY OF ANALYSIS —	

No.	Sample ID	Fibre ID in bulk materials	Gravimetric Determination of Asbestos in Soil
001	FCP1 0-0.1	-	9
002	FCP1	1	-

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document.

21/02/2017 Page 2 of 2

The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details.

Testing as per this table shall commence immediately unless the client intervenes with a correction .

email: sydney@envirolab.com.au envirolab.com.au

Envirolab Services Pty Ltd - Sydney | ABN 37 112 535 645

155675

CERTIFICATE OF ANALYSIS

Client:

Geotechnique Pty Ltd

PO Box 880 Penrith NSW 2751

Attention: John Xu

Sample log in details:

Your Reference: 12675/4, Googong NH1A-7 & NH2

No. of samples: 10 soils

Date samples received / completed instructions received 19/10/16 / 20/10/16

This report replaces R00 due to the addition of manganese results.

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details:

Date results requested by: / Issue Date: 27/10/16 / 26/10/16

Date of Preliminary Report: Not Issued

NATA accreditation number 2901. This document shall not be reproduced except in full.

Accredited for compliance with ISO/IEC 17025 - Testing Tests not covered by NATA are denoted with *.

Results Approved By:

David Springer General Manager

Acid Extractable metals in soil						
Our Reference:	UNITS	155675-1	155675-2	155675-3	155675-4	155675-5
Your Reference		S1	S2	S3	S4	S5
	-					
Date Sampled		17/10/2016	17/10/2016	17/10/2016	17/10/2016	18/10/2016
Type of sample		soil	soil	soil	soil	soil
Date prepared	-	21/10/2016	21/10/2016	21/10/2016	21/10/2016	21/10/2016
Date analysed	-	21/10/2016	21/10/2016	21/10/2016	21/10/2016	21/10/2016
Arsenic	mg/kg	50	680	43	43	150
Cadmium	mg/kg	0.6	17	0.6	0.5	4.4
Chromium	mg/kg	41	10	35	32	38
Copper	mg/kg	17	180	15	24	81
Lead	mg/kg	230	85	260	90	700
Mercury	mg/kg	<0.1	0.5	<0.1	<0.1	<0.1
Nickel	mg/kg	8	52	8	10	26
Zinc	mg/kg	140	1,200	140	86	1,200
Manganese	mg/kg	2,100	21,000	2,200	1,200	3,900

Acid Extractable metals in soil			
Our Reference:	UNITS	155675-6	155675-7
Your Reference		S6	S7
	-		
Date Sampled		18/10/2016	18/10/2016
Type of sample		soil	soil
Date prepared	-	21/10/2016	21/10/2016
Date analysed	-	21/10/2016	21/10/2016
Arsenic	mg/kg	310	260
Cadmium	mg/kg	13	4
Chromium	mg/kg	26	44
Copper	mg/kg	91	66
Lead	mg/kg	230	210
Mercury	mg/kg	0.1	0.1
Nickel	mg/kg	19	25
Zinc	mg/kg	3,400	1,800
Manganese	mg/kg	9,000	3,600

	1					1
Moisture						
Our Reference:	UNITS	155675-1	155675-2	155675-3	155675-4	155675-5
Your Reference		S1	S2	S3	S4	S5
	-					
Date Sampled		17/10/2016	17/10/2016	17/10/2016	17/10/2016	18/10/2016
Type of sample		soil	soil	soil	soil	soil
Date prepared	-	21/10/2016	21/10/2016	21/10/2016	21/10/2016	21/10/2016
Date analysed	-	24/10/2016	24/10/2016	24/10/2016	24/10/2016	24/10/2016
Moisture	%	12	35	7.6	13	16
Moisture						
Our Reference:	UNITS	155675-6	155675-7	155675-8	155675-9	155675-10
Your Reference		S6	S7	S8	S9	S10
	-					
Date Sampled		18/10/2016	18/10/2016	18/10/2016	18/10/2016	18/10/2016
Type of sample		soil	soil	soil	soil	soil
Date prepared	-	21/10/2016	21/10/2016	21/10/2016	21/10/2016	21/10/2016
Date analysed	-	24/10/2016	24/10/2016	24/10/2016	24/10/2016	24/10/2016
Moisture	%	18	17	23	20	13

	1			
svTRH (C10-C40) in Soil				
Our Reference:	UNITS	155675-8	155675-9	155675-10
Your Reference		S8	S9	S10
	-			
Date Sampled		18/10/2016	18/10/2016	18/10/2016
Type of sample		soil	soil	soil
Date extracted	-	21/10/2016	21/10/2016	21/10/2016
Date analysed	-	22/10/2016	22/10/2016	22/10/2016
TRHC10 - C14	mg/kg	<50	<50	<50
TRHC15 - C28	mg/kg	<100	<100	<100
TRHC29 - C36	mg/kg	<100	<100	<100
TRH>C10-C16	mg/kg	<50	<50	<50
TRH>C16-C34	mg/kg	<100	<100	<100
TRH>C34-C40	mg/kg	<100	<100	<100
Surrogate o-Terphenyl	%	75	74	77

Method ID	Methodology Summary
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Inorg-008	Moisture content determined by heating at 105+/-5 deg C for a minimum of 12 hours.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.

		Clie	ent Referenc	e: 12	2675/4, Goog	ong NH1A-7 & NH2		
QUALITY CONTROL Acid Extractable metals in soil	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results Base II Duplicate II %RPD	Spike Sm#	Spike % Recovery
Date prepared	-			21/10/2 016	155675-7	21/10/2016 21/10/2016	LCS-2	21/10/2016
Date analysed	-			21/10/2 016	155675-7	21/10/2016 21/10/2016	LCS-2	21/10/2016
Arsenic	mg/kg	4	Metals-020	<4	155675-7	260 250 RPD:4	LCS-2	119%
Cadmium	mg/kg	0.4	Metals-020	<0.4	155675-7	4 4 RPD:0	LCS-2	112%
Chromium	mg/kg	1	Metals-020	<1	155675-7	44 43 RPD:2	LCS-2	116%
Copper	mg/kg	1	Metals-020	<1	155675-7	66 61 RPD: 8	LCS-2	111%
Lead	mg/kg	1	Metals-020	<1	155675-7	210 220 RPD:5	LCS-2	110%
Mercury	mg/kg	0.1	Metals-021	<0.1	155675-7	0.1 0.1 RPD: 0	LCS-2	99%
Nickel	mg/kg	1	Metals-020	<1	155675-7	25 21 RPD: 17	LCS-2	107%
Zinc	mg/kg	1	Metals-020	<1	155675-7	1800 1200 RPD: 40	LCS-2	114%
Manganese	mg/kg	1	Metals-020	<1	155675-7	3600 3500 RPD: 3	LCS-2	106%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
svTRH (C10-C40) in Soil					OH III	Base II Duplicate II %RPD		recovery
Date extracted	-			21/10/2 016	[NT]	[NT]	LCS-2	21/10/2016
Date analysed	-			22/10/2 016	[NT]	[NT]	LCS-2	22/10/2016
TRHC10 - C14	mg/kg	50	Org-003	<50	[NT]	[NT]	LCS-2	124%
TRHC15 - C28	mg/kg	100	Org-003	<100	[NT]	[NT]	LCS-2	110%
TRHC29 - C36	mg/kg	100	Org-003	<100	[NT]	[NT]	LCS-2	96%
TRH>C10-C16	mg/kg	50	Org-003	<50	[NT]	[NT]	LCS-2	124%
TRH>C16-C34	mg/kg	100	Org-003	<100	[NT]	[NT]	LCS-2	110%
TRH>C34-C40	mg/kg	100	Org-003	<100	[NT]	[NT]	LCS-2	96%
Surrogate o-Terphenyl	%		Org-003	80	[NT]	[NT]	LCS-2	89%

Report Comments:

Asbestos ID was analysed by Approved Identifier:

Asbestos ID was authorised by Approved Signatory:

Not applicable for this job

Not applicable for this job

INS: Insufficient sample for this test PQL: Practical Quantitation Limit NT: Not tested

NR: Test not required RPD: Relative Percent Difference NA: Test not required

<: Less than >: Greater than LCS: Laboratory Control Sample

Envirolab Reference: 155675

Revision No: R 01

Page 7 of 8

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.

Duplicate: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample): This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Envirolab Reference: 155675 Page 8 of 8

Revision No: R 01

GEOTECHNIQUE PTY LTD

Laboratory Test Request / Chain of Custody Record

Lemko P	ace NSW 2750)		PENF	P O RITH NS		Fax: (02) 4722 2700 2) 4722 6161 nfo@geotech.com.au			Page	1	of	1
TO:	ENVIROLA 12 ASHLE	AB SERVICES I						Sampling By:	LY/JH	Job No: Project:	12675/4			
PH:	02 9910 62				FAX:	02 9910	6201	Project Manager:	JX	Location:	Googong NH1	A-7 & NH2		
ATTN: N	S AILEEN H	Sampling de	tails		Samp	le type					-Veneral			
L	ocation	Depth (m)	Date	Time	Soil	Water		Res	ults required b	y: Normal 7	TAT			
							Heavy Metals As, Cd, Cu, Pb, Mn, Hg, Ni and Zn	TPH F2 & F3 with silica gel clean-up						KEEP SAMPLE
1	S1		17/10/2016	/(e)	SG		~							YES
12	S2		17/10/2016		SG		✓							YES
13	S3		17/10/2016	-	SG		✓							YES
4	S4		17/10/2016	-	SG		✓							YES
5	S5		18/10/2016	-	SG		✓				V. 20			YES
16	S6		18/10/2016	16	SG		✓							YES
7	S7		18/10/2016	-	SG		✓							YES
8	S8		18/10/2016	2	SG			7						YES
1 a	S9		18/10/2016	-	SG			-						YES
101	S10		18/10/2016	-	SG			7						YES
17														
			Relino	quished by						Received by				
	Name			Signature			Date	Name		Signat	ure		Date	
	JOHN X	U		jx			20/10/2016							
Legend: WG WP		nple, glass bottle nple, plastic bott			SG	Soil sam	ple (glass jar)		SP Soil sample (p ✓ Test required	plastic bag)		* Purge & Tra	р	

Client Details	
Client	Geotechnique Pty Ltd
Attention	John Xu

Sample Login Details				
Your Reference	12675/4, Googong NH1A-7 & NH2			
Envirolab Reference	155675			
Date Sample Received	19/10/2016			
Date Instructions Received	20/10/2016			
Date Results Expected to be Reported	27/10/2016			

Sample Condition	
Samples received in appropriate condition for analysis	YES
No. of Samples Provided	10 soils
Turnaround Time Requested	Standard
Temperature on receipt (°C)	10.0
Cooling Method	Ice
Sampling Date Provided	YES

Comments
Samples will be held for 1 month for water samples and 2 months for soil samples from date of
receipt of samples

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolabservices.com.	au Email: jhurst@envirolabservices.com.au

Sample and Testing Details on following page

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Åshley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
enquiries@envirolabservices.com.au
www.envirolabservices.com.au

Sample Id	sTPH in Soil (C10- C40)-Silica	Acid Extractable metals in soil
S1		√
S2		✓
S3		√
S4		√
S5		√
S6		\frac{1}{\sqrt{1}}
S7		√
S8	✓	-
S9	✓	
S10	✓	

email: sydney@envirolab.com.au envirolab.com.au

Envirolab Services Pty Ltd - Sydney | ABN 37 112 535 645

CERTIFICATE OF ANALYSIS

162188

Client:

Geotechnique Pty Ltd PO Box 880

Penrith NSW 2751

Attention: John Xu

Sample log in details:

Your Reference: 12675/4, Googong NH1A-7 & NH2

No. of samples: 15 Soils

Date samples received / completed instructions received 20/02/17 / 20/02/17

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details:

Date results requested by: / Issue Date: 27/02/17 / 23/02/17

Date of Preliminary Report: Not Issued

NATA accreditation number 2901. This document shall not be reproduced except in full.

Accredited for compliance with ISO/IEC 17025 - Testing

Tests not covered by NATA are denoted with *.

Results Approved By:

General Manager

Acid Extractable metals in soil						
Our Reference:	UNITS	162188-1	162188-2	162188-3	162188-4	162188-5
Your Reference		SS1	SS2	SS3	SS4	SS5
	-					
Date Sampled		14/02/2017	14/02/2017	14/02/2017	14/02/2017	15/02/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	21/02/2017	21/02/2017	21/02/2017	21/02/2017	21/02/2017
Date analysed	-	21/02/2017	21/02/2017	21/02/2017	21/02/2017	21/02/2017
Arsenic	mg/kg	35	32	14	11	15
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	24	16	28	27	28
Copper	mg/kg	8	17	31	16	27
Lead	mg/kg	77	55	16	18	18
Manganese	mg/kg	240	170	870	800	550
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	5	4	10	12	9
Zinc	mg/kg	46	20	35	55	35

Acid Extractable metals in soil						
Our Reference:	UNITS	162188-6	162188-7	162188-8	162188-9	162188-10
Your Reference		SS6	SS7	SS8	SS9	SS10
	-					
Date Sampled		15/02/2017	15/02/2017	17/02/2017	17/02/2017	17/02/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	21/02/2017	21/02/2017	21/02/2017	21/02/2017	21/02/2017
Date analysed	-	21/02/2017	21/02/2017	21/02/2017	21/02/2017	21/02/2017
Arsenic	mg/kg	110	21	19	15	11
Cadmium	mg/kg	0.6	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	36	23	24	22	13
Copper	mg/kg	17	10	6	11	16
Lead	mg/kg	240	69	52	25	15
Manganese	mg/kg	800	2,200	1,000	470	88
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	6	9	4	17	7
Zinc	mg/kg	120	100	27	130	37

Acid Extractable metals in soil						
Our Reference:	UNITS	162188-11	162188-12	162188-13	162188-14	162188-15
Your Reference		SS11	SS12	SS13	SS14	SS15
Date Sampled		17/02/2017	16/02/2017	16/02/2017	16/02/2017	16/02/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	21/02/2017	21/02/2017	21/02/2017	21/02/2017	21/02/2017
Date analysed	-	21/02/2017	21/02/2017	21/02/2017	21/02/2017	21/02/2017
Arsenic	mg/kg	16	39	24	51	240
Cadmium	mg/kg	1	0.5	<0.4	0.4	2
Chromium	mg/kg	17	33	27	32	21
Copper	mg/kg	15	19	9	12	40
Lead	mg/kg	61	94	44	77	250
Manganese	mg/kg	1,500	1,500	810	2,400	3,000
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	0.1
Nickel	mg/kg	8	10	4	8	15
Zinc	mg/kg	130	100	36	69	410

Acid Extractable metals in soil		
Our Reference:	UNITS	162188-16
Your Reference		SS1 -
	-	[TRIPLICATE]
Date Sampled		14/02/2017
Type of sample		Soil
Date prepared	-	21/02/2017
Date analysed	-	21/02/2017
Arsenic	mg/kg	30
Cadmium	mg/kg	<0.4
Chromium	mg/kg	22
Copper	mg/kg	6
Lead	mg/kg	68
Manganese	mg/kg	240
Mercury	mg/kg	<0.1
Nickel	mg/kg	4
Zinc	mg/kg	40

Moisture Our Reference:	UNITS	162188-1	162188-2	400400.0	162188-4	400400.5
Our Reference: Your Reference	UNITS	162188-1 SS1	162188-2 SS2	162188-3 SS3	162188-4 SS4	162188-5 SS5
Tour Reference	-	331	332	333	334	333
Date Sampled		14/02/2017	14/02/2017	14/02/2017	14/02/2017	15/02/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	21/02/2017	21/02/2017	21/02/2017	21/02/2017	21/02/2017
Date analysed	-	22/02/2017	22/02/2017	22/02/2017	22/02/2017	22/02/2017
Moisture	%	1.7	3.4	2.1	5.6	2.1
Moisture						
Our Reference:	UNITS	162188-6	162188-7	162188-8	162188-9	162188-10
Your Reference	-	SS6	SS7	SS8	SS9	SS10
Date Sampled		15/02/2017	15/02/2017	17/02/2017	17/02/2017	17/02/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	21/02/2017	21/02/2017	21/02/2017	21/02/2017	21/02/2017
Date analysed	-	22/02/2017	22/02/2017	22/02/2017	22/02/2017	22/02/2017
Moisture	%	3.0	4.4	2.1	4.6	2.5
Moisture Our Reference:	UNITS	162188-11	162188-12	162188-13	162188-14	162188-15
Your Reference.	UNITS	SS11	SS12	SS13	SS14	SS15
rour Reference	-	3311	3312	3313	3314	3313
Date Sampled		17/02/2017	16/02/2017	16/02/2017	16/02/2017	16/02/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	21/02/2017	21/02/2017	21/02/2017	21/02/2017	21/02/2017
Date analysed	-	22/02/2017	22/02/2017	22/02/2017	22/02/2017	22/02/2017
Moisture	%	4.7	3.8	1.7	5.0	7.3

Method ID	Methodology Summary
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.

Envirolab Reference: 162188 Page 5 of 8

Revision No: R 00

		CII	ent Referenc	e: 12	2675/4, Goog	ong NH1A-7 & NH2		
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Acid Extractable metals in soil						Base II Duplicate II %RPD		
Date prepared	-			21/02/2 017	162188-1	21/02/2017 21/02/2017	LCS-4	21/02/2017
Date analysed	-			21/02/2 017	162188-1	21/02/2017 21/02/2017	LCS-4	21/02/2017
Arsenic	mg/kg	4	Metals-020	<4	162188-1	35 39 RPD:11	LCS-4	107%
Cadmium	mg/kg	0.4	Metals-020	<0.4	162188-1	<0.4 <0.4	LCS-4	100%
Chromium	mg/kg	1	Metals-020	<1	162188-1	24 32 RPD:29	LCS-4	104%
Copper	mg/kg	1	Metals-020	<1	162188-1	8 18 RPD:77	LCS-4	103%
Lead	mg/kg	1	Metals-020	<1	162188-1	77 83 RPD:8	LCS-4	97%
Manganese	mg/kg	1	Metals-020	<1	162188-1	240 270 RPD:12	LCS-4	123%
Mercury	mg/kg	0.1	Metals-021	<0.1	162188-1	<0.1 <0.1	LCS-4	91%
Nickel	mg/kg	1	Metals-020	<1	162188-1	5 9 RPD:57	LCS-4	95%
Zinc	mg/kg	1	Metals-020	<1	162188-1	46 81 RPD: 55	LCS-4	97%
QUALITYCONTROL	UNITS	3	Dup.Sm#		Duplicate	Spike Sm#	Spike % Reco	very
Acid Extractable metals in soil	1			Base+I	Duplicate+%RF	PD		
Date prepared	-		162188-11	21/02/2	2017 21/02/201	7 162188-2	21/02/201	7
Date analysed	-		162188-11	21/02/2	2017 21/02/201	7 162188-2	21/02/201	7
Arsenic	mg/k	g .	162188-11	16	21 RPD:27	162188-2	107%	
Cadmium	mg/ko	g .	162188-11	1	1 RPD:0	162188-2	75%	
Chromium	mg/k(g .	162188-11	17	21 RPD:21	162188-2	91%	
Copper	mg/ko	9	162188-11	15	17 RPD:12	162188-2	98%	
Lead	mg/ko	9	162188-11		68 RPD:11	162188-2	129%	
Manganese	mg/ko	g .	162188-11		1700 RPD:12	162188-2	#	
Mercury	mg/k	g .	162188-11		<0.1 <0.1	162188-2	84%	
Nickel	mg/k	9	162188-11	8	9 RPD:12	162188-2	77%	
Zinc	mg/ko	g	162188-11	130	170 RPD:27	162188-2	86%	

Report Comments:

Acid Extractable Metals in Soil: The laboratory RPD acceptance criteria has been exceeded for 162188-1 for Cu, Ni, Zn. Therefore a triplicate result has been issued as laboratory sample number 162188-16.

Acid Extractable Metals in Soil:

Percent recovery is not possible to report due to the high concentration of the element/s in the sample/s. However an acceptable recovery was obtained for the LCS.

Asbestos ID was analysed by Approved Identifier:

Asbestos ID was authorised by Approved Signatory:

Not applicable for this job

Not applicable for this job

INS: Insufficient sample for this test PQL: Practical Quantitation Limit NT: Not tested

NR: Test not required RPD: Relative Percent Difference NA: Test not required

Envirolab Reference: 162188 Page 7 of 8

Revision No: R 00

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.

Duplicate: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample): This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Envirolab Reference: 162188 Page 8 of 8

Revision No: R 00

Envirolab Services Ph: (02) 9910 6200

Date Received: 20-7-17
Time Received: 16-45
Received by: J E
Temp: Cool/Ambient 18.5° C
Cooling: Ice/Icepack
Security: Intact/Broken/None

Laboratory Test Request / Chain of Custody Record

Lemko PENRI	TH NSW 275			PENF	PO RITH NS	Box 880 W 2751	Fax: (02	4722 2700) 4722 6161 fo@geotech.com.au				1 of	2
то:	12 ASHLE	AB SERVICES EY STREET OOD NSW 2067						Sampling By:	SS/JH	Job No: Project:	12675/4		
PH:	02 9910 6 MS AILEEN H				FAX:	02 9910	6201	Project Manager:	JX	Location:	Googong NH1A-7 &	NH2	
ATTIN.	WIS AILLEN I	Sampling de	tails		Samp	le type					FA T		
	Location	Depth (m)	Date	Time	Soil	Water		Res	sults required	by: Normal	IAI		
							Heavy Metals As, Cd, Cr, Cu, Pb, Mn, Hg, Ni and Zn						KEEP SAMPLE
7	SS1		14/02/2017		SG		V.						YES
2	SS2		14/02/2017	-	SG		✓						YES
3	SS3		14/02/2017	-	SG		✓	300					YES
4	SS4		14/02/2017	18	SG		√						YES
-	SS5		15/02/2017	2	SG		✓						YES
6	SS6		15/02/2017	- 4	SG		~						YES
7	SS7		15/02/2017	-	SG		✓						YES
9	SS8		17/02/2017	- 5	SG		√						YES
9	SS9		17/02/2017	- 2	SG		√						YES
10	SS10		17/02/2017	-	SG		√						YES
11	SS11		17/02/2017		SG		√						YES
12	SS12		16/02/2017	5	SG		√						YES
-			Relin	quished by						Received by			
	Name	9		Signature	9		Date	Name		Signa	ture	Date	9
	JOHN .	XU	jx 20/02/2017				Jack Embles	2	per la Co	2	0.2.17		
Legen WG WP	Water sa	nple, glass bottle nple, plastic bott			SG	Soil sam	ple (glass jar)		SP Soil sample ✓ Test require	(plastic bag)	* Purç	ge & Trap	

GEOTECHNIQUE PTY LTD

GEOTECHNIQUE PTY LTD

Laboratory Test Request / Chain of Custody Record

Lemko Place				PO	Box 880) 4722 2700 2) 4722 6161						-
PENRITH NSW 2750			PENE	RITH NS	W 2751	email: in	fo@geotech.com.au			Page	2	of	2
TO: ENVIROLA 12 ASHLEY	B SERVICES I STREET OD NSW 2067						Sampling By:	SS/JH	Job No: Project:	12675/4			
PH: 02 9910 620				FAX:	02 9910	6201	Project Manager:	JX	Location:	Googong NH	1A-7 & NH2		
	Sampling de	tails		Samp	le type		D		diam Named	TAT			
Location	Depth (m)	Date	Time	Soil	Water		Res	suits required	d by: Normal	IAI			
162188						Heavy Metals As, Cd, Cr, Cu, Pb, Mn, Hg, Ni and Zn							KEEP SAMPLE
/3 SS13		16/02/2017		SG									YES
14 SS14		16/02/2017	J#2	SG		✓							YES
/5 SS15		16/02/2017	-	SG	NOT W	✓		24:					YES
												-	
										-		-	
				_	-							-	
	1			-	-					+	-	-	
					-					+	1	+	
				-	-								
				+									
				+							4		
	1	Relin	quished by	_					Received by				
Name			Signature			Date	Name		Sjgna	ture		Date	
JOHN XI	J		jx			20/02/2017	Jack Emble	2	factiti	3	20.2.1	7	
	ole, glass bottle			SG	Soil sam	ple (glass jar)		SP Soil samp ✓ Test requi	le (plastic bag)		* Purge & Tra	р	

Client Details	
Client	Geotechnique Pty Ltd
Attention	John Xu

Sample Login Details						
Your Reference	12675/4, Googong NH1A-7 & NH2					
Envirolab Reference	162188					
Date Sample Received	20/02/2017					
Date Instructions Received	20/02/2017					
Date Results Expected to be Reported	27/02/2017					

Sample Condition				
Samples received in appropriate condition for analysis	YES			
No. of Samples Provided	15 Soils			
Turnaround Time Requested	Standard			
Temperature on receipt (°C)	18.5			
Cooling Method	Ice Pack			
Sampling Date Provided	YES			

Comments
Samples will be held for 1 month for water samples and 2 months for soil samples from date of
receipt of samples

Please direct any queries to:

Aileen Hie		Jacinta	Hurst
Phone: 02 9910 62	200	Phone:	02 9910 6200
Fax: 02 9910 62	201	Fax:	02 9910 6201
Email: ahie@envi	rolabservices.com.au	Email:	jhurst@envirolabservices.com.au

Sample and Testing Details on following page

Sample Id	Acid Extractable metals in soil
SS1	1
SS2	1
SS3	✓
SS4	✓
SS5	✓
SS6	✓
SS7	✓
SS8	
SS9	√
SS10	√
SS11	✓
SS12	✓
SS13	✓
SS14	✓
SS15	✓

The $' \checkmark '$ indicates the testing you have requested. **THIS IS NOT A REPORT OF THE RESULTS**.

APPENDIX E

ENVIRONMENTAL NOTES

IMPORTANT INFORMATION REGARDING YOUR ENVIRONMENTAL SITE ASSESSMENT

These notes have been prepared by Geotechnique Pty Ltd, using guidelines prepared by the ASFE (Associated Soil and Foundation Engineers). The notes are offered to assist in the interpretation of your environmental site assessment report.

REASONS FOR AN ENVIRONMENTAL ASSESSMENT

Environmental site assessments are typically, though not exclusively, performed in the following circumstances:

- As a pre-acquisition assessment on behalf of a purchaser or a vendor, when a property is to be sold
- As a pre-development assessment, when a property or area of land is to be redeveloped, or the land use has changed, e.g. from a factory to a residential subdivision
- As a pre-development assessment of greenfield sites, to establish baseline conditions and assess environmental, geological and hydrological constraints to the development of e.g. a landfill
- As an audit of the environmental effects of previous and present site usage

Each circumstance requires a specific approach to assessment of soil and groundwater contamination. In all cases the objective is to identify and if possible quantify the risks that unrecognised contamination poses to the ongoing proposed activity. Such risks may be financial (clean-up costs or limitations in site use) and physical (health risks to site users or the public).

ENVIRONMENTAL SITE ASSESSMENT LIMITATIONS

Although information provided by an environmental site assessment can reduce exposure to the risk of the presence of contamination, no environmental site assessment can eliminate the risk. Even a rigorous professional assessment might not detect all contamination within a site. Contaminants could be present in areas that were not surveyed or sampled, or migrate to areas that did not show signs of contamination when sampled. Contaminant analysis cannot possibly cover every type of contaminant that may occur; only the most likely contaminants are screened.

AN ENVIRONMENTAL SITE ASSESSMENT REPORT IS BASED ON A UNIQUE SET OF PROJECT SPECIFIC FACTORS

In the following events and in order to avoid cost problems, you should ask your consultant to assess any changes in the conclusion and recommendations made in the assessment:

- When the nature of the proposed development is changed e.g. if a residential development is proposed, rather than a commercial development
- When the size or configuration of the proposed development is altered e.g. if a basement is added
- When the location or orientation of the proposed structure is modified
- When there is a change of land ownership, or
- For application to an adjacent site

ENVIRONMENTAL SITE ASSESSMENT FINDINGS ARE PROFESSIONAL ESTIMATES

Site assessment identifies actual sub-surface conditions only at those points where samples are taken, when they are taken. Data obtained from the sampling and subsequent laboratory analyses are interpreted by geologists, engineers or scientists and opinions are drawn about the overall sub-surface conditions, the nature and extent of contamination, the likely impact on any proposed development and appropriate remediation measures. Actual conditions may differ from those inferred, because no professional, no matter how qualified and no sub-surface exploration program, no matter how comprehensive, can reveal what is hidden by earth, rock and time. The actual interface between materials may be far more gradual or abrupt than an assessment indicates. Actual conditions in areas not sampled may differ from predictions. Nothing can be done to prevent the unanticipated, however, steps can be taken to help minimise the impact. For this reason site owners should retain the services of their consultants throughout the development stages of the project in order to identify variances, conduct additional tests that may be necessary and to recommend solutions to problems encountered on site.

Soil and groundwater contamination is a field in which legislation and interpretation of legislation by government departments is changing rapidly. Whilst every attempt is made by Geotechnique Pty Ltd to be familiar with current policy, our interpretation of the investigation findings should not be taken to be that of the relevant authority. When approval from a statutory authority is required for a project, approval should be directly sought.

Environmental Notes continued

STABILITY OF SUB-SURFACE CONDITIONS

Sub-surface conditions can change by natural processes and site activities. As an environmental site assessment is based on conditions existing at the time of the investigation, project decisions should not be based on environmental site assessment data that may have been affected by time. The consultant should be requested to advise if additional tests are required.

ENVIRONMENTAL SITE ASSESSMENTS ARE PERFORMED FOR SPECIFIC PURPOSES AND CLIENTSEnvironmental site assessments are prepared in response to a specific scope of work required to meet the specific needs of specific individuals e.g. an assessment prepared for a consulting civil engineer may not be adequate to a construction contractor or another consulting civil engineer.

An assessment should not be used by other persons for any purpose or by the client for a different purpose. No individual, other than the client, should apply an assessment, even for its intended purpose, without first conferring with the consultant. No person should apply an assessment for any purpose other than that originally contemplated, without first conferring with the consultant.

MISINTERPRETATION OF ENVIRONMENTAL SITE ASSESSMENTS

Costly problems can occur when design professionals develop plans based on misinterpretation of an environmental site assessment. In order to minimise problems, the environmental consultant should be retained to work with appropriate design professionals, to explain relevant findings and to review the adequacy of plans and specifications relative to contamination issues.

LOGS SHOULD NOT BE SEPARATED FROM THE REPORT

Borehole and test pit logs are prepared by environmental scientists, engineers or geologists, based upon interpretation of field conditions and laboratory evaluation of field samples. Logs are normally provided in our reports and these would not be redrawn for inclusion in site remediation or other design drawings, as subtle but significant drafting errors or omissions may occur in the transfer process. Photographic reproduction can eliminate this problem, however, contractors can still misinterpret the logs during bid preparation if separated from the text of the assessment. Should this occur, delays and disputes, or unanticipated costs may result.

To reduce the likelihood of borehole and test pit log misinterpretation, the complete assessment should be available to persons or organisations involved in the project, such as contractors, for their use. Denial of such access and disclaiming responsibility for the accuracy of sub-surface information does not insulate an owner from the attendant liability. It is critical that the site owner provides all available site information to persons and organisations, such as contractors.

READ RESPONSIBILITY CLAUSES CLOSELY

An environmental site assessment is based extensively on judgement and opinion; therefore, it is necessarily less exact than other disciplines. This situation has resulted in wholly unwarranted claims being lodged against consultants. In order to aid in prevention of this problem, model clauses have been developed for use in written transmittals. These are definitive clauses, designed to indicate consultant responsibility. Their use helps all parties involved recognise individual responsibilities and formulate appropriate action. Some of these definitive clauses are likely to appear in the environmental site assessment and you are encouraged to read them closely. Your consultant will be happy to give full and frank answers to any questions you may have.